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Abstract

Recent studies have found that removing the
norm-bounded projection and increasing search
steps in adversarial training can significantly
improve robustness. However, we observe that
a too large number of search steps can hurt
accuracy. We aim to obtain strong robustness
efficiently using fewer steps. Through a toy
experiment, we find that perturbing the clean
data to the decision boundary but not crossing
it does not degrade the test accuracy. Inspired
by this, we propose friendly adversarial data
augmentation (FADA) to generate friendly ad-
versarial data. On top of FADA, we propose
geometry-aware adversarial training (GAT) to
perform adversarial training on friendly adver-
sarial data so that we can save a large number
of search steps. Comprehensive experiments
across two widely used datasets and three pre-
trained language models demonstrate that GAT
can obtain stronger robustness via fewer steps.
In addition, we provide extensive empirical re-
sults and in-depth analyses on robustness to
facilitate future studies.

1 Introduction

Deep neural networks (DNNs) have achieved great
success on many natural language processing
(NLP) tasks (Kim, 2014; Vaswani et al., 2017; De-
vlin et al., 2019). However, recent studies (Szegedy
et al., 2013; Goodfellow et al., 2015) have shown
that DNNs are vulnerable to crafted adversarial
examples . For instance, an attacker can mislead
an online sentiment analysis system by making
minor changes to the input sentences (Papernot
et al., 2016; Liang et al., 2017). It has raised
concerns among researchers about the security of
DNN-based NLP systems. As a result, a grow-
ing number of studies are focusing on enhancing
robustness to defend against textual adversarial at-
tacks (Jia et al., 2019; Ye et al., 2020; Jones et al.,
2020; Zhu et al., 2020).
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Figure 1: The clean accuracy achieved with ADA,
FADA, and the original training set. During training,
both ADA and FADA have close to 100% accuracy.
However, ADA only achieves ∼15% accuracy during
testing while FADA maintains the same test accuracy
with the original training set. This indicates that train-
ing data which crosses the decision boundary hurts the
accuracy significantly.

Existing adversarial defense methods fall into
two categories: empirical and certified defenses.
Empirical defenses include gradient-based adver-
sarial training (AT) and discrete adversarial data
augmentation (ADA). Certified defenses provide a
provable guaranteed robustness boundary for NLP
models. This work focuses on empirical defenses.

There was a common belief that gradient-based
AT methods in NLP was ineffective compared with
ADA in defending against textual adversarial at-
tacks (Li and Qiu, 2021; Si et al., 2021). Li et al.
(2021) find that removing the norm-bounded pro-
jection and increasing the number of search steps
in adversarial training can significantly improve ro-
bustness. Nonetheless, we observe that increasing
the number of search steps further does not signifi-
cantly improve robustness but hurts accuracy.

We give a possible explanation from a geometry-
aware perspective. Removing the norm-bounded
projection enlarge the search space. Appropriately
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Figure 2: Illustration of GAT. Our GAT can save many
search steps since friendly adversarial examples are
located near the decision boundary.

increasing the number of search steps brings the
adversarial data closer to the decision boundary. In
this case, the model learns a robust decision bound-
ary. Further increasing the number of search steps
can make the adversarial data cross the decision
boundary too far, hindering the training of natural
data and hurting natural accuracy.

To verify our hypothesis, we train a base model
using adversarial data, which are generated by ad-
versarial word substitution (AWS) on the SST-2
(Socher et al., 2013) dataset. We report its train-
ing accuracy (“ada training acc”) on adversarial
data and test accuracy (“ada test acc”) on the clean
test set in Figure 1. Although achieving nearly
100% training accuracy, its test accuracy is only
about 15%, which implicates the adversarial data
make the test performance degraded. Then we
train another base model, whose training data is
more “friendly”. We just recover their last mod-
ified words to return to the correct class, namely
friendly adversarial data augmentation (FADA). It
means that only one word is different in each sen-
tence. Surprisingly, it achieves a high test accuracy
of ∼93%.

This preliminary inspired us to address two ex-
isting problems:

• The number of search steps is always large,
which is computationally inefficient.

• A too large number of steps leads to de-
graded test performance.

Geometrically speaking, the friendly adversar-
ial data are close to the ideal decision boundary.
We can address the above two issues in one fell

swoop if we perform gradient-based adversarial
training on these friendly adversarial data. It is
like we start one step before the end, allowing us
to obtain strong robustness through a tiny number
of search steps. We name it geometry-aware ad-
versarial training (GAT). Figure 2 illustrates our
proposed GAT.

In addition, the friendly adversarial data only
need to be generated once per dataset. It can be
reused, so it is computationally efficient. It can
also be updated for every iteration or epoch but
computationally expensive.

Our contributions are summarized as follows:

1) We propose FADA to generate friendly ad-
versarial data which are close to the decision
boundary (but not crossing it).

2) We propose GAT, a geometry-aware adver-
sarial training method that adds FADA to the
training set and performs gradient-based ad-
versarial training.

3) GAT is computationally efficient, and it out-
performs state-of-the-art baselines even if us-
ing the simplest FGM. We further provide ex-
tensive ablation studies and in-depth analyses
on GAT, contributing to a better understanding
of robustness.

2 Related Work

2.1 Standard Adversarial Training
Let fθ(x) be our neural network, L(fθ(x), y) be
the loss function (e.g., cross entropy), where x ∈ X
is the input data and y ∈ Y is the true label. The
learning objective of standard adversarial training
is

min
θ

E(X,Y )∼D

[
max
∥δ∥≤ϵ

L(fθ(X + δ), y)

]
, (1)

where D is the data distribution, δ is the minor per-
turbation, ϵ is the allowed perturbation size. To op-
timize the intractable min-max problem, we search
for the optimal δ to maximize the inner loss and
then minimize the outer loss w.r.t the parameters θ,
step by step.

The gradient g of the inner loss w.r.t the input x is
used to find the optimal perturbation δ. Goodfellow
et al. (2015) proposed fast gradient sign method
(FGSM) to obtain δ by one step:

δ = ϵ · sgn(g), (2)
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where sgn(·) is the signum function. Madry et al.
(2018) proposed projected gradient descent (PGD)
to solve the inner maximization as follows:

δ(t+1) = Π α · g(t)/∥g(t)∥, ∀t ≥ 0, (3)

where α > 0 is the step size (i.e., adversarial learn-
ing rate), Π is the projection function that projects
the perturbation onto the ϵ-norm ball. Convention-
ally PGD stops after a predefined number of search
steps K, namely PGD-K. In addition, TRADES
(Zhang et al., 2019), MART (Wang et al., 2020)
and FAT (Zhang et al., 2020) are also effective
adversarial training methods for boosting model
robustness.

Regarding FAT, the authors propose to stop ad-
versarial training in a predefined number of steps
after crossing the decision boundary, which is a
little different from our definition of “friendly”.

2.2 Adversarial Training in NLP

Gradient-based adversarial training has signifi-
cantly improved model robustness in vision, while
researchers find it helps generalization in NLP. Miy-
ato et al. (2017) find that adversarial and virtual ad-
versarial training have good regularization perfor-
mance. Sato et al. (2018) propose an interpretable
adversarial training method that generates reason-
able adversarial texts in the embedding space and
enhance models’ performance. Zhu et al. (2020)
develop FreeLB to improve natural language un-
derstanding.

There is also a lot of work focused on robustness.
Wang et al. (2021) improve model robustness from
an information theoretic perspective. Dong et al.
(2021) use a convex hull to capture and defense
against adversarial word substitutions. Zhou et al.
(2021) train robust models by augmenting train-
ing data using Dirichlet Neighborhood Ensemble
(DNE).

Besides, adversarial data augmentation is an-
other effective approach to improve robustness
(Ebrahimi et al., 2018; Li et al., 2019; Ren et al.,
2019; Jin et al., 2019; Zang et al., 2020; Li et al.,
2020; Garg and Ramakrishnan, 2020; Si et al.,
2021). However, it only works when the augmenta-
tion happens to be generated by the same attacking
method and often hurts accuracy.

It is worth noting that recent empirical results
have shown that previous gradient-based adversar-
ial training methods have little effect on defending
against textual adversarial attacks (Li et al., 2021;

Algorithm 1 Friendly Adversarial Data Augmenta-
tion (FADA)
Input: The original text x, ground truth label

ytrue, base model fθ, adversarial word sub-
stitution function AWS(·)

Output: The friendly adversarial example xf
1: Initialization:
2: xf ← x
3: the last modified word w∗← None
4: the last modified index i∗← 0
5: xadv, w

∗, i∗ = AWS(x, ytrue, fθ)
6: if w∗ = None then
7: return xf
8: end if
9: Replace wi∗ in xadv with w∗

10: xf ← xadv
11: return xf

Si et al., 2021). The authors benchmark existing
defense methods and conclude that gradient-based
AT can achieve the strongest robustness by remov-
ing the norm bounded projection and increasing
the search steps.

3 Methodology

3.1 Friendly Adversarial Data Augmentation

For a sentence x ∈ X with a length of n, it can
be denoted as x = w1w2...wi...wn−1wn, where wi

is the i-th word in x. Its adversarial counterpart
xadv can be denoted as w′

1w
′
2...w

′
i...w

′
n−1w

′
n. In

this work, xadv is generated by adversarial word
substitution, so xadv has the same length with x.
Conventional adversarial data augmentation gen-
erates adversarial data fooling the victim model
and mixes them with the original training set. As
we claim in section 1, these adversarial data can
hurt test performance. An interesting and critical
question is when it becomes detrimental to test
accuracy.

One straightforward idea is to recover all the
xadv to x word by word and evaluate their impact
on test accuracy. We train models only with these
adversarial data and test models with the original
test set. We are excited that the test accuracy imme-
diately returns to the normal level when we recover
the last modified word. We denote these data with
only one word recovered as xf . Geometrically, the
only difference between xadv and xf is whether
they have crossed the decision boundary.

To conclude, when the adversarial data cross the
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Algorithm 2 Ideal Geometry-aware Adversarial
Training (GAT)
Input: Our base network fθ , cross entropy loss LCE , training

set D = {xi, yi}ni=1, number of epochs T , batch size m,
number of batches M

Output: robust network fθ
1: for epoch = 1 to T do
2: for batch = 1 to M do
3: Sample a mini-batch b = {(xi, yi)}mi=1

4: for all xi in b do
5: Generate friendly adversarial example xf

i via
Algorithm 1

6: Apply an adversarial training method (e.g.,
FreeLB++) on both xi and xf

i to obtain their
adversarial counterpart x̃i and x̃f

i

7: end for
8: Update fθ via ∇xLCE(fθ(x̃i), yi) and

∇xLCE(fθ(x̃
f
i ), yi)

9: end for
10: end for

decision boundary, they become incredibly harm-
ful to the test performance. We name all the xf
as friendly adversarial examples (FAEs) because
they improve model robustness without hurting ac-
curacy. Similarly, we name the generation of FAEs
as friendly adversarial data augmentation (FADA).
We show our proposed FADA in Algorithm 1.

3.2 Geometry-aware Adversarial Training
3.2.1 Seeking for the optimal δ
Recall the inner maximization issue of the learning
objective in Eq. (1). Take PGD-K as an instance.
It divides the search for the optimal perturbation
δ into K search steps, and each step requires a
backpropagation (BP), which is computationally
expensive.

We notice that random initialization of δ0 is
widely used in adversarial training, where δ0 is
always confined to a ϵ-ball centered at x. However,
we initialize the clean data via discrete adversar-
ial word substitution in NLP. It is similar to data
augmentation (DA), with the difference that we per-
turb clean data in the direction towards the decision
boundary, whereas the direction of data augmenta-
tion is random.

By doing so, we decompose the δ into two parts,
which can be obtained by word substitution and
gradient-based adversarial training, respectively.
We denote them as δl and δs. Therefore, the inner
maximization can be reformulated as

max
∥δl+δs∥≤ϵ

L(fθ(X + δl + δs), y). (4)

We aim to find the maximum δl that helps im-
prove robustness without hurting accuracy. As we

claim in Section 3.1, FADA generates friendly ad-
versarial data which are close to the decision bound-
ary. Furthermore, the model trained with these
friendly adversarial data keeps the same test accu-
racy as the original training set (Figure 1). There-
fore we find the maximum δl which is harmless to
the test accuracy through FADA.

Denote Xf as the friendly adversarial data gen-
erated by FADA, Eq. (4) can be reformulated as

max
∥δs∥≤ϵ

L(fθ(Xf + δs), y). (5)

The tiny δs can be obtained by some gradient-based
adversarial training methods (e.g., FreeLB++ (Li
et al., 2021)) in few search steps. As a result, a large
number of search steps are saved to accelerate ad-
versarial training. We show our proposed geometry-
aware adversarial training in Algorithm 2.

3.2.2 Final Learning Objective
It is computationally expensive to update friendly
adversarial data for every mini-batch. In practice,
we generate static augmentation (Xf ,Y) for the
training dataset (X,Y) and find it works well with
GAT. The static augmentation (Xf ,Y) is reusable.
Therefore, GAT is computationally efficient.

Through such a tradeoff, our final objective func-
tion can be formulated as

L =LCE(X,Y, θ)

+ LCE(X̃, Y, θ) + LCE(X̃f , Y, θ),
(6)

where LCE is the cross entropy loss, X̃ and X̃f

are generated from X and Xf using gradient-based
adversarial training methods, respectively.

4 Experiments

4.1 Datasets
We conduct experiments on the SST-2 (Socher
et al., 2013) and IMDb (Maas et al., 2011) datasets
which are widely used for textual adversarial learn-
ing. Statistical details are shown in Table 1. We
use the GLUE (Wang et al., 2019) version of the
SST-2 dataset whose test labels are unavailable. So
we report its accuracy on the develop set in our
experiments.

Dataset # train # dev / test avg. length
SST-2 67349 872 17
IMDb 25000 25000 201

Table 1: Summary of the two datasets.
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SST-2 Clean % TextFooler TextBugger BAE

RA % ASR % # Query RA % ASR % # Query RA % ASR % # Query

BERTbase 92.4 32.8 64.1 72.8 38.5 57.8 44.3 39.8 56.5 64.0

ADA 92.2 46.7 48.7 79.4 42.0 53.9 47.0 41.2 54.8 64.0
ASCC 87.2 32.0 63.3 71.6 27.8 68.2 42.5 41.7 52.1 63.0
DNE 86.6 26.5 69.6 69.0 23.4 73.1 40.2 44.2 49.3 65.8
InfoBERT 92.2 41.7 54.8 74.9 45.2 51.1 45.8 45.4 50.8 65.6
TAVAT 92.2 40.4 56.3 74.3 42.3 54.2 45.7 42.7 53.8 64.2
FreeLB 93.1 42.7 53.7 75.9 48.2 47.7 45.7 46.7 49.3 67.5

FreeLB++10 93.3 41.9 54.8 75.8 46.1 50.3 45.9 44.2 52.4 65.3
FreeLB++30 93.4 45.6 50.6 78.1 47.4 48.8 45.7 42.9 53.6 66.0
FreeLB++50 92.0 45.5 50.4 77.2 47.4 48.4 45.3 44.6 51.4 67.5

GATFGM (ours) 92.8 45.8 49.8 78.5 49.0 46.3 47.0 45.5 50.1 64.9
GATFreeLB++10 (ours) 93.2 49.5 46.3 80.6 52.4 43.2 47.9 48.3 46.9 68.9
GATFreeLB++30 (ours) 92.7 52.5 42.2 82.3 53.8 40.9 47.5 46.1 50.0 65.8

Table 2: Main defense results on the SST-2 dataset, including the test accuracy on the clean test set (Clean %), the
robust accuracy under adversarial attacks (RA %), the attack success rate (ASR %), and the average number of
queries requiring by the attacker (# Query).

4.2 Attacking Methods

Follow Li et al. (2021), we adopt TextFooler (Jin
et al., 2019), TextBugger (Li et al., 2019) and
BAE (Garg and Ramakrishnan, 2020) as attack-
ers. TextFooler and BAE are word-level attacks
and TextBugger is a multi-level attacking method.
We also impose restrictions on these attacks for a
fair comparison, including:

1. The maximum percentage of perturbed words
pmax

2. The minimum semantic similarity εmin be-
tween the original input and the generated
adversarial example

3. The maximum size Ksyn of one word’s syn-
onym set

Since the average sentence length of IMDb and
SST-2 are different, pmax is set to 0.1 and 0.15,
respectively; εmin is set to 0.84; and Ksyn is set to
50. All settings are referenced from previous work.

4.3 Adversarial Training Baselines

We use BERTbase (Devlin et al., 2019) as the base
model to evaluate the impact of the following vari-
ants of adversarial training on accuracy and robust-
ness and provide a comprehensive comparison with
our proposed GAT.

• Adversarial Data Augmentation
• ASCC (Dong et al., 2021)
• DNE (Zhou et al., 2021)

• InfoBERT (Wang et al., 2021)
• TAVAT (Li and Qiu, 2021)
• FreeLB (Zhu et al., 2020)
• FreeLB++ (Li et al., 2021)

ASCC and DNE adopt a convex hull during train-
ing. InfoBERT improves robustness using mutual
information. TAVAT establishes a token-aware
robust training framework. FreeLB++ removes
the norm bounded projection and increases search
steps.

We only compare GAT with adversarial training-
based defense methods and leave comparisons with
other defense methods (e.g., certified defenses) for
future work.

4.4 Implementation Details
We implement ASCC, DNE, InfoBERT, and
TAVAT models based on TextDefender (Li et al.,
2021). We implement FGM, FreeLB, FreeLB++,
and our GAT based on HuggingFace Transform-
ers.1 We implement ADA and FADA based on
TextAttack (Morris et al., 2020).2 All the adversar-
ial hyper-parameters settings are following their
original papers. All the models are trained on
two GeForce RTX 2080 GPUs and eight Tesla T4
GPUs.

Regarding the training settings and hyper-
parameters, the optimizer is AdamW (Loshchilov
and Hutter, 2019); the learning rate is 2e−5; the
number of epochs is 10; the batch size is 64 for

1https://huggingface.co/transformers
2https://github.com/QData/TextAttack
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IMDb Clean % TextFooler TextBugger BAE

RA % ASR % # Query RA % ASR % # Query RA % ASR % # Query

BERTbase 91.2 30.7 66.4 714.4 38.9 57.4 490.3 36.0 60.6 613.6

ADA 91.4 34.6 61.7 804.8 40.5 55.2 538.8 37.0 59.1 693.4
ASCC 86.4 22.2 73.9 595.9 27.2 68.0 415.8 34.7 59.1 642.2
DNE 86.1 14.9 82.2 520.2 17.4 79.3 336.9 35.4 57.8 630.4
InfoBERT 91.9 33.0 63.9 694.1 40.4 55.8 469.9 37.3 59.2 619.6
TAVAT 91.5 37.8 58.9 1082.6 48.8 46.9 695.5 41.2 55.2 896.7
FreeLB 91.3 34.6 61.9 782.0 42.9 52.7 542.7 37.6 58.5 646.7

FreeLB++-10 92.1 39.5 56.8 817.9 46.4 49.3 516.5 41.2 55.0 682.3
FreeLB++-30 92.3 49.8 45.6 992.9 56.0 38.8 600.1 48.3 47.2 788.2
FreeLB++-50 92.3 50.2 45.3 1117.7 56.5 38.5 649.8 48.2 47.5 861.3

GATFGM (ours) 91.8 58.3 36.0 1004.3 60.4 33.7 556.1 54.6 40.1 747.4
GATFreeLB++10 (ours) 92.0 50.7 44.7 1093.8 54.7 40.4 648.9 50.7 44.7 908.5
GATFreeLB++30 (ours) 92.4 59.0 35.7 1629.4 62.2 32.2 914.8 54.4 40.7 1213.6

Table 3: Main defense results on the IMDb dataset.

SST-2 and 24 for IMDb; the maximum sentence
length kept for all the models is 40 for SST-2 and
200 for IMDb.

4.5 Main Results

Our proposed GAT can easily combine with other
adversarial training methods. In our experiments,
we combine GAT with FGM (GATFGM ) and
FreeLB++ (GATFreeLB++), respectively. We aim
to evaluate if GAT can bring improvements to the
simplest (FGM) and the most effective (FreeLB++)
AT methods.

We summarize the main defense results on the
SST-2 dataset in Table 2. When GAT works
with the simplest adversarial training method,
FGM, the resulting robustness improvement ex-
ceeds FreeLB++50. The effectiveness and effi-
ciency of GAT allow us to obtain strong robustness
while saving many search steps. Further combining
FreeLB++ on GAT can obtain stronger robustness
and outperform all other methods.

Regarding the accuracy, FreeLB++30 obtains the
highest 93.4%. GAT also significantly improves
accuracy.

In addition, ADA is effective in improving ro-
bustness but hurts accuracy. It is not surprising
that ASCC and DNE suffer from significant perfor-
mance losses. However, there is no improvement
in robustness and even weaker robustness under
TextFooler and TextBugger attacks than the other
methods.

Table 3 shows the defense results on the IMDb
dataset. The defense performances are generally
consistent with that on the SST-2 dataset. It is

AWS AT method Clean % RA % #Query

None None 92.4 38.5 44.3
None FGM 92.5 39.6 44.7
None FreeLB++30 93.4 47.4 45.7

ADA None 92.2 42.0 47.0
ADA FGM 91.3 42.7 46.6
ADA FreeLB++30 90.9 51.5 47.5

FADA None 92.7 44.4 45.8
FADA FGM 92.8 49.0 47.0
FADA FreeLB++30 92.7 53.8 47.5

Table 4: Ablation studies on the SST-2 dataset. The
attacking method is TextBugger. We only report RA %
and #Query due to the space limit. “AWS” means ad-
versarial word substitution methods.

worth noting that GATFGM achieved an extremely
high RA % with a medium #Query, which needs
further exploration.

5 Discussions

We further explore other factors that affect robust-
ness and provide comprehensive empirical results.

5.1 Ablation Studies

We conduct ablation studies on the SST-2 dataset
to assess the impact of each component of GAT.

As shown in Table 4, “FADA” consistently
outperforms “ADA” and “None” with differ-
ent adversarial training methods. Furthermore,
“FADA&FGM” achieve a higher RA% than
“None&FreeLB++30”, which implies that “FADA”
can obtain strong robustness in one adversarial
search step. “ADA” also helps improve robust-
ness. However, as the number of search steps in-
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Figure 3: (a) Robust and clean accuracy with different search steps. (b) Robust and clean accuracy with different
step sizes. (c) Robust accuracy gradually increases on the SST-2 dataset during training. The adversarial training
method is GATFreeLB++30. Zoom in for a better view.

SST-2 clean % PSO FastGA

RA % #Query RA % #Query

BERTbase 92.4 23.9 322.0 39.2 234.4

ADA 92.2 31.4 348.6 43.2 268.4
ASCC 87.2 29.2 359.4 40.5 233.2
DNE 86.6 17.3 266.2 43.9 250.1
InfoBERT 92.2 29.0 335.7 45.3 256.0
TAVAT 92.2 25.7 316.2 42.0 258.7
FreeLB 93.1 27.8 325.6 42.9 267.9
FreeLB++50 92.0 38.4 368.6 49.2 258.9

GATFGM 92.8 29.9 341.0 46.7 275.1
GATFreeLB++10 93.2 34.5 351.3 51.0 289.5
GATFreeLB++30 92.8 39.7 359.2 53.7 323.9

Table 5: The defense results of different AT methods
against two combinatorial optimization attacks. We
remove ASR % due to the space limit.

creases, so does the hurt it does to Clean %. On
the contrary, “FADA” does not harm Clean % but
improves it, implying its friendliness.

5.2 Results with Other Attacks
We have shown that GAT brings significant im-
provement in robustness against three greedy-based
attacks. We investigate whether GAT is effective
under combinatorial optimization attacks, such as
PSO (Zang et al., 2020) and FastGA (Jia et al.,
2019).

We can see from Table 5 that GATFreeLB++30
obtain the highest RA % against the two attacks
and GATFreeLB++10 has the highest clean ac-
curacy. The results demonstrate that our pro-
posed GAT consistently outperforms other defenses
against combinatorial optimization attacks.

5.3 Results with More Steps
As we claim in Section 1, the accuracy should de-
grade with a large number of search steps. But
what happens for robustness?

We aim to see if RA % can be further improved.
Figure 3(a) shows that the RA % gradually in-
creases against TextFooler and TextBugger attacks.
However, RA % decreases against BAE with steps
more than 30, which needs more investigation. As
the steps increase, the growth rate of RA % de-
creases, and the Clean % decreases. We conclude
that a reasonable number of steps will be good for
both RA % and Clean %. It is unnecessary to
search for too many steps since robustness grows
very slowly in the late adversarial training period
while accuracy drops.

5.4 Impact of Step Size

A large step size (i.e., adversarial learning rate) will
cause performance degradation for conventional
adversarial training. Nevertheless, what impact
does it have on robustness? We explore the impact
of different step sizes on robustness and accuracy.
As shown in Figure 3(b), the clean test accuracy
slightly drops as the step size increases. The robust
accuracy under TextFooler attack increases, while
the robust accuracy under Textbugger and BAE
attacks decrease. Overall, the impact of step size
on robustness needs further study.

5.5 Impact of Training Epochs

Ishida et al. (2020) have shown that preventing fur-
ther reduction of the training loss when reaching a
small value and keeping training can help general-
ization. In adversarial training, it is naturally hard
to achieve zero training loss due to the insufficient
capacity of the model (Zhang et al., 2021).

Therefore, we investigate whether more training
iterations result in stronger robustness in adver-
sarial training. We report the RA % achieved by
GATFreeLB++30 at each epoch in Figure 3(c). We
observe that the RA % tends to improve slowly,

3121



SST-2 Clean % TextFooler TextBugger BAE

RA % ASR % # Query RA % ASR % # Query RA % ASR % # Query

RoBERTabase 93.0 38.8 58.0 74.5 41.4 55.2 45.5 40.3 56.4 63.6

GATFGM 91.4 47.6 47.7 78.6 49.8 45.3 46.3 42.7 53.2 65.3
GATFreeLB++30 93.2 52.1 43.7 95.5 54.2 41.3 55.8 47.0 49.1 76.9

Table 6: Defense results on RoBERTa model on the SST-2 dataset.

SST-2 Clean % TextFooler TextBugger BAE

RA % ASR % # Query RA % ASR % # Query RA % ASR % # Query

DeBERTabase 94.6 53.7 43.4 79.5 55.1 42.0 48.7 49.8 47.5 66.8

GATFGM 94.5 54.6 42.1 82.6 57.7 38.8 50.0 48.9 48.2 66.7
GATFreeLB++30 94.7 60.4 35.7 83.4 62.0 33.9 51.2 52.2 44.4 69.9

Table 7: Defense results on DeBERTa model on the SST-2 dataset.

implying that more training iterations result in
stronger model robustness using GAT.

5.6 Results with Other Models

We show that GAT can work on more advanced
models. We choose RoBERTabase (Liu et al., 2019)
and DeBERTabase (He et al., 2021), two improved
versions of BERT, as the base models. As shown
in Table 6 and Table 7, GAT slightly improve ro-
bustness of RoBERTa and DeBERTa models.

5.7 Limitations

We discuss the limitations of this work as follows.

• As we clarify in Section 3.2.2, instead of dynami-
cally generating friendly adversarial data in train-
ing, we choose to pre-generate static augmenta-
tion. We do this for efficiency, as dynamically
generating discrete sentences in training is com-
putationally expensive. Although it still signifi-
cantly improves robustness in our experiments,
such a tradeoff may lead to failure because the
decision boundary changes continuously during
training.

• GAT performs adversarial training on friendly
adversarial data. It may help if we consider the
decision boundaries when performing gradient-
based adversarial training—for example, stop-
ping early when the adversarial data crosses the
decision boundary. We consider this as one of
the directions for future work.

6 Conclusion

In this paper, we study how to improve robustness
from a geometry-aware perspective. We first pro-
pose FADA to generate friendly adversarial data
that are close to the decision boundary. Then we
combine gradient-based adversarial training meth-
ods on FADA to save a large number of search
steps, termed geometry-aware adversarial training
(GAT). GAT can efficiently achieve state-of-the-art
defense performance without hurting test accuracy.

We conduct extensive experiments to give in-
depth analysis, and we hope this work can provide
helpful insights on robustness in NLP.
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