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Abstract

Procedural text contains rich anaphoric phe-
nomena, yet has not received much attention
in NLP. To fill this gap, we investigate the
textual properties of two types of procedural
text, recipes and chemical patents, and gener-
alize an anaphora annotation framework devel-
oped for the chemical domain for modeling
anaphoric phenomena in recipes. We apply this
framework to annotate the RecipeRef corpus
with both bridging and coreference relations.
Through comparison to chemical patents, we
show the complexity of anaphora resolution
in recipes. We demonstrate empirically that
transfer learning from the chemical domain im-
proves resolution of anaphora in recipes, sug-
gesting transferability of general procedural
knowledge.

1 Introduction

Anaphora resolution is a core component in in-
formation extraction tasks (Poesio et al., 2016;
Rösiger, 2019) and critical for various downstream
natural language processing tasks, such as named
entity recognition (Dai et al., 2019) and machine
translation (Stanovsky et al., 2019). It consists
of two primary anaphoric types, coreference (Ng,
2017; Clark and Manning, 2015) and bridging
(Asher and Lascarides, 1998; Rösiger et al., 2018).
Most anaphora corpora (Pradhan et al., 2012; Ghad-
dar and Langlais, 2016; Poesio et al., 2008), how-
ever, only focus on either coreference or bridging.
To fill the gap in anaphora resolution, it is becom-
ing increasingly important to have both types anno-
tated.

Current research on anaphora resolution is
mostly based on declarative text (Pradhan et al.,
2012; Ghaddar and Langlais, 2016; Rösiger, 2018a;
Hou et al., 2018), such as news or dialogue. Proce-
dural text, such as chemical patents or instruction
manuals, has received limited attention despite be-
ing critical for human knowledge (Yamakata et al.,

2020). In turn, correct resolution of entities is
the cornerstone of procedural text comprehension—
resolution of anaphora in these texts is required to
determine what action applies to which entity.

We focus in this work on the procedural text
type of recipes. As shown in Fig. 1, recipes have
rich and complex anaphora phenomena. Here, the
expression the biscuits appears several times in text;
while each occurrence relates to the same biscuits
concept, their state and semantic meaning vary.

Our aim in this paper is to address anaphora res-
olution in procedural text, especially for recipes,
identifying anaphoric references and determining
the relationships among the entities. We first in-
vestigate the textual properties of procedural texts,
i.e. chemical patents and recipes. We then adapt an
existing anaphora annotation schema developed for
chemical patents (Fang et al., 2021a,b) to recipes,
and define four types of anaphora relationships, en-
compassing coreference and bridging. We further
create a dataset based on this schema and achieve
high inter-annotator agreement with two annota-
tors experienced with the domain. We additionally
explore the feasibility of applying transfer learn-
ing from the chemical domain to model recipe
anaphora resolution. The dataset and related code
are publicly available.1

Our contributions in this paper include: (1) adap-
tation of the anaphora annotation framework from
chemical patents for modeling anaphoric phenom-
ena in recipes; (2) creation of a publicly accessible
recipe anaphora resolution dataset based on the an-
notation framework (Fang et al., 2022); (3) investi-
gation of the textual properties of chemical patents
and recipes; and (4) demonstration of the benefit of
utilizing procedural knowledge from the chemical
domain to enhance recipe anaphora resolution via
transfer learning.

1Code is available at https://github.com/
biaoyanf/RecipeRef, and the dataset is available at
http://doi.org/10.17632/rcyskfvdv7.1.
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Figure 1: Excerpt of a recipe annotated for anaphora. Different color links represent different anaphora relation
types. Detailed anaphora relation definitions are provided in Section 3.3.

2 Related Work

Anaphora relation subsumes two referring types:
(1) coreference — expressions in the text that refer
to the same entity (Clark and Manning, 2015; Ng,
2017); and (2) bridging — expressions that do not
refer to the same entity, but are linked via seman-
tic, lexical, or encyclopedic relations (Asher and
Lascarides, 1998; Hou et al., 2018).

Existing anaphora corpora mostly focus on
declarative text, across a range of domains (Poe-
sio et al., 2008; Pradhan et al., 2012; Ghaddar and
Langlais, 2016; Cohen et al., 2017). There have
been attempts to annotate procedural text corpora
for anaphora, but most focus exclusively on coref-
erence (Mysore et al., 2019; Friedrich et al., 2020).

Pradhan et al. (2012) developed the CoNLL
2012 corpus for generic coreference resolution. It
consists of declarative texts including news and
magazine articles, across three languages — En-
glish, Chinese, and Arabic. This corpus adopted
the OntoNotes 5.0 (Weischedel et al., 2013) anno-
tation scheme, modeling coreference in terms of
two subtypes: (1) identity, where the anaphoric
references and referents are identical; and (2) ap-
positive, where a noun phrase is modified by an
intermediately-adjacent noun phrase. It models
coreference as a clustering task, ignoring the direc-
tion of relations. Following largely the same an-
notation framework, the WikiCoref corpus (Ghad-
dar and Langlais, 2016) targeted Wikipedia texts.
The InScript corpus (Modi et al., 2016) consists
of 1,000 stories from 10 different scenarios corre-
sponding to a “script”, i.e. a standardised sequence
of events. The corpus includes coreference annota-

tions for noun phrases.

BioNLP-ST 2011 (Nguyen et al., 2011) is a gene-
related coreference corpus based on abstracts from
biomedical publications. It consists of four types
of coreference: RELAT (relative pronouns or rela-
tive adjectives, e.g. that), PRON (pronouns, e.g. it),
DNP (definite NPs or demonstrative NPs, e.g. NPs
that begin with the) and APPOS (coreferences in
apposition). As it only focuses on gene-related an-
notation, coreference is limited. CRAFT-ST 2019
(Cohen et al., 2017) annotates 97 full biomedi-
cal articles for coreference resolution, based on
a slightly-modified version of the OntoNotes 5.0
annotation scheme. Compared to the BioNLP 2011
corpus, it contains a wider range of relation types,
and is not limited to only abstracts. SCIERC (Luan
et al., 2018) contains 500 abstracts from scientific
articles, and coreference annotation.

Due to the complexities of defining bridging
(Zeldes, 2017; Hou et al., 2018), different cor-
pora have adopted different definitions of bridg-
ing. According to Rösiger et al. (2018), bridg-
ing can be divided into: (1) referential, where the
anaphoric references rely on the referent to be in-
terpretable (e.g. a new town hall – the door, the old
oak tree – leaves, etc.); and (2) lexical, encompass-
ing lexical-semantic relations, such as meronymy
or hyponymy (e.g. Europe and Spain are in a whole-
part relation). The ARRAU corpus (Poesio et al.,
2008) consists of three types of declarative text:
news, dialogue and narrative text. The bridging
annotations are mostly lexical, with a much smaller
number of referential references. The ISNotes cor-
pus (Hou et al., 2018) is based on 50 Wall Street
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Journal (WSJ) texts from the OntoNotes corpus,
and contains both coreference and referential bridg-
ing. Similar to ISNotes, BASHI (Rösiger, 2018a)
is based on another 50 WSJ texts from OntoNotes
with referential bridging. With the same annota-
tion scheme as BASHI, SciCorp (Rösiger, 2016)
focuses on scientific text and referential bridging.

A small number of domain-specific anaphora
corpora have been developed for procedural text.
The ChEMU-ref corpus (Fang et al., 2021a) con-
tains 1,500 chemical patent excerpts describing
chemical reactions. Based on generic and chem-
ical knowledge, the corpus contains five types of
anaphora relationships, i.e. Coreference, Trans-
fers, Reaction-associated, Work-up, and Contained.
Friedrich et al. (2020) developed the SOFC-Exp
corpus based on 45 material sciences articles, for
the purposes of information extraction. The cor-
pus is primarily targeted at named entity recogni-
tion and relation extraction, with coreference as a
secondary annotation task, based on coindexation
between a common noun or pronoun and a more
specific mention earlier in the text. Also in the
context of material sciences, Mysore et al. (2019)
annotated 230 synthesis procedures for coreference,
largely based on text in parentheses and coreferent
abbreviations.

Recent work in recipe comprehension includes
visual instructions (Huang et al., 2017; Nishimura
et al., 2020) and linguistic texts (Agarwal and
Miller, 2011; Kiddon et al., 2015; Jiang et al., 2020)
across Japanese (Harashima and Hiramatsu, 2020;
Harashima et al., 2016) and English (Batra et al.,
2020; Marin et al., 2019). Most research analyzes
the text of recipes as a workflow graph based on
actions (Kiddon et al., 2015; Mori et al., 2014; Ya-
makata et al., 2020), where the vertices represent
name entities (e.g. action, food, etc.) and edges
represent relational structure (e.g. action comple-
ment, food complement, etc.). Although interac-
tions among ingredients can be derived via action
nodes, this approach doesn’t sufficiently capture
anaphora phenomena, i.e. coreference and bridg-
ing. The RISeC corpus (Jiang et al., 2020) identi-
fies candidate expressions for zero anaphora verbs
in English recipes. However, they do not capture
generic anaphoric phenomena.

In terms of modeling, most research has han-
dled coreference and bridging separately due to
limited data availability (and a lack of annotated
datasets containing both coreference and bridging).

For coreference resolution, span ranking models
(Lee et al., 2017, 2018) have become the bench-
mark method, supplanting mention ranking mod-
els (Clark and Manning, 2015, 2016a,b; Wiseman
et al., 2015, 2016). Various span ranking variants
have been proposed (Zhang et al., 2018; Grobol,
2019; Kantor and Globerson, 2019), and achieved
strong results. With the increasing number of
coreference corpora, transfer learning (Brack et al.,
2021; Xia and Van Durme, 2021) involving pre-
training on a source domain and fine-tuning on a
target domain has shown great potential at improv-
ing coreference resolution. Bridging methods can
be categorised into: (1) rule-based methods (Hou
et al., 2014; Rösiger et al., 2018; Rösiger, 2018b);
and (2) machine learning methods (Hou, 2018a,b,
2020; Yu and Poesio, 2020). Hou (2020) modeled
bridging resolution as a question answering task,
and fine-tuned the question answering model from
generic question answering corpora. By utilizing
transfer learning, they achieved a stronger perfor-
mance on the bridging task. Yu and Poesio (2020)
proposed a joint training framework for bridging
and coreference resolution based on an end-to-end
coreference model (Lee et al., 2017). Similar to
coreference, they modeled bridging as a clustering
task. Through joint training, they achieved sub-
stantial improvements for bridging, but the impact
on coreference was less clear. Fang et al. (2021a)
adopted the same end-to-end framework for joint
training, modeling bridging as a mention pair clas-
sification task, and achieved improvements on both
subtasks.

3 Annotation Scheme

In this section, we describe our adapted annotation
scheme for recipe anaphora annotation. The com-
plete annotation guideline is available at Fang et al.
(2022).

3.1 Corpus Selection

We create our RecipeRef dataset by random sam-
pling texts from RecipeDB (Batra et al., 2020), a
large, diverse recipe database containing 118,171
English recipes with 268 processes and more than
20,262 ingredients. It consists of ingredient lists
and instruction sections. We select the instruction
section of each recipe, which details the steps for
preparing the dish.
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3.2 Mention Types

As our goal is to capture anaphora in recipes, we fo-
cus on ingredient-related expressions. In line with
previous work (Pradhan et al., 2012; Cohen et al.,
2017; Fang et al., 2021a; Ghaddar and Langlais,
2016), we leave out singleton mentions, i.e. men-
tions that are not involved in anaphora relations (as
defined in Section 3.3) are not annotated. Mention
types that are considered for anaphora relations are
listed below.

Ingredient Terms: In recipes, ingredient terms
are essential as they indicate what ingredients are
used, in the form of individual words or phrases,
such as butter, endive heads, red peppers, or garlic
powder.

Referring Expressions: We consider referring
expressions to be pronouns (e.g. it or they) and
generic phrases (e.g. soup, or the pastry mixture)
used to represent ingredients that were previously
introduced in the recipe text.

We adopt several criteria in annotating mentions:

• Premodifiers: One of the key challenges in
procedural text is to track state changes in en-
tities. It is critical to include premodifiers,
as they play an important role in identify-
ing an entity’s state. We consider ingredients
with premodifiers to be atomic mentions, e.g.
chopped chicken, roasted red peppers, and
four sandwiches.2

• Numbers: In some cases, standalone numeric
expressions can be used to reference to ingre-
dients, and in such cases are considered to be
mentions. Examples of this are 1 in Beat eggs,
1 at a time, and three in Combine together to
make a sandwich. Repeat to make three.

3.3 Relation Types

A core challenge in procedural text comprehension
is tracking the state of each entity (Dalvi et al.,
2018; Tandon et al., 2018). Recipes contain rich
information about changes in the state of ingredi-
ents. As shown in Fig. 1, to obtain the biscuits
in line 6, the biscuits in line 1 has gone through
several processes, involving physical (e.g. flatten)
and chemical change (e.g. bake). Capturing labeled

2We use the term “premodifier” somewhat loosely, in that,
strictly speaking, expressions such as four in our example are
specifiers rather than premodifiers.

Figure 2: Overall schema of anaphora relations for
recipes.

interactions between ingredients provides a richer
understanding of ingredients and their interactions
(i.e. where is the ingredient from).

There are two basic types of anaphora: corefer-
ence and bridging. In recipes, we define bridging
according to three subtypes of referring relations,
based on the state of entities (with coreference mak-
ing up the fourth subtype). The overall schema of
anaphora relations for recipes is shown in Fig. 2.

In anaphora resolution, an antecedent is a lin-
guistic expression that anchors the interpretation
of a second expression, the anaphor, which cannot
be interpreted in isolation or has little meaning on
its own. Anaphors are linked to antecedents via
anaphora relations. Consistent with previous work,
we limit anaphors to link to antecedents appearing
earlier in the text (i.e. we do not annotate instances
of cataphora, which we found to occur very rarely
in recipe texts), and the direction of links is pre-
served.

3.3.1 Coreference
In general applications, coreference focuses on
expressions that refer to the same entity in the
real-world (Clark and Manning, 2015; Ng, 2017).
In procedural text, the state of an entity can be
changed by an action applied to that entity. To cap-
ture state changes, we add an extra constraint on
coreference in requiring that the two mentions refer
to the same entity in the same state.

To eliminate ambiguity in linking coreferent
mentions, the closet antecedent is linked for a given
anaphor.

3.3.2 Bridging
As discussed in Section 3.3.1, we consider the state
of entities to interface with anaphora in procedural
text. As such, we define three subtypes of bridging
relations, based on the state of the entities involved.

TRANSFORMED A one-to-one anaphoric link
for an ingredient that is meaning-wise the same
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Combination
Process

Chemical
Patents

...5-Isopropylisoxazol-3-carboxylic acid (1.00 g, 6.45 mmol) was dissolved in methanol (20 mL), and thionyl chloride (1.51 g,
12.9 mmol) was slowly added at 0°C. The reaction solution was slowly warmed to 25°C and stirred for 12 hour...

Recipes ... mix 2 tablespoons of the olive oil, chili powder, allspice, salt, and pepper in a small bowl and brush the turkey all over with
the spice mixture...

Removal
Process

Chemical
Patents

...the mixture was extracted three times with ethyl acetate (50 mL). The combined ethyl acetate layer was washed with saturated
brine (50 mL) and dried over anhydrous sodium sulfate...

Recipes ...add chicken thighs to the broth and simmer until cooked through, about 10 minutes. remove chicken with slotted spoon and
set aside; when cool enough to handle, slice thinly. continue to simmer broth, return to pot...

Table 1: Examples of processes in chemical patents and recipes.

but has undergone physical/chemical change (e.g.
peeling, baking, or boiling). For example, in Fig. 1,
the biscuits in line 4 and 5 are annotated as TRANS-
FORMED because of the bake action that changes
the state of the biscuits in line 4.

INGREDIENT(WITHOUT-STATE-CHANGE)-
ASSOCIATED A one-to-many relationship
between a processed food mention and its source
ingredients, where the source ingredients have not
undergone a state change (i.e. physical/chemical
change). As shown in Fig. 1, the cheese in line
5 refers to its source ingredients the mozzarella
and Parmesan cheese in line 4 and there is
no state change. Thus, they are annotated
as INGREDIENT(WITHOUT-STATE-CHANGE)-
ASSOCIATED.

INGREDIENT(WITH-STATE-CHANGE)-
ASSOCIATED A one-to-many relationship
between a processed food mention and its
source ingredients, involving a state change. As
an example, the biscuits in Fig. 1 line 6 is a
combination of previously-mentioned source
ingredients (i.e. the sauce, a pinch of the oregano,
pepperoni, the cheese, and the biscuits) involv-
ing a state change through baking. They are
thus annotated as INGREDIENT(WITH-STATE-
CHANGE)-ASSOCIATED.

3.4 Comparison with Chemical Patents

As shown in Table 1, chemical patents and recipes
have many commonalities. They use similar lan-
guage to describe the application of processes (e.g.
combination or removal) to source entities to ob-
tain new entities, making it feasible to adapt the
anaphora annotation scheme from chemical patents
(Fang et al., 2021a,b) to recipes.

However, there are some key differences in the
annotation schemes.

• Domain Differences: Some relation types de-
fined for chemical patents are domain-specific,

e.g. the WORK-UP relation is specific to chem-
istry and cannot be directly applied to recipes.

• Determining State Change: In both chemi-
cal patents and recipes, anaphora resolution
aims to capture anaphoric relations between
mentions involving possible state changes. In
the chemical domain, we are most concerned
with chemical changes (e.g. oxidation or acid-
ification). However, in the recipe domain, we
are also interested in physical changes (e.g.
chop or slice).

• Rich Semantic Meaning in Recipes: Ingre-
dient terms in recipes may represent a com-
bination of ingredients. As shown in Fig. 1,
the biscuits in line 6 represent a combination
of previously-mentioned ingredients and not
just the biscuit ingredient itself. However, in
chemical patents, chemical names have spe-
cific meanings and cannot be semantically ex-
tended. This is a key challenge in resolving
anaphora in recipes.

• Variability in Instruction Descriptions: Al-
though chemical patents and recipes have
similar structure, instruction descriptions
in recipes are structurally more variable.
In chemical patents, processed entities are
mostly directly used in the immediately-
proceeding process. However, processed en-
tities in recipes can be mentioned far later in
the text (esp. in “modular” recipes, e.g. where
a cake, cake filling, and cake icing are sepa-
rately prepared, and only combined in a final
step).

• Hierarchical Structure in Recipe Relation
Types: Anaphora relation types in recipes are
defined hierarchically (as shown in Fig. 2),
such that a simplified version of the recipe
anaphora resolution task, without considering
state change, can be easily derived. In chemi-
cal patents, there is no clear way of simplify-
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RecipeRef ChEMU-ref

Documents 80 1,125
Sentences 999 5,768

Tokens per sentence 12.6 27.6

Mentions 1,408 17,023
Mentions per doc 17.6 15.1

COREF 229 / 415 3,243
COREF per doc 2.9 / 5.2 2.9

Bridging* 1,104 / 918 12,796
Bridging* per doc 13.8 / 11.5 11.4

TR 186 / — —
IWOA 91 / 918 —
IWA 827 / — —

Table 2: Corpus statistics. For ChEMU-ref, we
include the training and development set. “COREF”,
“TR”, “IWOA” and “IWA” denote the COREFERENCE,
TRANSFORMED, INGREDIENT(WITHOUT-STATE-
CHANGE)-ASSOCIATED and INGREDIENT(WITH-
STATE-CHANGE)-ASSOCIATED relations, respectively.
“/” shows the number of relations with and without
consideration of state change. “Bridging*” is the total
number of bridging relations across all subtypes.

ing the scheme while preserving the anaphoric
relations.

4 Task Definition

Following the approach of Fang et al. (2021a),
anaphora resolution is modeled as a two-step task:
(1) mention detection; and (2) anaphora relation
detection.

As anaphora relation types in recipes are
defined hierarchically, we can derive a sim-
plified version of the recipe anaphora resolu-
tion task by removing state changes. That
is, COREFERENCE and TRANSFORMED can
be merged when we remove consideration of
state changes, and INGREDIENT(WITHOUT-STATE-
CHANGE)-ASSOCIATED and INGREDIENT(WITH-
STATE-CHANGE)-ASSOCIATED can similarly be
merged. As such, we evaluate recipe anaphora res-
olution both with state change (4-way), and without
state change (2-way).

As our corpus includes one-to-many anaphoric
relations for bridging, standard coreference evalua-
tion metrics (Luo, 2005; Recasens and Hovy, 2011;
Moosavi and Strube, 2016), which assume a given
mention only occurs in a unique cluster, are not suit-
able for this task. Although coreferences involving
one-to-one relations in this task could be evaluated
with these metrics, to maintain a unified evaluation
for bridging and coreference, we utilize precision,

recall and F1 as our core metrics.3 Specifically,
we follow the evaluation of the ChEMU-ref cor-
pus, scoring coreference from two perspectives: (1)
surface coreference, where a coreferent anaphor
links to its closest antecedent; and (2) atom corefer-
ence, where a coreferent anaphor links to a correct
antecedent (Kim et al., 2012).

For manual annotation, we use the Brat rapid
annotation tool.4 In an attempt to achieve high
quality, we went through 8 rounds of annotation
training and refinement of the anaphora annotation
with two annotators experienced with the recipe
domain. In each round of training, the annotators
independently annotated 10 recipes (different for
each round of annotation) and met afterwards to
compare annotation results. Further refinements of
the annotation guidelines were made based on the
discussion.

After training, we reached a high inter-annotator
agreement (IAA) of Krippendorff’s α = 0.85,
mention-level F1 = 0.88, and relation-level F1 =
0.67. As a point of comparison, the respective val-
ues after the first round of annotator training were
0.45, 0.51 and 0.29, respectively.

We use 80 double-annotated recipes with har-
monized annotations as our corpus. The statistics
of this corpus in comparison with the ChEMU-ref
corpus (Fang et al., 2021a) are shown in Table 2.

5 Methodology

To investigate the benefit of transfer learning from
the chemical domain, we follow the configuration
of Fang et al. (2021a), modeling bridging as a clas-
sification task and adopting the benchmark end-to-
end neural coreference model of Lee et al. (2017,
2018) for joint training of the two anaphora resolu-
tion types.

For each span xi, the model learns: (1) a mention
score smi for mention detection:

sm(i) = ws · FFNNs(si)

and (2) a distribution P (·) over possible antecedent
spans Y (i) for coreference resolution:

P (y) =
exp(sc(i, y))∑

y′∈Y exp(sc(i, y′))

3We additionally include results based on standard corefer-
ence metrics for coreference only (but not bridging, due to the
many-to-one relations) in Appendix A.

4https://brat.nlplab.org/
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where sc(i, y) is the output of a feed-forward neural
network with span pair embedding si,y, and (3) a
pair-wise score sb(i, y) of each possible antecedent
span y for bridging resolution:

sb(i, y) = softmax(wb · FFNNb(si,y))

A span representation si is the concatenation of
output token representations (x∗i ) from a bidirec-
tional LSTM (BiLSTM) (Hochreiter and Schmid-
huber, 1997), the syntactic head representation (hi)
obtained from an attention mechanism (Bahdanau
et al., 2015), and a feature vector of the mention
(ϕ(i)):

si = [x∗START(i), x
∗
END(i), hi, ϕ(i)]

where START(i) and END(i) represent the starting
and ending token index for span i, respectively.

A span pair embedding si,y is obtained by the
concatenation of each span embedding (s(i), s(y))
and the element-wise multiplication of the span em-
beddings (s(i)◦ s(y)) and a feature vector (ϕ(i, y))
for span pair i and y:

si,y = [s(i), s(y), s(i) ◦ s(y), ϕ(i, y)]

For mention loss, we use cross-entropy loss:

Lm = −
λT∑
i=1

mi ∗ log(sigmoid(sm(i)))

+ (1−mi) ∗ log(1− sigmoid(sm(i)))

where:

mi =

{
0 span i /∈ GOLDm

1 span i ∈ GOLDm

and GOLDm is the set of gold mentions that are
involved in anaphora relations.

For coreference resolution, we compute the loss
as follows, where GOLDc(i) is the gold coreferent
antecedents that span i refers to:

Lc = log
λT∏
i=1

∑
ŷ∈Y (i)

⋂
GOLDc(i)

P (ŷ)

For bridging resolution, the loss is obtained by
multiclass cross-entropy:

Lb = −
Kc∑
c=1

λT∑
i=1

∑
y

bi,j,c log(sb(i, y, c))

where Kc represents the number of bridging cate-
gories, sb(i, j, c) denotes the prediction of sb(i, j)
under category c, and:

bi,j,c =

{
0 span pair(i, j) /∈ GOLDb(c)
1 span pair(i, j) ∈ GOLDb(c)

where GOLDb(c) is the gold bridging relation un-
der category c.

We compute the total loss as L = Lm + Lref ,
where:

Lref =


Lc for coreference
Lb for bridging
Lc + Lb for joint training

6 Experiments

In this section, we present experimental results both
with and without state change for recipe anaphora
resolution. We use a similar configuration to Lee
et al. (2018). Specifically, we use the concatena-
tion of 300-dimensional GloVe embeddings (Pen-
nington et al., 2014), 1024-dimensional ELMo
word representations (Peters et al., 2018), and 8-
dimensional character embeddings that are learned
from a character CNN with windows of 3, 4, and
5 characters as the pretrained token embeddings.
Each feed-forward neural network consists of two
hidden layers with 150 dimensions and rectified
linear units (Nair and Hinton, 2010). The gold
mentions are separated in coreference and bridging.
For joint training, the gold mentions are combined.

We use 10-fold cross-validation to evaluate our
model on recipe anaphora resolution. Since end-to-
end model performance varies due to random ini-
tialization (Lee et al., 2017), we randomly shuffle
the dataset 5 times and run cross-validation 3 times
for each shuffle. Averaged results are reported.

Table 3 shows our primary results, without state
change. For coreference resolution, we provide ex-
perimental results on both surface and atom coref-
erence metrics. For bridging resolution, we focus
on overall bridging results. Since surface and atom
coreference metrics show the same trends in per-
formance, we use surface coreference and overall
bridging to compute overall results.

Overall, joint training achieves 26.2% F1 score
for surface coreference and 26.9% F1 score for
bridging, with +1.4% and +0.9% F1 score abso-
lute improvement over the component-wise models.
As such, joint training improves the performance
of both tasks. Compared to precision, recall in
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Relation Method PA RA FA PR RR FR

COREF (Surface) coreference 62.0 ± 1.0 37.8 ± 0.8 46.1 ± 0.8 33.6 ± 0.9 20.4 ± 0.6 24.8 ± 0.7
joint_train 65.2 ± 0.9 37.5 ± 0.9 46.7 ± 0.8 36.8 ± 0.9 21.0 ± 0.6 26.2 ± 0.7

COREF (Atom) coreference 62.0 ± 1.0 37.8 ± 0.8 46.1 ± 0.8 46.8 ± 1.1 26.1 ± 0.7 32.9 ± 0.7
joint_train 65.2 ± 0.9 37.5 ± 0.9 46.7 ± 0.8 50.4 ± 1.1 26.7 ± 0.7 34.4 ± 0.8

Bridging bridging 56.1 ± 1.2 35.1 ± 0.9 41.7 ± 0.8 36.3 ± 0.9 21.5 ± 0.8 26.0 ± 0.7
joint_train 57.7 ± 1.3 35.5 ± 0.9 42.7 ± 0.8 38.0 ± 0.8 21.9 ± 0.7 26.9 ± 0.7

Overall joint_train 62.1 ± 0.7 37.0 ± 0.5 46.0 ± 0.5 37.4 ± 0.7 21.8 ± 0.5 27.1 ± 0.5

Table 3: Anaphora resolution results based on 10-fold cross validation without considering state change. Models
were trained over 10,000 epochs, and averaged over 3 runs with 5 different random seeds (a total of 5×3×10 runs).
Models are trained for “coreference”, “bridging” or “joint_train” (both tasks jointly). “FA” denotes the F1 score for
anaphor prediction, and “FR” for relation prediction.

anaphor and relation detection is lower, indicating
the complexity in anaphoric forms in recipes.

We also experimented with joint coreference res-
olution and change-of-state classification, and ob-
served similar trends in the results, at reduced per-
formance levels due to the difficulty in additionally
predicting state changes (as shown in Appendix A).

Relation Method FA FR

coreference 46.1 ± 0.8 24.8 ± 0.7
COREF - w/ transfer 46.7 ± 0.8 25.3 ± 0.7

(Surface) joint_train 46.7 ± 0.8 26.2 ± 0.7
- w/ transfer 45.3 ± 0.9 26.9 ± 0.7

coreference 46.1 ± 0.8 32.9 ± 0.7
COREF - w/ transfer 46.7 ± 0.8 33.5 ± 0.8

(Atom) joint_train 46.7 ± 0.8 34.4 ± 0.8
- w/ transfer 45.3 ± 0.9 33.9 ± 0.8

Bridging
bridging 41.7 ± 0.8 26.0 ± 0.7
- w/ transfer 40.6 ± 0.9 26.7 ± 0.7

joint_train 42.7 ± 0.8 26.9 ± 0.7
- w/ transfer 43.4 ± 0.8 27.9 ± 0.7

Overall joint_train 46.0 ± 0.5 27.1 ± 0.5
- w/ transfer 45.2 ± 0.6 27.9 ± 0.5

Table 4: Experiments with transfer learning, without
considering state change. “FA” denotes the F1 score for
anaphor prediction, and “FR” for relation prediction.

As discussed in Section 3.4, chemical patents
and recipes have similar text structure. Based on
the hypothesis that this structural similarity can
lead to successful domain transfer, we experiment
with transfer learning from the chemical domain
to recipes. Specifically, we pretrain the anaphora
resolution model on the ChEMU-ref corpus (Fang
et al., 2021a,b) with 10,000 epochs, and fine-tune
it over the recipe corpus.

Table 4 shows the results with transfer learning,
demonstrating consistent improvements over coref-
erence and bridging resolution. Overall, we achieve
27.9% F1 score for relation prediction under joint

training and transfer learning, obtaining +0.8% F1

score absolute improvement. Incorporating proce-
dural knowledge also improves component-wise
models by +0.5% and +0.7% F1 score (absolute)
for surface coreference and bridging, respectively.

We performance error analysis on 5 randomly-
selected batches from 10-fold cross-validation
based on joint training. There are two primary
causes of error. First, the model struggles to cap-
ture the semantics of ingredient terms as they
are combined with other ingredients. As dis-
cussed in Section 3.4, ingredient terms can se-
mantically represent a mixture. E.g. the biscuits
in Fig. 1 line 6 and the yellowtail in Table 5
Ex 1 both represent a mixture of previous ingre-
dients which includes the key ingredient of bis-
cuits and yellowtail, respectively. The model fails
to capture the fact that these mentions incorpo-
rate multiple antecedents, and incorrectly analyzes
them as COREFERENCE. The second cause of
error is in failing to detect state change, mostly
in falsely analyzing TRANSFORMED as COREF-
ERENCE, and INGREDIENT(WITHOUT-STATE-
CHANGE)-ASSOCIATED as INGREDIENT(WITH-
STATE-CHANGE)-ASSOCIATED.

Errors in coreference resolution occur due to
two primary factors: (1) imbalance of coreference
and bridging; and (2) entities with different surface
expressions. As shown in Table 2, coreference
relations are not common in recipes, making it hard
for models to capture coreference links. Models
also fail to capture the coreference relationship of
entities in the face of lexical variation.

In bridging resolution, models also tend to
predict anaphoric links as INGREDIENT(WITH-
STATE-CHANGE)-ASSOCIATED due to its pre-
dominance in the annotated data. Furthermore,
given that it is a many-to-one relation, models
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1
Season the yellowtail fillets with salt and pepper , then dust 1 side only with flour , shaking off any excess. in a medium sized saute pan, heat the olive
oil until just nearly smoking and add the yellowtail , flour side down...

2
In a bowl, mash the corned beef as much as you can. Add the tinned tomatoes , onions and curry powder . Mix well until the mixture becomes free
of any lump of corned beef. Transfer to a frying pan on a medium heat, cook the mixture for about 10 – 15 minutes until the mixture is heated through...

3
In a ceramic or glass bowl, combine chiles , orange juice , lemon juice , and orange peel . Add the fish and refrigerate for 4 to 6 hours, stirring
occasionally until the fish loses all translucency. You may leave in the refrigerator overnight to marinate, if desired. Remove the fish, reserving the juice .

4 ...Add the white wine and passion fruit. Over medium heat, reduce by 3/ the liquid in the pan will begin to look thick and bubbly. Remove the pan from the
heat and slowly whisk in the butter a little bit at a time, making sure all butter is whisked in before adding more...

Table 5: Examples of anaphora phenomena from the RecipeRef dataset.

tend to over-predict INGREDIENT(WITH-STATE-
CHANGE)-ASSOCIATED relations to mentions
which are not associated with the given anaphor.
A natural explanation for this is that span-pair pre-
dictions are made independent of one another, and
there is no way for the model to capture interac-
tions between anaphors. Simultaneously evaluating
candidate antecedents might address this issue.

By incorporating procedural knowledge via
transfer learning, models achieve better perfor-
mance. The improvement occurs in two main
forms. First, mention detection improves. For ex-
ample in Table 5 Ex 3, the juice and its related
anaphoric relations are predicted by models with
transfer learning, yet not captured by standard joint
training models. Second, detection of lexically-
varied coreferent mentions improves. With Ex 4,
standard joint training models fails to capture the
the COREFERENCE relation between the butter and
all butter due to variation in expression, but this re-
lation is correctly captured by models with transfer
learning.

Directions for future work include: (1) joint
learning with COREFERENCE and TRANSFORMED

relations, which differ only in whether there is a
state change or not, such that considering them to-
gether may be effective; (2) incorporation of exter-
nal knowledge, including knowledge about ingre-
dient entities, which may further improve transfer
learning; and (3) utilization of transformer based
models (Joshi et al., 2020; Xia and Van Durme,
2021), which have been shown to perform well in
general-domain coreference settings.

7 Conclusion

In this paper, we have extended earlier work on
anaphora resolution over chemical patents to the do-
main of recipes. We adapted the annotation schema
and guidelines for chemical patents, and created a
labeled anaphora resolution corpus for recipes. We
further defined two tasks for modeling anaphora
phenomena in recipes, with and without consider-

ation of state change. Our experiments show the
benefit of joint training, and also transfer learning
from the chemical domain.

Acknowledgements

This work was done in the framework of the
ChEMU project, supported by Australian Re-
search Council Linkage Project project number
LP160101469 and Elsevier. A graduate research
scholarship was provided by the University of Mel-
bourne Faculty of Engineering and IT to Biaoyan
Fang. We would also like to thank Dr. Chris-
tian Druckenbrodt, Dr. Saber A. Akhondi, and Dr.
Camilo Thorne from Elsevier, as well as our two
expert recipe annotators Kate Baldwin and Ayah
Tayeh, for their contributions in refining the anno-
tation guidelines.

References
Rahul Agarwal and Kevin Miller. 2011. Information

extraction from recipes. Department of Computer
Science, Stanford University-2008.

Nicholas Asher and Alex Lascarides. 1998. Bridging.
Journal of Semantics, 15(1):83–113.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd International
Conference on Learning Representations (ICLR
2015), San Diego, USA.

Devansh Batra, Nirav Diwan, Utkarsh Upadhyay,
Jushaan Singh Kalra, Tript Sharma, Aman Kumar
Sharma, Dheeraj Khanna, Jaspreet Singh Marwah,
Srilakshmi Kalathil, Navjot Singh, Rudraksh Tuwani,
and Ganesh Bagler. 2020. RecipeDB: A resource for
exploring recipes. Database, 2020.

Arthur Brack, Daniel Uwe Müller, Anett Hoppe, and
Ralph Ewerth. 2021. Coreference resolution in re-
search papers from multiple domains. In Proc. of the
43rd European Conference on Information Retrieval,
online.

Kevin Clark and Christopher D Manning. 2015. Entity-
centric coreference resolution with model stacking.

3489

http://chemu.eng.unimelb.edu.au
https://doi.org/10.1093/jos/15.1.83
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473


In Proc. of the 53rd Annual Meeting of the Asso-
ciation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1405–
1415, Beijing, China.

Kevin Clark and Christopher D. Manning. 2016a. Deep
reinforcement learning for mention-ranking corefer-
ence models. In Proc. of the 2016 Conference on
Empirical Methods in Natural Language Processing,
pages 2256–2262, Austin, USA.

Kevin Clark and Christopher D. Manning. 2016b. Im-
proving coreference resolution by learning entity-
level distributed representations. In Proc. of the 54th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 643–653,
Berlin, Germany.

K Bretonnel Cohen, Arrick Lanfranchi, Miji Joo-young
Choi, Michael Bada, William A Baumgartner, Na-
talya Panteleyeva, Karin Verspoor, Martha Palmer,
and Lawrence E Hunter. 2017. Coreference annota-
tion and resolution in the Colorado Richly Annotated
Full Text (CRAFT) corpus of biomedical journal arti-
cles. BMC Bioinformatics, 18(1):372.

Zeyu Dai, Hongliang Fei, and Ping Li. 2019. Corefer-
ence aware representation learning for neural named
entity recognition. In IJCAI, pages 4946–4953.

Bhavana Dalvi, Lifu Huang, Niket Tandon, Wen tau
Yih, and Peter Clark. 2018. Tracking state changes
in procedural text: A challenge dataset and models
for process paragraph comprehension. In NAACL.

Biaoyan Fang, Christian Druckenbrodt, Saber A
Akhondi, Jiayuan He, Timothy Baldwin, and Karin
Verspoor. 2021a. ChEMU-ref: A corpus for model-
ing anaphora resolution in the chemical domain. In
Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 1362–1375, Online.
Association for Computational Linguistics.

Biaoyan Fang, Christian Druckenbrodt, Saber A.
Akhondi, Camilo Thorne, Timothy Baldwin, and
Karin Verspoor. 2022. RecipeRef corpus for model-
ing anaphora resolution from the procedural text of
recipes. Mendeley Data.

Biaoyan Fang, Christian Druckenbrodt, Colleen Yeow
Hui Shiuan, Sacha Novakovic, Ralph Hössel,
Saber A. Akhondi, Jiayuan He, Meladel Mistica, Tim-
othy Baldwin, and Karin Verspoor. 2021b. ChEMU-
Ref dataset for modeling anaphora resolution in the
chemical domain. Mendeley Data.

Annemarie Friedrich, Heike Adel, Federico Tomazic,
Johannes Hingerl, Renou Benteau, Anika Marusczyk,
and Lukas Lange. 2020. The SOFC-exp corpus and
neural approaches to information extraction in the
materials science domain. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 1255–1268, Online. Association
for Computational Linguistics.

Abbas Ghaddar and Phillippe Langlais. 2016. Wiki-
Coref: An English coreference-annotated corpus of
Wikipedia articles. In Proc. of the Tenth Interna-
tional Conference on Language Resources and Eval-
uation (LREC’16), pages 136–142, Portorož, Slove-
nia.

Loïc Grobol. 2019. Neural coreference resolution with
limited lexical context and explicit mention detection
for oral French. In Proc. of the Second Workshop on
Computational Models of Reference, Anaphora and
Coreference, pages 8–14, Minneapolis, USA.

Jun Harashima, Michiaki Ariga, Kenta Murata, and
Masayuki Ioki. 2016. A large-scale recipe and meal
data collection as infrastructure for food research. In
Proceedings of the Tenth International Conference
on Language Resources and Evaluation (LREC’16),
pages 2455–2459, Portorož, Slovenia. European Lan-
guage Resources Association (ELRA).

Jun Harashima and Makoto Hiramatsu. 2020. Cookpad
parsed corpus: Linguistic annotations of Japanese
recipes. In Proceedings of the 14th Linguistic An-
notation Workshop, pages 87–92, Barcelona, Spain.
Association for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9(8):1735–
1780.

Yufang Hou. 2018a. A deterministic algorithm for
bridging anaphora resolution. In Proc. of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1938–1948, Brussels, Bel-
gium.

Yufang Hou. 2018b. Enhanced word representations for
bridging anaphora resolution. In Proc. of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 1–7, New Orleans, USA.

Yufang Hou. 2020. Bridging anaphora resolution as
question answering. In Proc. of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1428–1438, Online.

Yufang Hou, Katja Markert, and Michael Strube. 2014.
A rule-based system for unrestricted bridging reso-
lution: Recognizing bridging anaphora and finding
links to antecedents. In Proc. of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP 2014), pages 2082–2093, Doha, Qatar.

Yufang Hou, Katja Markert, and Michael Strube. 2018.
Unrestricted bridging resolution. Computational Lin-
guistics, 44(2):237–284.

De-An Huang, Joseph J Lim, Li Fei-Fei, and Juan Car-
los Niebles. 2017. Unsupervised visual-linguistic
reference resolution in instructional videos. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2183–2192.

3490

https://doi.org/10.18653/v1/D16-1245
https://doi.org/10.18653/v1/D16-1245
https://doi.org/10.18653/v1/D16-1245
https://doi.org/10.18653/v1/P16-1061
https://doi.org/10.18653/v1/P16-1061
https://doi.org/10.18653/v1/P16-1061
https://aclanthology.org/2021.eacl-main.116
https://aclanthology.org/2021.eacl-main.116
https://doi.org/10.17632/RCYSKFVDV7
https://doi.org/10.17632/RCYSKFVDV7
https://doi.org/10.17632/RCYSKFVDV7
https://doi.org/10.17632/r28xxr6p92
https://doi.org/10.17632/r28xxr6p92
https://doi.org/10.17632/r28xxr6p92
https://doi.org/10.18653/v1/2020.acl-main.116
https://doi.org/10.18653/v1/2020.acl-main.116
https://doi.org/10.18653/v1/2020.acl-main.116
https://www.aclweb.org/anthology/L16-1021
https://www.aclweb.org/anthology/L16-1021
https://www.aclweb.org/anthology/L16-1021
https://doi.org/10.18653/v1/W19-2802
https://doi.org/10.18653/v1/W19-2802
https://doi.org/10.18653/v1/W19-2802
https://aclanthology.org/L16-1389
https://aclanthology.org/L16-1389
https://aclanthology.org/2020.law-1.8
https://aclanthology.org/2020.law-1.8
https://aclanthology.org/2020.law-1.8
https://doi.org/10.18653/v1/D18-1219
https://doi.org/10.18653/v1/D18-1219
https://doi.org/10.18653/v1/N18-2001
https://doi.org/10.18653/v1/N18-2001
https://doi.org/10.18653/v1/2020.acl-main.132
https://doi.org/10.18653/v1/2020.acl-main.132
https://doi.org/10.1162/COLI_a_00315


Yiwei Jiang, Klim Zaporojets, Johannes Deleu, Thomas
Demeester, and Chris Develder. 2020. Recipe instruc-
tion semantics corpus (RISeC): Resolving semantic
structure and zero anaphora in recipes. In Proceed-
ings of the 1st Conference of the Asia-Pacific Chap-
ter of the Association for Computational Linguistics
and the 10th International Joint Conference on Nat-
ural Language Processing, pages 821–826, Suzhou,
China. Association for Computational Linguistics.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Span-
BERT: Improving pre-training by representing and
predicting spans. Transactions of the Association for
Computational Linguistics, 8:64–77.

Ben Kantor and Amir Globerson. 2019. Coreference
resolution with entity equalization. In Proc. of the
57th Annual Meeting of the Association for Com-
putational Linguistics (ACL 2019), pages 673–677,
Florence, Italy.

Chloé Kiddon, Ganesa Thandavam Ponnuraj, Luke
Zettlemoyer, and Yejin Choi. 2015. Mise en place:
Unsupervised interpretation of instructional recipes.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
982–992, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Jin-Dong Kim, Ngan Nguyen, Yue Wang, Jun’ichi Tsu-
jii, Toshihisa Takagi, and Akinori Yonezawa. 2012.
The Genia event and protein coreference tasks of
the BioNLP shared task 2011. BMC Bioinformatics,
13(11):S1.

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle-
moyer. 2017. End-to-end neural coreference resolu-
tion. In Proc. of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 188–
197, Copenhagen, Denmark.

Kenton Lee, Luheng He, and Luke Zettlemoyer. 2018.
Higher-order coreference resolution with coarse-to-
fine inference. In Proc. of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 687–692,
New Orleans, USA.

Yi Luan, Luheng He, Mari Ostendorf, and Hannaneh
Hajishirzi. 2018. Multi-task identification of entities,
relations, and coreference for scientific knowledge
graph construction. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3219–3232, Brussels, Belgium.
Association for Computational Linguistics.

Xiaoqiang Luo. 2005. On coreference resolution per-
formance metrics. In Proc. of the Conference on
Human Language Technology and Empirical Meth-
ods in Natural Language Processing (EMNLP 2005),
pages 25–32, Vancouver, Canada.

Javier Marin, Aritro Biswas, Ferda Ofli, Nicholas Hynes,
Amaia Salvador, Yusuf Aytar, Ingmar Weber, and
Antonio Torralba. 2019. Recipe1m+: A dataset for
learning cross-modal embeddings for cooking recipes
and food images. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 43(1):187–203.

Ashutosh Modi, Tatjana Anikina, Simon Ostermann,
and Manfred Pinkal. 2016. InScript: Narrative texts
annotated with script information. In Proceedings
of the Tenth International Conference on Language
Resources and Evaluation (LREC’16), pages 3485–
3493, Portorož, Slovenia. European Language Re-
sources Association (ELRA).

Nafise Sadat Moosavi and Michael Strube. 2016. Which
coreference evaluation metric do you trust? a pro-
posal for a link-based entity aware metric. In Proc.
of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 632–642, Berlin, Germany.

Shinsuke Mori, Hirokuni Maeta, Yoko Yamakata, and
Tetsuro Sasada. 2014. Flow graph corpus from recipe
texts. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation
(LREC’14), pages 2370–2377, Reykjavik, Iceland.
European Language Resources Association (ELRA).

Sheshera Mysore, Zachary Jensen, Edward Kim, Kevin
Huang, Haw-Shiuan Chang, Emma Strubell, Jeffrey
Flanigan, Andrew McCallum, and Elsa Olivetti. 2019.
The materials science procedural text corpus: Anno-
tating materials synthesis procedures with shallow
semantic structures. In Proceedings of the 13th Lin-
guistic Annotation Workshop, pages 56–64, Florence,
Italy. Association for Computational Linguistics.

Vinod Nair and Geoffrey E Hinton. 2010. Rectified
linear units improve restricted Boltzmann machines.
In Proc. of the 33rd International Conference on
Machine Learning (ICML 2016), New York, USA.

Vincent Ng. 2017. Machine learning for entity corefer-
ence resolution: A retrospective look at two decades
of research. In Proc. of the Thirty-First AAAI Con-
ference on Artificial Intelligence (AAAI’17), pages
4877–4884, San Francisco, USA.

Ngan Nguyen, Jin-Dong Kim, and Jun’ichi Tsujii.
2011. Overview of BioNLP 2011 protein corefer-
ence shared task. In Proc. of BioNLP Shared Task
2011 Workshop, pages 74–82, Portland, USA.

Taichi Nishimura, Suzushi Tomori, Hayato Hashimoto,
Atsushi Hashimoto, Yoko Yamakata, Jun Harashima,
Yoshitaka Ushiku, and Shinsuke Mori. 2020. Vi-
sual grounding annotation of recipe flow graph. In
Proceedings of the 12th Language Resources and
Evaluation Conference, pages 4275–4284, Marseille,
France. European Language Resources Association.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proc. of the 2014 Conference on

3491

https://aclanthology.org/2020.aacl-main.82
https://aclanthology.org/2020.aacl-main.82
https://aclanthology.org/2020.aacl-main.82
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.18653/v1/D15-1114
https://doi.org/10.18653/v1/D15-1114
https://doi.org/10.18653/v1/D17-1018
https://doi.org/10.18653/v1/D17-1018
https://doi.org/10.18653/v1/N18-2108
https://doi.org/10.18653/v1/N18-2108
https://doi.org/10.18653/v1/D18-1360
https://doi.org/10.18653/v1/D18-1360
https://doi.org/10.18653/v1/D18-1360
https://aclanthology.org/L16-1555
https://aclanthology.org/L16-1555
http://www.lrec-conf.org/proceedings/lrec2014/pdf/763_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/763_Paper.pdf
https://doi.org/10.18653/v1/W19-4007
https://doi.org/10.18653/v1/W19-4007
https://doi.org/10.18653/v1/W19-4007
https://aclanthology.org/2020.lrec-1.527
https://aclanthology.org/2020.lrec-1.527
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162


Empirical Methods in Natural Language Processing
(EMNLP), pages 1532–1543, Doha, Qatar.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proc. of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 2227–2237,
New Orleans, USA.

Massimo Poesio, Ron Artstein, et al. 2008. Anaphoric
annotation in the ARRAU corpus. In Proc. of the
Sixth International Conference on Language Re-
sources and Evaluation (LREC 2008), Marrakech,
Morocco.

Massimo Poesio, Roland Stuckardt, and Yannick Vers-
ley. 2016. Anaphora Resolution. Springer.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. CoNLL-
2012 shared task: Modeling multilingual unrestricted
coreference in OntoNotes. In Proc. of EMNLP-
CoNLL 2012: Conference on Empirical Methods
in Natural Language Processing and Computational
Natural Language Learning, pages 1–40, Jeju, Korea.

Marta Recasens and Eduard Hovy. 2011. BLANC: Im-
plementing the Rand index for coreference evaluation.
Natural Language Engineering, 17(4):485–510.

Ina Rösiger. 2016. Scicorp: A corpus of English scien-
tific articles annotated for information status analysis.
In Proc. of the Tenth International Conference on
Language Resources and Evaluation (LREC 2016),
pages 1743–1749, Portorož, Slovenia.

Ina Rösiger. 2018a. BASHI: A corpus of Wall Street
Journal articles annotated with bridging links. In
Proc. of the Eleventh International Conference on
Language Resources and Evaluation (LREC-2018).

Ina Rösiger. 2018b. Rule- and learning-based methods
for bridging resolution in the ARRAU corpus. In
Proc. of the First Workshop on Computational Mod-
els of Reference, Anaphora and Coreference, pages
23–33, New Orleans, USA.

Ina Rösiger. 2019. Computational modelling of corefer-
ence and bridging resolution. Ph.D. thesis, Stuttgart
University.

Ina Rösiger, Arndt Riester, and Jonas Kuhn. 2018.
Bridging resolution: Task definition, corpus re-
sources and rule-based experiments. In Proc. of the
27th International Conference on Computational Lin-
guistics, pages 3516–3528, Santa Fe, USA.

Gabriel Stanovsky, Noah A. Smith, and Luke Zettle-
moyer. 2019. Evaluating gender bias in machine
translation. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1679–1684, Florence, Italy. Association for
Computational Linguistics.

Niket Tandon, Bhavana Dalvi Mishra, Joel Grus, Wen
tau Yih, Antoine Bosselut, and Peter Clark. 2018.
Reasoning about actions and state changes by inject-
ing commonsense knowledge. In EMNLP.

Ralph Weischedel, Martha Palmer, Mitchell Marcus,
Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Ni-
anwen Xue, Ann Taylor, Jeff Kaufman, Michelle
Franchini, Mohammed El-Bachouti, Robert Belvin,
and Ann Houston. 2013. OntoNotes release 5.0. Lin-
guistic Data Consortium Catalog No. LDC2013T19.

Sam Wiseman, Alexander M. Rush, Stuart Shieber, and
Jason Weston. 2015. Learning anaphoricity and an-
tecedent ranking features for coreference resolution.
In Proc. of the 53rd Annual Meeting of the Asso-
ciation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1416–
1426, Beijing, China.

Sam Wiseman, Alexander M. Rush, and Stuart M.
Shieber. 2016. Learning global features for coref-
erence resolution. In Proc. of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 994–1004, San Diego, USA.

Patrick Xia and Benjamin Van Durme. 2021. Moving
on from OntoNotes: Coreference resolution model
transfer. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 5241–5256, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Yoko Yamakata, Shinsuke Mori, and John Carroll. 2020.
English recipe flow graph corpus. In Proceedings of
the 12th Language Resources and Evaluation Confer-
ence, pages 5187–5194, Marseille, France. European
Language Resources Association.

Juntao Yu and Massimo Poesio. 2020. Multitask
learning-based neural bridging reference resolution.
In Proceedings of the 28th International Conference
on Computational Linguistics, pages 3534–3546,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Amir Zeldes. 2017. The GUM corpus: Creating mul-
tilayer resources in the classroom. Language Re-
sources and Evaluation, 51(3):581–612.

Rui Zhang, Cícero Nogueira dos Santos, Michihiro
Yasunaga, Bing Xiang, and Dragomir Radev. 2018.
Neural coreference resolution with deep biaffine at-
tention by joint mention detection and mention clus-
tering. In Proc. of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 2:
Short Papers), pages 102–107, Melbourne, Australia.

3492

https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://www.aclweb.org/anthology/L18-1058
https://www.aclweb.org/anthology/L18-1058
https://doi.org/10.18653/v1/W18-0703
https://doi.org/10.18653/v1/W18-0703
https://doi.org/10.18653/v1/P19-1164
https://doi.org/10.18653/v1/P19-1164
https://doi.org/10.3115/v1/P15-1137
https://doi.org/10.3115/v1/P15-1137
https://doi.org/10.18653/v1/N16-1114
https://doi.org/10.18653/v1/N16-1114
https://doi.org/10.18653/v1/2021.emnlp-main.425
https://doi.org/10.18653/v1/2021.emnlp-main.425
https://doi.org/10.18653/v1/2021.emnlp-main.425
https://aclanthology.org/2020.lrec-1.638
https://doi.org/10.18653/v1/2020.coling-main.315
https://doi.org/10.18653/v1/2020.coling-main.315
https://doi.org/10.1007/s10579-016-9343-x
https://doi.org/10.1007/s10579-016-9343-x
https://doi.org/10.18653/v1/P18-2017
https://doi.org/10.18653/v1/P18-2017
https://doi.org/10.18653/v1/P18-2017


A Additional Experimental Results

In the following tables, we provide detailed experimental results.
Table 6 provides anaphora resolution results with state changes based on 10-fold cross validation.
Table 7 provides a full comparison of transfer learning per anaphora relation with state change based on

10-fold cross validation.
Table 8 provides a full comparison of transfer learning per anaphora relation without state change based

on 10-fold cross validation.
Table 9 provides a full comparison of transfer learning for coreference resolution based on 10-fold cross

validation, under standard coreference evaluation metrics, i.e. MUC, BCUBED, and CRAFE. Specifically,
models are trained with the same parameters (e.g. data partitions, training epochs, etc.) discussed in
Section 6 but with a change of coreference evaluation metric, i.e. standard coreference evaluation metrics.
We consider the “Ave. F ” as the main evaluation metric, computed by averaging F1 scores of MUC,
BCUBED, and CRAFE.

Relation Method PA RA FA PR RR FR

COREF (Surface) coreference 46.5 ± 2.2 13.3 ± 0.7 19.7 ± 0.9 22.7 ± 2.0 6.2 ± 0.5 9.2 ± 0.7
joint_train 48.6 ± 1.9 15.3 ± 0.7 22.0 ± 0.9 28.7 ± 1.7 8.6 ± 0.5 12.5 ± 0.7

COREF (Atom) coreference 46.5 ± 2.2 13.3 ± 0.7 19.7 ± 0.9 27.9 ± 2.1 7.5 ± 0.5 11.2 ± 0.8
joint_train 48.6 ± 1.9 15.3 ± 0.7 22.0 ± 0.9 33.5 ± 1.8 9.8 ± 0.5 14.4 ± 0.7

Bridging bridging 51.7 ± 1.0 25.3 ± 0.6 33.2 ± 0.6 36.3 ± 0.8 19.4 ± 0.6 24.5 ± 0.6
joint_train 52.6 ± 1.0 24.6 ± 0.6 32.7 ± 0.7 37.7 ± 0.8 19.1 ± 0.6 24.7 ± 0.6

TR bridging 47.0 ± 2.3 16.6 ± 0.9 23.0 ± 1.2 32.9 ± 1.9 13.2 ± 0.8 17.3 ± 0.9
joint_train 52.0 ± 2.3 16.0 ± 0.9 22.9 ± 1.1 37.5 ± 2.2 13.2 ± 0.8 17.9 ± 1.0

IWOA bridging 5.9 ± 1.6 3.3 ± 1.1 3.7 ± 1.1 3.1 ± 1.1 2.3 ± 1.1 2.3 ± 1.0
joint_train 4.3 ± 1.3 2.4 ± 0.7 2.7 ± 0.7 2.5 ± 1.0 0.9 ± 0.4 1.1 ± 0.4

IWA bridging 55.2 ± 1.2 36.8 ± 1.0 42.9 ± 0.9 37.9 ± 0.9 22.7 ± 0.8 27.3 ± 0.7
joint_train 55.6 ± 1.2 35.8 ± 1.0 42.3 ± 0.9 39.4 ± 1.0 22.4 ± 0.8 27.5 ± 0.7

Overall joint_train 51.6 ± 0.8 21.5 ± 0.4 29.9 ± 0.5 36.3 ± 0.7 17.3 ± 0.5 23.0 ± 0.5

Table 6: Anaphora resolution results based on 10-fold cross validation with state change. Models were trained
over 10,000 epochs, and averaged over 3 runs with 5 different random seeds (a total of 5×3×10 runs). Models are
trained for “coreference”, “bridging” or “joint_train” (both tasks jointly). “FA” denotes the F1 score for anaphor
prediction, and “FR” for relation prediction.

Relation Method PA RA FA PR RR FR

COREF (Surface) coreference 45.6 ± 2.3 13.9 ± 0.8 20.0 ± 1.0 27.9 ± 2.1 8.3 ± 0.6 11.9 ± 0.8
joint_train 43.4 ± 2.3 12.3 ± 0.7 18.1 ± 1.0 24.5 ± 1.9 6.5 ± 0.5 9.7 ± 0.6

COREF (Atom) coreference 45.6 ± 2.3 13.9 ± 0.8 20.0 ± 1.0 32.9 ± 2.2 9.4 ± 0.6 13.7 ± 0.8
joint_train 43.4 ± 2.3 12.3 ± 0.7 18.1 ± 1.0 29.1 ± 2.1 7.6 ± 0.5 11.3 ± 0.7

Bridging bridging 53.4 ± 1.0 24.9 ± 0.5 33.3 ± 0.6 38.9 ± 0.8 19.8 ± 0.6 25.7 ± 0.6
joint_train 55.2 ± 1.0 25.6 ± 0.6 34.3 ± 0.6 39.6 ± 0.8 19.7 ± 0.5 25.8 ± 0.6

TR bridging 50.6 ± 2.2 17.8 ± 0.9 24.3 ± 1.0 37.8 ± 2.1 14.3 ± 0.8 18.9 ± 0.9
joint_train 53.8 ± 2.4 16.5 ± 0.9 23.5 ± 1.2 36.3 ± 2.2 12.9 ± 0.8 17.3 ± 0.9

IWOA bridging 4.4 ± 1.4 1.9 ± 0.6 2.3 ± 0.7 1.2 ± 0.5 0.5 ± 0.2 0.6 ± 0.2
joint_train 5.0 ± 1.5 2.9 ± 1.1 3.3 ± 1.1 2.6 ± 1.1 1.9 ± 1.0 2.0 ± 1.0

IWA bridging 56.9 ± 1.2 35.4 ± 1.0 42.4 ± 0.9 40.5 ± 0.9 23.1 ± 0.7 28.5 ± 0.7
joint_train 58.2 ± 1.2 37.8 ± 1.0 44.4 ± 0.9 41.5 ± 0.9 23.4 ± 0.7 29.0 ± 0.7

Overall joint_train 53.2 ± 0.8 21.3 ± 0.4 30.0 ± 0.5 37.9 ± 0.7 17.5 ± 0.4 23.6 ± 0.5

Table 7: Experiments with transfer learning based on 10-fold cross validation with state change. Models were
trained over 10,000 epochs, and averaged over 3 runs with 5 different random seeds (a total of 5×3×10 runs).
Models are trained for “coreference”, “bridging” or “joint_train” (both tasks jointly). “FA” denotes the F1 score for
anaphor prediction, and “FR” for relation prediction.
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Relation Method PA RA FA PR RR FR

COREF (Surface) coreference 63.3 ± 0.9 37.8 ± 0.8 46.7 ± 0.8 34.4 ± 0.9 20.5 ± 0.6 25.3 ± 0.7
joint_train 66.4 ± 1.0 35.4 ± 0.9 45.3 ± 0.9 39.7 ± 1.0 21.0 ± 0.6 26.9 ± 0.7

COREF (Atom) coreference 63.3 ± 0.9 37.8 ± 0.8 46.7 ± 0.8 47.8 ± 1.1 26.3 ± 0.7 33.5 ± 0.8
joint_train 66.4 ± 1.0 35.4 ± 0.9 45.3 ± 0.9 52.2 ± 1.2 25.8 ± 0.7 33.9 ± 0.8

Bridging bridging 55.5 ± 1.3 33.1 ± 0.9 40.6 ± 0.9 38.0 ± 1.0 21.5 ± 0.7 26.7 ± 0.7
joint_train 58.4 ± 1.2 35.8 ± 0.9 43.4 ± 0.8 40.3 ± 1.0 22.3 ± 0.6 27.9 ± 0.7

Overall joint_train 63.0 ± 0.7 35.8 ± 0.6 45.2 ± 0.6 39.8 ± 0.6 22.0 ± 0.5 27.9 ± 0.5

Table 8: Experiments with transfer learning based on 10-fold cross validation without state change. Models were
trained over 10,000 epochs, and averaged over 3 runs with 5 different random seeds (total 5×3×10 runs). Models
are trained for “coreference”, “bridging” or “joint_train” (both tasks jointly). “FA” denotes the F1 score for anaphor
prediction, and “FR” for relation prediction.
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