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Abstract

Recent works have shown promising results of
prompt tuning in stimulating pre-trained lan-
guage models (PLMs) for natural language
processing (NLP) tasks. However, to the
best of our knowledge, existing works focus
on prompt-tuning generative PLMs that are
pre-trained to generate target tokens, such as
BERT (Devlin et al., 2019). It is still unknown
whether and how discriminative PLMs, e.g.,
ELECTRA (Clark et al., 2020), can be effec-
tively prompt-tuned. In this work, we present
DPT, the first prompt tuning framework for
discriminative PLMs, which reformulates NLP
tasks into a discriminative language model-
ing problem. Comprehensive experiments on
text classification and question answering show
that, compared with vanilla fine-tuning, DPT
achieves significantly higher performance, and
also prevents the unstable problem in tuning
large PLMs in both full-set and low-resource
settings. The source code and experiment de-
tails of this paper can be obtained from https:
//github.com/thunlp/DPT.

1 Introduction

Recent years have witnessed the great success of
the pre-training-then-fine-tuning paradigm in natu-
ral language processing (NLP) (Devlin et al., 2019;
Yang et al., 2019; Clark et al., 2020; Lan et al.,
2020; Raffel et al., 2020). Typically, language mod-
els are first pre-trained on large-scale corpora via
self-supervised generative or discriminative tasks
to learn universal text representations, and then
fine-tuned to adapt to downstream tasks (Qiu et al.,
2020; Xu et al., 2021). However, the significant gap

† Corresponding authors: Z.Liu (liuzy@tsinghua.edu.cn),
M.Sun (sms@tsinghua.edu.cn)

between the objective forms of model pre-training
and fine-tuning hinders taking full advantage of
PLMs in downstream tasks (Liu et al., 2021).

Prompt tuning has recently shown its effective-
ness in stimulating the capability of PLMs by trans-
forming downstream tasks into the same form as
pre-training (Petroni et al., 2019; Brown et al.,
2020; Schick and Schütze, 2021; Gao et al., 2021;
Liu et al., 2021). However, to the best of our knowl-
edge, existing works focus on prompt-tuning gen-
erative PLMs (i.e., PLMs pre-trained by generat-
ing target textual tokens from the context, such as
BERT (Devlin et al., 2019) and GPT (Brown et al.,
2020)). It is still unknown whether and how dis-
criminative PLMs can be effectively prompt-tuned
(i.e., PLMs pre-trained by discriminating replaced
tokens, such as ELECTRA (Clark et al., 2020) and
WKLM (Xiong et al., 2020)). Since discriminative
PLMs typically enjoy competitive performance and
superior computational efficiency compared with
their generative counterparts (Clark et al., 2020), it
can be especially appealing to prompt-tuning dis-
criminative PLMs.

In this work, we present DPT, the first prompt
tuning framework for discriminative PLMs. DPT
reformulates downstream tasks into a discrimina-
tive language modeling problem, maximally mit-
igating the gap between model pre-training and
tuning. Specifically, as shown in Figure 1, mod-
els are asked to discriminate correct answer tokens
(e.g., correct labels for text classification, or answer
spans for question answering) from the input to-
kens based on the reused discriminative language
modeling head, where the objective form is identi-
cal to pre-training.

To evaluate DPT, we conduct comprehensive
experiments on text classification and question an-
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Figure 1: Illustration of (a) discriminative language modeling (DLM) based pre-training with the DLM head,
(b) vanilla fine-tuning with a new classification (CLS) head, and (c) our DPT prompt tuning approach that
reformulates NLP tasks into a discriminative language modeling problem. DPT fills the input text into the template
containing answer candidates, and discriminates whether each answer candidate is correct (i.e., original), or incorrect
(i.e., replaced) based on the reused DLM head.

swering in both full-set and low-resource settings.
Experimental results show that despite its sim-
plicity, DPT significantly outperforms vanilla fine-
tuning (e.g., 4.1% accuracy improvement in the
low-resource SST-5 evaluation). Moreover, previ-
ous works have shown that fine-tuning large PLMs
can be highly unstable and even produce divergent
results (Devlin et al., 2019; Dodge et al., 2020),
which undermines the practicality of large PLMs.
We show that DPT also addresses the unstable prob-
lem in tuning large discriminative PLMs.

The contributions of our work are summarized
as follows: (1) We present the first prompt tuning
framework for discriminative PLMs. (2) Compre-
hensive experimental results on text classification
and question answering demonstrate the effective-
ness of the proposed prompt tuning framework.

2 Preliminary

In this work, without loss of generality, we take
ELECTRA (Clark et al., 2020) as a representative
example of discriminative PLMs, while applying
DPT to other discriminative PLMs is also appli-
cable. Here we introduce the main procedure of
pre-training and fine-tuning, and we refer readers
to the paper (Clark et al., 2020) for more details.

Pre-training. During pre-training, a generator first
corrupts the text via token replacement. Then the
discriminator is asked to detect the replaced tokens,
by classifying each token into binary categories,
i.e., {original, replaced}, as shown in Figure 1.
Finally, the generator is discarded and the discrimi-
nator is fine-tuned on downstream tasks.

Vanilla Fine-tuning. (1) During fine-tuning, to
perform text classification, a new classification

head is typically introduced to classify the hid-
den representation of the [CLS] token in the last
layer (Clark et al., 2020). (2) For general multi-
span question answering, the answer could be mul-
tiple spans from the input text (Dasigi et al., 2019;
Dua et al., 2019). State-of-the-art fine-tuning ap-
proaches formulate the task as a sequence-labeling
problem, and classify each input token into binary
labels based on a new classification head, indicat-
ing whether the token belongs to the answer or
not (Segal et al., 2020; Ye et al., 2020).

Note that the classification head typically intro-
duces new parameters, and learning the parameters
from scratch usually requires a large amount of la-
beled data. Moreover, previous works have shown
that fine-tuning large PLMs can be highly unstable,
and even produce divergent results (Devlin et al.,
2019; Dodge et al., 2020). As a result, multiple
fine-tuning trials are usually needed to find a good
random seed that leads to a stably fine-tuned PLM,
which undermines the practicality of large PLMs.

3 Methodology

In this section, we introduce the framework of DPT
for prompt-tuning discriminative PLMs. We first
introduce DPT using text classification as the run-
ning example, and then illustrate its application in
question answering.

DLM-based Reformulation. DPT reformulates
NLP tasks into a dscriminative language modeling
problem, maximally mitigating the gap between
pre-training and tuning. Specifically, as shown in
Figure 1 (c), for a text classification task with class
set C = {c1, c2, . . . , cn}, DPT defines a template
that contains all answer candidates T (·; C). Given
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an input text x (e.g., “A graceful movie.”), DPT
fills the input text into the template as follows:

T (x; C) = [CLS]x Class: c1, c2, . . . , cn.[SEP] (1)

Intuitively, T (x; C) can be understood as cre-
ating a virtual context that assumes all candidate
classes are correct for the input text x. It is then
straightforward for discriminative PLMs to decide
whether each class candidate token is proper in the
context, by classifying the tokens into original (i.e.,
correct), or replaced (i.e., incorrect) based on the
reused DLM head. In our experiments, we find
that the order of classes in template has minimal
influence on the performance, and a random order
can produce good prompt-tuning results.
DPT Training. After template filling, T (x; C)
is fed into PLMs to obtain the hidden represen-
tations {h[CLS],h1,h2, . . . ,hm,h[SEP]}. PLMs
are then prompted to discriminate whether each
class is correct. Specifically, we compute the score
of class ci based on the representation of the corre-
sponding token ti as:1

s(ci) = 1− σ(h⊤
DLMhti), (2)

where hDLM is the reused DLM head, and σ(·) is
the sigmoid activation. Note that in Equation 2,
the computation of class scores is different from
the vanilla fine-tuning approaches which encour-
age large inner products between the correct an-
swer and classification head (Devlin et al., 2019;
Clark et al., 2020). The rationale is that during
pre-training, discriminative PLMs are typically re-
quired to produce large inner products for the re-
placed tokens (i.e., incorrect ones), and small in-
ner products for the original tokens (i.e., correct
ones) (Clark et al., 2020), and therefore Equation 2
better fits the semantics in pre-training. In our ex-
periments, we find this simple operation can lead
to significantly better results in prompt-tuning dis-
criminative PLMs. After obtaining the class score,
the model is optimized as:

L =
∑
i

[−yi log s(ci)− (1− yi) log(1− s(ci))], (3)

where yi ∈ {0, 1} indicates the ground-truth la-
bel. Since DPT tunes PLMs by reusing the pre-
trained DLM head in the same objective form as
pre-training, compared with vanilla fine-tuning, we

1If the class name consists of multiple tokens, the repre-
sentation of the first token is used.

expect DPT will lead to more sample efficient and
stable tuning results.

DPT for Question Answering. Besides text clas-
sification, DPT can also be applied for the question
answering task. Given a question and a paragraph,
directly concatenating them without additional tem-
plates can already create a good prompting context.
Then similar to text classification, we ask PLMs to
discriminate whether each token in the paragraph
is part of the answer (i.e., original), or not (i.e.,
replaced) based on the reused DLM head. During
inference, we threshold the token scores to obtain
multiple answer spans.

4 Experiments

In this section, we empirically evaluate DPT on the
task of text classification and question answering.

Datasets. We evaluate DPT on four widely used
text classification datasets, including SST-2, SST-
5, TREC and AGNews. For question answering,
we adopt the challenging QUOREF dataset, where
for each question, there may exist multiple answer
spans in the paragraph. We refer readers to Sec-
tion B for more dataset details.

Evaluation Protocols. We evaluate the models
under two settings, including (1) full-set setting,
where the full training data is available, and (2) low-
resource setting, where only 10% of the full train-
ing data for each dataset is available. We report the
accuracy for text classification, and exact match
(EM) and F1 score for question answering. To ac-
count for the unstable problem of baseline models,
we report the average results from 3 best random
seeds among 10 trials.

Baselines. We compare DPT with several strong
baseline models, including vanilla fine-tuning of
ELECTRA (Clark et al., 2020), BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019). The
fine-tuning of ELECTRA adopts the identical dis-
criminative PLM to our model, and serves as the
most direct baseline for comparison.

Main Results. We report the main results in Table 1
and Table 2, from which we observe that: (1) DPT
significantly improves the performance of discrim-
inative PLMs. The improvements are consistent
across different tasks and datasets, as well as base
and large models. (2) Previous works show that de-
spite the significant improvements in low-resource
setting, template-based prompt tuning typically can
only approach fine-tuning performance in full-set
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PLM Tuning Full-set Setting Low-resource Setting
Approach SST-2 SST-5 TREC AGNews SST-2 SST-5 TREC AGNews

B
as

e
BERT FT 91.32 53.41 95.93 93.68 86.91 42.46 86.73 90.23
RoBERTa FT 94.69 56.09 95.27 93.92 91.23 50.41 91.07 90.25
ELECTRA FT 94.38 56.60 94.87 93.70 91.68 49.40 88.40 89.17
ELECTRA DPT (Ours) 95.26 58.34 96.27 94.22 93.83 53.48 93.93 90.60

∆ +0.88 +1.74 +1.40 +0.52 +2.15 +4.08 +5.53 +1.43

L
ar

ge

BERT FT 93.32 54.10 96.73 94.89 90.77 50.89 94.73 92.93
RoBERTa FT 95.46 56.80 96.80 95.26 94.27 51.41 95.20 93.41
ELECTRA FT 95.72 58.27 97.13 94.80 93.74 53.65 94.00 92.33
ELECTRA DPT (Ours) 96.58 60.69 98.07 95.38 96.09 57.00 95.67 93.58

∆ +0.86 +2.42 +0.94 +0.58 +2.35 +3.35 +1.67 +1.25

Table 1: Experimental results on text classification. Full-set setting: 100% data, Low-resource setting: 10% data.
FT: fine-tuning, DPT: discriminative prompt tuning. ∆: Improvements of DPT over fine-tuning ELECTRA.

PLM Tuning Full Set Low Resource
Approach EM F1 EM F1

BERT FT 75.67 79.99 53.02 61.36
RoBERTa FT 78.29 84.56 59.31 67.56
ELECTRA FT 77.79 83.72 54.29 63.71
ELECTRA DPT (Ours) 79.66 86.03 63.65 73.09

∆ +1.87 +2.31 +9.36 +9.38

Table 2: Experimental results of ELECTRAlarge on
QUOREF multi-span question answering dataset.

Tuning Approach SST-2 SST-5 TREC AGNews

Fine-tuning 91.68 49.40 88.40 89.17
DPT (σ) 92.16 50.96 88.00 90.29
DPT (1− σ) 93.83 53.48 93.93 90.60

Table 3: Ablation on reuse forms of DLM head based
on ELECTRAbase in low-resource setting.

setting (Gao et al., 2021). In comparison, we note
that DPT can improve the performance in both low-
resource and full-set settings. The reason is that
DPT enables PLMs to jointly model the input text
and class candidates for better text understanding.
In summary, DPT is effective in improving the per-
formance of discriminative PLM tuning.

Tuning Stability. Previous works have commonly
observed the instability of fine-tuning large genera-
tive PLMs (Devlin et al., 2019; Dodge et al., 2020).
Some works attempt to alleviate the problem by
careful initialization and optimization (Zhang et al.,
2021), or intermediate fine-tuning on other large-
scale datasets (Phang et al., 2018). To investigate
the tuning stability of discriminative PLMs, we
tune ELECTRAlarge using fine-tuning and DPT
from 10 random seeds. From the results in Fig-
ure 2, we observe that: (1) Similar to generative
PLMs, fine-tuning large discriminative PLMs is
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Figure 2: Performance distribution of ELECTRAlarge
using fine-tuning and DPT from 10 seeds.

also highly unstable, and can even frequently pro-
duce divergent results (e.g., nearly 20% accuracy
for 5-way classification in SST-5 in low-resource
setting). The problem is exacerbated by sparse data
in low-resource setting, but remains even in full-set
setting. (2) DPT achieves significantly more stable
tuning results in both full-set and low-resource set-
tings, where all tuning trials converged and closely
approach the best performance. This is due to the
reuse of DLM head parameters and identical objec-
tive forms to pre-training.
Ablation Study. In DPT, different from conven-
tional fine-tuning approaches, correct labels are
encouraged to have small inner products with clas-
sifiers (as indicated by the 1 − σ in Equation 2).
We evaluate DPT using conventional score com-
putation (i.e., σ), and report the results in Table 3.
The significant drop in performance shows that a
proper form of reusing DLM head is crucial to the
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results of prompt-tuning discriminative PLMs.

5 Conclusion and Future Work

In this work, we present a simple and effective
prompt tuning approach for discriminative PLMs.
We note directly performing large-scale classifica-
tion (e.g., for hundreds of classes) with DPT may
be computationally inefficient. In future, we plan
to address the problem by classifying text follow-
ing class hierarchies, where each hierarchical layer
typically consists of a moderate number of classes.
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A Implementation Details

In this work, we take ELECTRA (Clark et al., 2020)
as an representative example of discriminative
PLMs, including (1) ELECTRAbase with 768 di-
mensional hidden representations, 12 encoding lay-
ers and 110M parameters, and (2) ELECTRAlarge
with 1, 024 dimensional hidden representations, 24
encoding layers and 340M parameters.

For text classification tasks, we follow the hy-
perparameters in Clark et al. (2020), and train the
base models for 10 epochs with learning rate 2e-5
and batchsize 32 on 2 GeForce RTX 2080 Ti GPUs.
And we train the large models for 10 epochs with
learning rate 2e-5 and batchsize 8 on 2 GeForce
RTX 2080 Ti GPUs. For question answering, we
follow the hyparameters in Segal et al. (2020), and
train the large models for 20 epochs with learning
rate 5e-6 and batchsize 2 on 6 GeForce RTX 2080
Ti GPUs. During inference, a token is considered
as part of the answer if its score is lower than 0.6.

B Dataset Details

We evaluate DPT on four popular text classifica-
tion datasets, including SST-2 (Socher et al., 2013),
SST-5 (Socher et al., 2013), TREC (Voorhees and
Tice, 2000) and AGNews (Zhang et al., 2015). For
question answering task, we adopt the challenging
QUOREF dataset (Dasigi et al., 2019), where there
may exist multiple answers in the paragraph for
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(a) Full Set.
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Figure 3: Performance distribution of ELECTRAlarge
using fine-tuning and DPT from 10 seeds.

each question. Specifically, QUOREF contains
21, 817 questions and 4, 225 paragraphs, where
each question has 1.15 answers on average. The
average length for the questions and paragraphs
are 15.49 and 325.68 respectively. We report the
results on the validation set for QUOREF, since
its test set is not publicly available, and report the
results on the test set for the other datasets.

C Further Results of Tuning Stability

We report the performance distribution of AGNews
in Figure 3. We observe that the unstable problem
of fine-tuning large discriminative PLMs remains
even for the large-scale AGNews dataset with 120K
training samples. The results show the advantage
of DPT in stably tuning discriminative PLMs.
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