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Abstract Source Es wird befiirchtet, dass die Opferzahlen

Machine translation (MT) evaluation often fo-
cuses on accuracy and fluency, without paying
much attention to translation style. This means
that, even when considered accurate and flu-
ent, MT output can still sound less natural
than high quality human translations or text
originally written in the target language. Ma-
chine translation output notably exhibits lower
lexical diversity, and employs constructs that
mirror those in the source sentence. In this
work we propose a method for training MT
systems to achieve a more natural style, i.e.
mirroring the style of text originally written
in the target language. Our method tags par-
allel training data according to the naturalness
of the target side by contrasting language mod-
els trained on natural and translated data. Tag-
ging data allows us to put greater emphasis on
target sentences originally written in the tar-
get language. Automatic metrics show that
the resulting models achieve lexical richness
on par with human translations, mimicking a
style much closer to sentences originally writ-
ten in the target language. Furthermore, we
find that their output is preferred by human ex-
perts when compared to the baseline transla-
tions.

1 Introduction

Machine translation has made tremendous progress
in recent years with the advent of neural methods
(Bahdanau et al., 2015; Vaswani et al., 2017). This
is especially true for language pairs with a large
amount of available bilingual text for training (Bar-
rault et al., 2020a). However MT output still can be
improved: it currently trails human translators in
expert evaluation (Toral et al., 2018; Freitag et al.,
2021) and its language is perceived as poorer and
more synthetic (Vanmassenhove et al., 2021). In
this work, we aim to produce machine translation
output that has a more natural style.

Although difficult to define precisely, we con-
sider a translation to be natural if it is an adequate

noch deutlich in die Hohe gehen.

Translationese It is feared that the number of
victims will increase significantly.

Natural It is feared that the death toll will rise
significantly.

Figure 1: Example De—En translations: This work
sets the goal to generate more natural translations like
death toll/rise in comparison to literal translations like
number of victims/increase.

and fluent translation, whose style matches that
of high quality monolingual text. Such a transla-
tion should contain few translationese constructs
and use a rich vocabulary. This is exemplified
in Figure 1. The translationese sentence uses the
construct “number of victims”, which is a literal
translation for the German “Opferzahlen”. Al-
though correct (i.e. adequate and fluent), “death
toll” shows a much more natural word choice for
this translation.

Our objective in this paper is to study how the
naturalness of machine translation output can be
improved. In particular, we focus on how available
measures can guide the translation process towards
this goal. There have been several studies analyzing
the naturalness of generated texts (see Section 2),
but in contrast we concentrate on actively improv-
ing this aspect by modifying how NMT output is
produced.

Our methodology follows a simple intuition:
training data whose target side resembles high-
quality text naturally written in the target language
can bring model outputs closer to this style of
text. We exploit the fact that bilingual training
sets typically mix examples originating from both
translation directions: source-to-target and target-
to-source. We rely on contrasting language mod-
els (LMs) (Manning and Schiitze, 1999; Moore and
Lewis, 2010) to identify natural data: we train sep-
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arate models on target-language data known to be
translations, and on data known to be mostly orig-
inally written in the target language. We then use
these LMs to tag parallel training data as having a
natural or translated target side. Comparing to hard
filtering of the data, tagging offers more flexibility
without sacrificing coverage (Caswell et al., 2019).

Our contributions are as follows: (1) We use con-
trastive language model scoring to separate natural
from translated text. (2) We demonstrate that opti-
mizing BLEU scores on tgt-original test sets while
avoiding high BLEU scores on src-original test set
is a valid strategy to improve the naturalness of
MT output. (3) We show that our more natural MT
output is more similar to natural sentences based
on lexical diversity. (4) Human evaluations show
that the style of our more natural translations are
preferred by humans, albeit with a minimal loss in
translation accuracy.

2 Related Work

2.1 Translationese

Translations differ from text originally written in
the target language due to a combination of factors
that may include the intentional use of explicitation
and normalization, or unintentional lexical or struc-
tural artifacts. The style resulting from the combi-
nation of these factors is often referred to as trans-
lationese. The effects of translationese in training
data on MT quality and evaluation have been in-
vestigated by many authors (Kurokawa et al., 2009;
Lembersky et al., 2012; Toral et al., 2018; Zhang
and Toral, 2019; Graham et al., 2020; Freitag et al.,
2019; Edunov et al., 2020; Freitag et al., 2020b).
Several papers (Kurokawa et al., 2009; Koppel and
Ordan, 2011; Shen et al., 2019; Riley et al., 2020)
proposed to train classifiers to detect translationese
sentences in monolingual corpora. Similar to our
work, Kurokawa et al. (2009) used their classi-
fier to preprocess MT training data, but they re-
moved target-original pairs while we emphasize
them. Lembersky et al. (2012) kept both types of
data but introduced entropy-based measures that
allowed their phrase-based decoder to favor lower
entropy translationese entries. Riley et al. (2020)
used a convolutional classifier to distinguish natu-
ral from translationese text. We train contrastive
language models to partition the training data into
original and translated sentences to bias the model
to generate more natural translations.

2.2 Training Data Tagging for NMT

We use tags to differentiate subsets of the training
data, with the objective of training a model that will
decode differently depending on the tag provided
at inference. This strategy has been explored with
various objectives in prior work. Tagging to control
inference has notably been used to indicate target
language in multilingual models (Johnson et al.,
2016), formality level (Yamagishi et al., 2016), po-
liteness (Sennrich et al., 2016a), gender from a
gender-neutral language (Kuczmarski and John-
son, 2018), backtranslation (Caswell et al., 2019),
as well as to produce domain-targeted translation
(Kobus et al., 2017). Shu et al. (2019) use tags at
training and inference time to increase the syntactic
diversity of their output while maintaining transla-
tion quality; similarly, Agrawal and Carpuat (2019)
and Marchisio et al. (2019) use tags to control the
reading level (simplicity/complexity) of the output.

2.3 Evaluation of Naturalness

Evaluation of MT usually focuses on accuracy
and/or fluency (Barrault et al., 2020a; Liubli et al.,
2020). Recent work has started to look at the rich-
ness and complexity of MT output. Vanmassen-
hove et al. (2019, 2021) address the effects of statis-
tical bias on language generation. They assess lexi-
cal diversity and sophistication, and conclude that
the translations produced by MT systems are con-
sistently less diverse than the original training data,
containing a higher number of frequent patterns
while reducing the infrequent ones when compared
to original texts. Toral (2019) compared MT output
with human generated translations and found that
there is a measurable difference between the two.
In this work we use the diversity metrics introduced
by Vanmassenhove et al. (2021) to demonstrate that
we can build an MT system with lexical diversity
similar to human translations (HT). We also incor-
porate the findings of Freitag et al. (2019), and
show how to reliably evaluate more natural transla-
tions on target-original test sets while allowing the
model to decrease BLEU scores on source-original
test sets.

3 Approach

Our first objective is to distinguish text originally
written in the target language (natural text) from
translations. For that purpose, we train a pair of
sentence-level language models to contrast their
likelihood, a proven method for domain adapta-
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tion (Moore and Lewis, 2010; Axelrod et al., 2011).
These language models are then used to tag MT
training data as natural target (<nat>) or transla-
tionese target (<t rans>), in order to train an MT
system which can favor natural hypotheses.

3.1 Inferring Naturalness Tags

Our natural language model is trained on the mono-
lingual newscrawl dataset from WMT (Barrault
et al., 2020a). This data consists of web-crawled
sentences from newspapers and other news sites
from the countries speaking the corresponding lan-
guage (e.g. Germany, Austria and Switzerland for
German). Although it is not unusual to have contri-
butions from foreign reporters or even translations
of articles from foreign newspapers, we expect that
the majority of the data collected this way will be
natural text.

Our translationese LM is trained on machine-
translated newscrawl data, as a proxy for human
translated data. This approach does not require
finding large amounts of existing text in the target
language known to be translations, which is a chal-
lenging problem as the necessary metadata is not
available for most corpora.

For our language models, we use a decoder-
only transformer architecture comparable to
transformer-big (Vaswani et al., 2017). We classify
new sentences by thresholding the difference in
average log probability under the two models.

For training our MT system we label each bilin-
gual training example by prepending a special to-
ken in the source sentence denoting the class of the
target sentence (<nat> or <trans>). At infer-
ence, we favor natural generation by prepending the
natural token (<nat>) to the input. We call these
models natural-to-natural (N2N) as their ultimate
purpose is to translate natural source sentences into
natural target sentences.

3.2 Potential Domain Biases

Domain bias might arise with our strategy. Our
translated data originates from source language
news and focuses on topics/domains of interest to
a source-language speaker, while our natural data
originates from target language news and therefore
focuses on topics/domains of interest to a target-
language speaker. When training a system that
mainly concentrates on training data that originates
from the target language, we might run into the
problem that the model does extremely well on
domains important in the target language while

being poor on domains that are only important in
the source language.

To counteract this problem, instead of relying
on sentences originated in the target language only,
we train on all the training data, but use tags to
help the model learn the differences between the
two training corpora. We then guide the inference
algorithm (by using one of the two tags) to em-
phasize the characteristics important for one of the
two training corpora only. The tagging approach
helps the model to be familiar with the domains
only important in the source language even when
using a tag that emphasizes the characteristics of
the target-original training data.

Finally, all human evaluations in this work are
conducted with test sentences originating in the
source language only, even when using the target-
original tag. We will later show that humans prefer
translations of sentences originated in the source
language when using the target-original tag which
demonstrates that by putting emphasis on the target-
original training data, the model learns to translate
better even though there is a mismatch between the
domains of the training data and the test sentences.

4 Experimental Setup

We experiment on the WMT news translation tasks
for evaluation (Bojar et al., 2016; Barrault et al.,
2020b), focusing on the German<English lan-
guage pair. For this language pair there is abundant
training data available, and MT systems achieve
high quality translations. This is a good setting
for our work since improving naturalness becomes
a worthwhile endeavor only if high accuracy and
fluency levels are reached.

4.1 Training Data

We use news-commentary-v15, paracrawl-v5.1,
europarl-v10 and commoncrawl as training cor-
pora (see Table 2). Noisy data is filtered out with
contrastive data selection as proposed by Wang
et al. (2018). Finally, we add back-translated
data (Sennrich et al., 2016b) from the mono-
lingual newscrawl (2007-2018) dataset for each
target language, and mark synthetic source sen-
tences with an additional special tag on the source
side (<bt>) (Caswell et al., 2019). The BT data
has been generated with a bitext only model from
the reverse translation direction.
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Diversity Metrics
Bl] B2 B3t |TTRt Yule’sIt MTLD?| Ht D] | PTF, CDU| SynTTR?|[cLM |

144.07 | 12.64 92.22]0.7637 0.3938 0.1587 || 1.21
148.08 [12.93 92.00|0.7450 0.3781 0.1621 || 1.16
169.93 | 11.13 93.04/0.7133 0.3861 0.2108 || 0.77

model
MT ||68.55 6.31 25.13]0.1028 0.9375
HT |[68.25 6.30 25.44|0.1184 1.3980
NAT ||65.98 6.12 27.90|0.1553 2.9612

Table 1: En—De: Diversity metrics calculated on the concatenation of newstest2011-2020 (~25k sentences). HT
scores are calculated on the src-orig half while NAT is calculated on the tgt-orig half. The cLM shows the ratio
between the contrastive translationese and natural LMs. The arrows by the metric names indicate the desired

behaviour towards more natural style. B2 does not have a clear desired behaviour.

4.2 Automatic Evaluation
4.2.1 Translation Quality

We use sacreBLEU (Post, 2018)! to automatically
evaluate translation quality with BLEU, with the
primary goal of improving scores on the farget-
original test sets. Since 2019, all WMT test sets
have been composed only of source original (src-
orig) sentence pairs. To create target original (tgt-
orig) sets, we just flip the source and target of the
test sets for the reverse direction. In previous years,
the WMT test sets were a mixture of source- and
target-original texts, each human-translated into
the other language. For these years we split the
test sets based on their original language and report
results on the two subsets. Optimizing MT sys-
tems on these two settings can yield very different
conclusions.

src-orig Beyond a certain level, BLEU scores on
src-orig test sets are biased in favor of simpler and
more literal translations (Freitag et al., 2020b); in-
creasing scores above this threshold can have a neg-
ative impact on translation quality. Consequently,
our goal is to avoid very high src-orig BLEU scores
while increasing tgt-orig scores, a strategy that Fre-
itag et al. (2020a) have demonstrated to be effective
for improving translation quality.

tgt-orig Freitag et al. (2019); Edunov et al.
(2020) found that MT systems trained with BT
training data mostly improve on tgt-orig test sets.
One explanation is that BT increases the fluency
and naturalness of MT output, a property that can
more easily be measured by comparing to natural
target-language text than typical human transla-
tions, which have lower lexical diversity. Contrary
to src-original test sets, generating literal, simple
translation output decreases BLEU scores on tgt-

'sacreBLEU signatures: BLEU+case.mixed+lang.LP
+numrefs. 1+smooth.exp+SET+tok.13a+version.1.5.1

orig test sets and cannot be used as a strategy to
inflate BLEU scores. To further our main goal of
generating more natural translations, we focus on
improving BLEU scores on tgt-orig test sets.

4.2.2 Diversity Scores

Vanmassenhove et al. (2021) proposed a series of
metrics to measure the lexical diversity of a text.
They range from measures like type-to-token ra-
tio (TTR) or the entropy of word forms given a
lemma, to novel metrics that analyse synonym fre-
quencies. They show that MT text has a lower
degree of diversity than human-generated text but
do not distinguish between original text and HT.

We refer the reader to the original paper for the
metric definitions, although we also provide a short
overview in the appendix. For better interpretabil-
ity, in the results table we provide an indication of
the desired direction for each metric. Note how-
ever that our goal is not to optimize these metrics,
rather we want to build an MT system whose output
is most similar to natural sentences. To illustrate
this, assume we have a “translation model” that
just generates random words. Such a system will
certainly score high in diversity metrics (e.g. it
will have a high entropy), but the resulting text will
certainly not be natural. In fact, for a few metrics,
our baseline system already gets a “better” score
than natural sentences. Thus, for those metrics
we should steer them in the “wrong” direction to
achieve a style closer to natural sentences.

We used the implementation provided by the
authors except for the “Synonym Frequency Anal-
ysis” metrics, which we reimplemented using an
in-house synonym dictionary. Note also that some
of these metrics are sensitive to the corpus size they
are applied on (e.g. TTR, the type-to-token ratio,
decreases as the corpus size increases). Thus not
all numbers are in the same range as the results
reported by Vanmassenhove et al. (2021).
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4.3 Human Evaluation

We hired 4 professional translators (native in the
target language) and conducted 2 types of human
evaluations to evaluate (a) the overall translation
quality, and (b) the naturalness of our MT output.
We randomly chose 62 documents (roughly 1,000
sentences) from the src-original halves of new-
stest2019 for human evaluation to avoid human
translated source sentences (Laubli et al., 2020).

Quality We measure quality with an in-context
version of MQM (Lommel et al., 2014) which mim-
ics the setup proposed by Freitag et al. (2021). This
includes using the same error categories, severity
levels and error weighting schema, which were
adapted for the MT use case. As suggested in the
study, we weight each major error with 5 and each
minor error with 1, except for minor punctuation
errors which get a score of 0.1.

Naturalness The preferred setup to evaluate nat-
uralness is to present two translations of the same
source sentence to native speakers without showing
the source sentence. We ask the raters whether they
prefer one of the outputs or rate them equally based
on naturalness and natural phrasing. We emphasize
that this evaluation is carried out in a monolingual
manner, as showing the source can bias the hu-
man judges towards the translation that mimics the
original sentence, as it is easier to evaluate.

4.4 Training Details

We train NMT models similar to the transformer-
big (Vaswani et al., 2017) architecture (6 encoder
and 6 decoder layers, model dimension size of
1,024, hidden dimension size of 8,192, 16 multi-
attention heads). Our models use a vocabulary of
32k subword units (Kudo and Richardson, 2018)
ands are trained for 250k updates with a batch size
of 32k sentences. The baseline system uses only
<bt> tags to tag all BT training examples while
keeping the bitext data untagged. Our proposed sys-
tem (denoted as N2N) is enhanced with the <nat>
and <t rans> tags to also tag the bitext data. Dur-
ing inference, in order to produce more natural
output we tag the input sentence with the <nat>
tag. For comparison purposes, we also analyze the
output when using the <t rans> tag.

S Experimental Results

Due to space constraints and German being the
more morphologically rich language, we focus our

size  NAT
news-commentary 251k 15.3%
commoncrawl 1.5SM  39.6%
europarl 452k  44.1%
paracrawl 547M  30.4%
newscrawl-de 271IM  92.0%*

Table 2: En—De: Training data statistics and fraction
of natural target sentences. *This fraction is overesti-
mated since this set is used for LM training.

analysis mainly on the English—German (En— De)
translation direction, but we provide translation
results for the reverse direction (De—En) as well.

5.1 Naturalness Classification

Our naturalness classifier contrasts the natural and
translation LMs introduced in Section 3. We need
to find a threshold to be able to classify the training
data based on their target side as natural or transla-
tion. We chose 0.95 for both directions, resulting
in ~ 90% sentence-level classification accuracy on
newstest2018. Table 1 (last column) shows the con-
trastive language model (cLM) scores for the con-
catenation of newstest 2011-20 for En—De for nat-
ural, (human) translated (HT) and machine trans-
lated (MT) sentences and shows that 0.95 seems a
reasonable decision.

Table 2 reports the fraction of data classified as
natural for each subset of the German side of our
training corpus along with subset sizes. The frac-
tion of natural target sentences per dataset varies
between 30.4% and 44.1%, except for newscrawl-
de (92.3%) which is our training set to define natu-
ral language and news commentary (15.3%) which
mostly seems to have translations on the target side.
The 44.1% of natural German sentences for Eu-
roparl is probably an overestimate and reflects the
high quality of the translations in this particular
corpus. Overall, the parallel corpora have less than
50% natural target sentences which means that the
training data in this translation direction is domi-
nated by translated text on the target side.

Table 3 shows the diversity metrics on a 15k
sample of the training data. We can clearly see that
the sentences considered natural are more lexically
diverse than the sentences marked as translations,
suggesting a valid classification by our model. Note
that, as pointed out above, the lack of labelled data
hinders reporting classification accuracy measures
for the training data.
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classified| B B2 B3t | TTRT Yule’sIt MTLD?| Ht

D| | PTF| CDU| SynTTR?

70.74 6.98 22.28
68.91 7.16 23.93

TRANS
NAT

0.0918 0.9484
0.1103 1.3501

211.73
303.05

15.13 90.75|0.7296 0.3528 0.1328
14.94 90.69|0.7140 0.3726 0.1636

Table 3: En—De: Diversity metrics calculated on a 15k sample of the classified training data.

5.2 Translation Results

We evaluate three types of translations: the out-
put of a regular baseline MT system and the out-
puts of our natural-to-natural (N2N) system trained
with tags, decoding with either the <nat> or the
<trans> tag. BLEU scores are reported in Ta-
ble 4. We report average scores over all test sets
(newstest 2011 through 2020), separate results for
each set can be found in the appendix.

Focusing on En—De, for the src-orig half of
the test sets, we obtain an average drop of 4.6
BLEU points when using the <nat> tag. For src-
orig data, the references are translated text and the
BLEU evaluation does not strongly reward text
which does not adopt a translation style. When
we instruct the system to produce translationese
text using the <t rans> tag, we recover the BLEU
score of the baseline system. We thus have a clear
indication that the system is learning to produce
different texts depending on the given tag. This
behaviour is consistent across all test sets, it iS not
just an effect due to averaging (see the Appendix
for the detailed numbers).

We now turn our attention to the results on target-
original data. In this situation the BLEU scores
show a behaviour opposite to the previous case.
Using the <nat> tag for translation, we get an
improvement of 1.0 BLEU on average compared
to the baseline. Remember that for this condition,
the original text is on the target side, i.e. on the
references we are evaluating against. This is thus
an indication that we are indeed generating text that
is closer to human natural text. When switching to
<trans> translation, we see a drop of 2.4 points.

For the opposite direction we see a similar trend
for both conditions (right part of Table 4).

5.3 Lexical Diversity Scores

In Section 5.2 we showed how BLEU scores
change when applying our proposed method, and
we observed an improvement on the target-original
test sets, which may indicate improved naturalness
in the output text. This evaluation setting is how-
ever artificial since it relies on translated source text
while MT systems generally need to translate text

originally written in the source language. We thus
turn to a more detailed analysis of the produced
translations, focusing on the src-original test sets.

Table 5 shows the diversity metrics computed on
the concatenation of all the source-original test sets.
It can be seen that the N2N system gets diversity
scores much closer to ones calculated on natural
sentences (NAT) when compared to the baseline
system in all categories. In fact, it even obtains
better scores than the human translations for some
of them. We do not claim to outperform humans on
translation quality: natural text shows certain char-
acteristics that can be measured by these metrics,
but improving on these metrics alone does not nec-
essarily imply better translations. However, these
results combined with the metrics from the previ-
ous section are positive indicators which motivate
a human evaluation.

6 Human Evaluation

6.1 MQM

We carry out a human evaluation using the MQM
framework (Lommel et al., 2014), which provides
a detailed categorization of errors found in the text.
The evaluation was carried out by professional
translators. The results comparing the baseline
output with the output of our N2N models with
<nat> tag can be found in Tables 6 and 7.

Looking into the error categorization for
En—De, we see a clear advantage of the N2N sys-
tem for the style metrics, halving the number of
major errors and reducing the number of minor er-
rors by one third. The number of grammar errors
has also been significantly reduced, from 56 minor
errors in the baseline system to 29 in the N2N sys-
tem, although with an increase of 6 major errors.
For N2N we observe an increase in minor punctua-
tion errors (mainly repetition of punctuation signs)
and spelling errors, which can be traced back to
the German orthography reform: the N2N seems to
prefer the old writing form? which is now officially
considered incorrect.’

’E.g. the N2N seems to generate more occurrences of

“da” instead of “dass”.
3These errors could easily be corrected in a rule-based
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En—De De—En
src-orig  tgt-orig src-orig  tgt-orig
Base 38.0 37.0 36.4 45.4
NON <nat> 334 38.0 31.8 46.3
<trans> 38.0 34.6 36.3 43.4

Table 4: Average BLEU scores for the WMT news datasets from 2011 to 2020.

Mode \ Bl B2 B31 \ TTRT Yule’s It MTLD?T \ H?T DJ \ PTF| CDUJ| SynTTRt H cLM |
En—De
NAT 6598 6.12 2790 |0.1553 29612 16993 | 11.13 93.04 | 0.7133 0.3861 0.2108 0.77
HT 68.25 630 2544 10.1184 1.3980 148.08 | 12.93 92.00 | 0.7450 0.3781 0.1621 1.16
Base \ 68.55 6.31 25.13 \ 0.1028 0.9375 144.07 \ 12.64 92.22 \ 0.7637 0.3938  0.1587 H 1.21
NON <nat> 6748 6.21 26.31|0.1099 1.1672 156.19 | 12.56 92.26 | 0.7363 0.3915 0.1744 1.11
<trans>|68.53 6.32 25.16|0.1031 0.9446 145.88 | 12.72 92.17 | 0.7646 0.3948 0.1588 1.22
De—En
NAT 70.17 7.61 22.22]0.0835 0.7706 100.32 | 10.54 93.39|0.7888 0.3872 0.1847 0.83
HT 71.28 7.66 21.06|0.0878 0.6884 92.52 | 944 94.05|0.7752 0.4194 0.2431 1.14
Base \ 70.97 7.70 21.34 \ 0.0982 0.8278 92.38 \ 9.45 94.03 \ 0.8023 0.4294 0.2399 H 1.25
N2N <nat> 69.88 7.60 22.53|0.1057 1.0220 98.49 | 9.76 93.84|0.7813 0.4283  0.2592 1.14
<trans>|70.97 7.71 21.32]0.0979 0.8235 9342 | 946 94.02|0.8026 0.4280 0.2378 1.25

Table 5: En—De: Diversity metrics computed on the concatenation of newstest2011 to newstest2020, source-
original test sets. Both the base and the N2N include backtranslated data. The arrows by the metric names indicate
the desired behaviour towards more natural style. B2 does not have a clear desired behaviour.

For the accuracy errors, we also see an important
reduction of mistranslation errors, from 79 to 26,
but at the cost of increasing the number of major
errors from 44 to 51. The other categories show
comparable results between the two systems. Look-
ing at the total number of errors, we see that the
total number of errors decreases for the N2N sys-
tem, from 508 for the baseline to 407 for the N2N
system. The shift in errors is however not uniform
across major and minor errors: while we achieve a
drop of 30% in the number of minor errors (from
395 to 275), we increase the number of major er-
rors by 16% (from 113 to 132). Overall, using
the weighting approach proposed by (Freitag et al.,
2021),* N2N achieves a better global score of 0.88,
compared to 0.91 for the baseline system.

For the De—En translation direction, the results
are mixed: we again obtain an important reduc-
tion in the number of minor style and grammar
errors, but with with a slight increase of major er-
rors. However the number of accuracy errors is
also increased, which leads to a worse global score

post-processing step.

“This weighting approach has been adapted for the ma-
chine translation use case, and differs from the standard
weighting scheme used for human-produced translations.

for the N2N system (0.49 vs. 0.55).

6.2 Side-by-side

The MQM analysis shows that the N2N system
is able to produce grammatically better sentences,
with some slight degradation in accuracy when
compared with the baseline system. But, as pointed
out before, a natural text might require more than
grammatical and fluent text. In order to judge
the naturalness, we carry out an additional evalua-
tion where we present the translations produced by
the baseline system and the N2N system to native
speaker crowdworkers, and ask them to choose the
better sounding one. Since MQM already judges
the accuracy of the translations, this evaluation is
monolingual and focuses solely on the naturalness
of the sentences. Showing the source sentence may
steer the human judges to choose the translation
that is closer to it, as it is easier to judge, and we
wanted to avoid this bias. The results can be found
in Table 8. It can be seen that the human evaluators
do have a preference for sentences generated by
our N2N system. The difference is particularly im-
portant for the De—En translation direction. Some
example translations are given in Table 9.
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base <nat> base <nat>
M m M m M m M m
Acc/Mistrans. 4 79 51 26 Acc/Mistrans. 6 4 9 14
Acc/Omission 6 0 2 0 Acc/Omission 6 3 11 12
Acc/Addition 3 1 1 1 Acc/Addition 0 0 3 4
Acc/Untranslated 3 6 8 Acc/Untranslated 3 2 0 2
Fl/Grammar 14 56 20 29 Fl/Grammar 1 31 4 9
Fl/Register 3 9 0 4 Fl/Register 0 0 0 0
Fl/Inconsistency 0 2 1 0 Fl/Inconsistency 4 3 2 2
F1/Punctuation 0 57 2 72 Fl/Punctuation 1 3 5 4
Fl1/Spelling 0 1 0 13 Fl/Spelling 1 1 4 1
Fl/Display 1 10 8 4 Fl/Display 0 0 0 2
St/Awkward 14 143 7 95 St/Awkward 12 119 16 75
Ter/Inappr. 25 31 29 27 Ter/Inappr. 18 10 19 13
Other 0 0 1 2 Other 0 0 0 0
Source Error 3 0 2 0
Total Errors 113 395 132 275 Locale/Date 0 1 0 0
Global Score 091 0.88
Total Errors 55 177 75 138
Table 6: MQM scores for English-to-German of the Global Score 0.49 0.55

baseline model compared to our N2N model with
<nat> decode. The global score is a weighted com-
bination of the error counts of all the categories. Lower
scores are better. Major errors are under the ‘M’ col-
umn, minor errors under the ‘m’ column. Abbrevia-
tions are as follows: “Acc”: Accuracy, “FI”: Fluency,
“St”: Style, “Ter”: Terminology.

7 Conclusion

We propose a method for achieving more natural
translations, i.e. translations which adopt a style
closer to text originally written in the target lan-
guage. Using contrastive language model scoring
we classify our training data depending on whether
the target side was originally written in the target
language or whether it is a translation. This in-
formation is given to the translation system via
an input tag, so that we can bias the generation
process towards producing output closer to natural
text. We demonstrate that building an MT system
focusing on natural translations can be evaluated by
optimizing BLEU on target-original test sets while
avoiding high BLEU scores on src-original test sets.
Through automatic metrics we show that the N2N
method achieves lexical diversity closer to that of
natural sentences indicative of more natural text.
Indeed, human evaluations show that the produced
translations are preferred by human judges when
asked to choose the more natural translation. There
is some drop in translation accuracy, as shown by

Table 7: MQM scores for German-to-English of the
baseline model compared to our N2N model with
<nat> decode. Refer to Table 6 for a list of abbre-
viations.

Lang. Preferences (%) Num.

<nat> neutral base | Ratings
EnDe 33.3 413 254 1000
DeEn 44.6 29.3 26.1 1000

Table 8: Human Evaluation: natural side-by-side of
the baseline model compared to our N2N model with
<nat> decode.

the MQM analysis, however this can be an accept-
able trade-off for some applications. For example,
when considering post-editing, a more natural ini-
tial proposal will most certainly result in a more
natural final output, while accuracy errors are usu-
ally easier to detect and fix for human post-editors.

The main contribution of this work lies in high-
lighting the potential for more natural translations
by appropriate manipulation of the training data
and evaluation measures. Our approach for using
this information through tagging is a good first step,
but it is a straightforward data manipulation. Other
techniques that modify the model architecture or
training objective may allow us to achieve the same
improvements in naturalness without loss in trans-
lation accuracy.
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Source  Es wird befiirchtet, dass die Opferzahlen noch deutlich in die Hohe gehen.
Baseline It is feared that the number of victims will increase significantly.
N2N It is feared that the death toll will rise significantly.

Source  Der Neubau sollte moglichst freundlich und hell gestaltet werden, damit sich die
Bewohner darin wohlfithlen konnen, so der Architekt.

Baseline The new building should be designed as friendly and bright as possible so that the
residents can feel comfortable in it, according to the architect.

N2N According to the architect, the new building should be made as friendly and bright as
possible so that the residents can feel at ease in it.

Source Musiker wie Janet Jackson, John Legend, Shawn Mendes und Cardi B haben bei
einem gemeinsamen Konzert im New Yorker Central Park fiir mehr Engagement im
Kampf gegen Armut und Krankheiten geworben.

Baseline Musicians such as Janet Jackson, John Legend, Shawn Mendes and Cardi B have
campaigned for more commitment in the fight against poverty and disease at a joint
concert in New York’s Central Park.

N2N Musicians such as Janet Jackson, John Legend, Shawn Mendes and Cardi B joined
forces at a concert in New York’s Central Park to promote greater commitment to
fighting poverty and disease.

Source  Bundesgesundheitsminister Jens Spahn hat sich fiir eine Neuregelung der Organspende
ausgesprochen.

Baseline Federal Health Minister Jens Spahn has spoken out in favour of a new regulation on
organ donation.

N2N Jens Spahn, Germany’s Minister of Health, has called for a new regulation of organ
donation.

Source Griil war schon vor zwei Jahren als damals 14-Jahriger in Bielefeld dabei.
Baseline  Griil was already there two years ago as a 14-year-old in Bielefeld.
N2N Griil was in Bielefeld, Germany two years ago when he was 14 years old.

Table 9: Example translations for the German—English direction. The N2N translations have a more natural
sentence structure when compared to the baseline translations. Further, N2N uses wordings that are more typically
in natural written English text. For instance, when looking at the first examples: number of victims and increase
are more literal translation than death toll and rise which are the more natural word choices in this context.
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A Additional Results
A.1 Accuracy of Contrastive LM

The accuracy of the contrastive language model for
all test sets for English—German are shown in Ta-
ble 10. The accuracy is mostly around 90% for all
test sets. In 2020, the test sets have been generated
on the paragraph-level which could be the reason
for the lower precision on the natural half. Some of
the reference translations in earlier years have been
post-edited from MT output which could be the
reason why newstest2011 and newstest2013 have
lower accuracy numbers for the natural sentences.

A.2 Per Test-set Results

Table 11 shows BLEU results for each separate
test. It can be seen that all test set exhibit the
same behaviour: increase tgt-orig and decrease
in src-orig when using <nat>, the opposite for
<trans>.

A.3 Results Without Backtranslation

Table 12 shows BLEU scores for the
English—German translation direction, without
using backtranslated data. We confirm that the
N2N system using the <nat > also outperforms the
baseline system on the tgt-original condition, while
obtaining worse BLEU scores on the src-original
evaluation. Using the <t rans> tag, the score of
the baseline system on the src-orig conditional is
recovered.

Comparing the base system from Table 12 with
the base system in the original paper, we see that
the addition of backtranslated data, which is by con-
struction natural on the target side, also behaves
differently for the two evaluation conditions. Al-
though it achieves improvements for both source
and target original data, for the source-original con-
dition it is only a minor improvement of 0.5 BLEU.
On the other hand, for the target-original data we
see a big gain of 3.1 points, further pointing to-
wards the fact that the system generates more natu-
ral text.

B Short Overview of Diversity Metrics

In this section we provide a short overview of the
diversity metrics used in this paper. For a full de-
scription, the reader is referred to (Vanmassenhove
etal., 2021).

Lexical Frequency Profile (B1, B2, B3) The vo-
cabulary is divided into three subsets: the

1000 most frequent words (B1), the next 1000
words (B2) and the rest (B3). The metric gives
the percentage of running words in a text in
each category.

TTR Type-to-token ratio, defined as the size of the
vocabulary divided by the number of running
words.

Yule’s I Extension of TTR that is more robust to
fluctuations due to text length.

MTLD Mean length of sequential words strings
in the text that maintains a given TTR value.

H Shannon’s entropy of word forms given a
lemma.

D Simpson’s diversity index of word forms given
a lemma.

PTF Percentage of times the “primary” translation
was chosen for source words with multiple
translations.

CDU Cosine distance between the distribution of
translation alternatives for a source word and
a uniform distribution.

SynTTR Modified TTR limited to words with dif-
ferent translation alternatives.
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|ntll  ntl2  ntl3  ntl4  ntl5 ntl6 ntl7 0 ntl8  ntl9 20 | avg
NAT [ 77.9% 91.3% 67.8% 91.5% 91.8% 92.7% 88.1% 91.7% 93.0% 76.6% | 86.2%
HT |81.4% 87.7% 79.4% 86.6% 85.7% 94.6% 812% 97.1% 93.6% 93.7% | 88.7%
Table 10: English—German: Accuracy for all test sets.

| ntll ntl2 ntl3 ntl4 ntl5 ntl6 ntl7 ntl8 ntl9  nt20 | avg
Base 299 359 331 321 375 439 364 538 440 336|380
NoN  Shat> [ 274 315 309 300 340 361 320 445 378 299|334
<trans> | 300 352 333 324 379 441 363 531 441 331|380

(a) En—De: Source original side of test sets.
| ntll ntl2 ntl3 ntl4 ntl5 ntl6 ntl7 ntl8 ntl9  nt20 | avg
Base 333 335 428 375 317 394 328 458 418 311|370
NoN  Shat> [ 332 350 432 383 335 406 340 465 431 325380
<trans> | 31.1 309 407 343 300 367 30.8 421 394 30.1 | 346

(b) En—De: Target original side of the test sets.
mode | ntll ntl2 ntl3 ntl4 ntl5 ntl6 ntl7 ntl8 ntl9 nt20 | avg
Base 36.0 358 420 353 292 379 340 395 417 326|364
NoN  Shat> [ 335 327 369 209 253 325 303 339 345 283318
<trans> | 363 352 421 349 292 378 33.6 398 417 327|363

(c) De—En: Source original side of test sets.
| nt1l ntl2 ntl3 ntl4 ntl5 ntl6 ntl7 ntl8 ntl9  nt20 | avg
Base 392 441 39.6 399 440 549 472 586 482 381|454
NoN  Shat> [ 400 445 401 428 445 548 475 581 497 410|463
<trans> | 377 423 377 388 422 516 455 553 460 368|434

(d) De—En: Target original side of the test sets.
Table 11: BLEU scores for the WMT news datasets translation direction.

| nt1l  ntl2 ntl3 ntl4 ntl5 ntl6 ntl7 ntd8 ntl9  nt20 | avg

Base system 300 350 324 314 370 433 358 532 442 326|375
NoN  Shat> | 280 311 299 292 333 364 317 449 381 297 | 332
<trans> | 299 349 325 309 368 432 36.1 537 444 320|374

(a) Source-original, no backtranslated data.

| ntll ntl2 ntl3 ntl4 ntl5 ntl6 ntl7 ntl8 ntl9  nt20 | avg

Base system 308 29.0 411 343 302 358 30.1 419 372 286|339
NpN  Shat> 322313 426 357 309 366 310 426 386 296|351
<trans> | 305 292 403 320 283 340 284 392 361 279|326

(b) Target-original, no backtranslated data.

Table 12: BLEU scores for the English—German translation direction, without backtranslated data.
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