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Abstract
With the increasing popularity of online chat-
ting, stickers are becoming important in our
online communication. Selecting appropri-
ate stickers in open-domain dialogue requires
a comprehensive understanding of both di-
alogues and stickers, as well as the rela-
tionship between the two types of modali-
ties. To tackle these challenges, we pro-
pose a multitask learning method comprised
of three auxiliary tasks to enhance the un-
derstanding of dialogue history, emotion and
semantic meaning of stickers. Extensive ex-
periments conducted on a recent challenging
dataset show that our model can better com-
bine the multimodal information and achieve
significantly higher accuracy over strong base-
lines. Ablation study further verifies the ef-
fectiveness of each auxiliary task. Our code
is available at https://github.com/
nonstopfor/Sticker-Selection.

1 Introduction

With the development of mobile messaging apps
(e.g., WhatsApp and Messenger), visual content is
getting more and more frequently used in our daily
conversation, such as emojis and stickers. Com-
pared with emojis, stickers are larger images con-
sisting of drawing characters, symbolic icons, and
text titles, and are hence more expressive and versa-
tile (Konrad et al., 2020). Users send stickers along
with text to show intimacy, express strong emotion,
and experience the enjoyment of creativity (Tang
and Hew, 2019).

Despite the importance of stickers in daily com-
munication, selecting stickers in open-domain di-
alogue hasn’t been widely explored. In this pa-
per, we address the task of selecting an appropriate
sticker from a candidate set for an open-domain
multi-turn dialogue. This task is a typical setting
for various applications, e.g., automatically recom-
mending stickers in messaging apps and building

∗Work done during internship at WeChat AI.

看嘛，这次回来我可能有点忙

我看到箱子了？你还多久回家呢？！
哈哈是不是回家然后一起出来耍喃？

(I saw the suitcase? When will you be home?! 
Ha ha let’s hang out together when you arrive home?)

(It depends. I may be a little busy this time)

家里回来了两个重量级的人物

放那么多天假你忙啥子嘛

(What are you up to with so many days off)

(Two VIPs have returned home)

你不懂

啥子重量级嘛？

(You don’t get it)

(What does VIP mean?)

你说了我就懂了嘛

(I will if you explain to me)

angrycute brokenheartedgoodbye

Figure 1: An example of the sticker selection task.
Given a dialogue history, the model needs to add a
sticker to the last textual message which is the most ap-
propriate one among a collection of candidate stickers
(the one marked in the red rectangle). The words below
in red denote the emotion or meaning of each sticker.

more interesting and human-like chatbots which
could respond with stickers. As shown in Figure 1,
this task requires an understanding of dialogue con-
text, emotion and semantic meaning of stickers,
and a jointly modeling ability for the multimodal
information. Only a few previous works have ex-
plored this task (Gao et al., 2020; Wang and Jur-
gens, 2021). However, existing models are only
trained on an end-to-end matching objective and
lacks finer-grained supervision signals which could
guide models to understand multimodal informa-
tion better.

Considering the challenges of this task and the
shortcomings of previous work, we propose a novel
multitask learning method to improve sticker selec-
tion in open-domain multi-turn dialogue. We de-
sign three auxiliary tasks: 1) masked context pre-
diction, which uses multimodal context to predict
masked tokens in the dialogue history, aiming to un-
derstand the dialogue in the presence of the sticker;
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2) sticker emotion classification, which utilizes
the sticker’s contextualized representation to pre-
dict its emotion, aiming to improve the model’s
understanding of sticker emotion; 3) sticker se-
mantic prediction, which explicitly instills seman-
tic understanding of stickers by training the model
to reconstruct a sticker’s semantic label based on
the multimodal inputs. Moreover, all these tasks
help improve our model’s joint modeling capabil-
ity, as both our model architecture and task design
require multimodal inputs and deep interactions
between them. We evaluate the performance of
our method on a recently proposed and challenging
dataset. Extensive experiments show that our multi-
task method achieves state-of-the-art performance.

There are two contributions of this paper:

• We propose a multitask learning method
to help select appropriate stickers in open-
domain multi-turn dialogue.

• Experiment results on a challenging dataset
demonstrate the effectiveness of each auxil-
iary task and combining all the tasks achieves
state-of-the-art performance.

2 Related Work

Sticker selection. Previous works proposed to
recommend emojis in dialogue systems based on
textual or multimodal context (Barbieri et al., 2018;
Xie et al., 2016; Barbieri et al., 2017). However,
emojis are limited in variety and are much less
expressive than stickers. Laddha et al. (2020) re-
trieved stickers for generated text utterances by
simply matching the text tags of stickers. Several
works have proposed improved matching methods
for stickers. Gao et al. (2020) utilized co-attention
to capture the interaction between a sticker and
each utterance, and used a fusion network to com-
bine the features. Wang and Jurgens (2021) fol-
lowed the matching framework of CLIP (Radford
et al., 2021) and designed a multimodal encoder for
animated GIFs. Fei et al. (2021) proposed to gener-
ate special sticker tokens along with text utterances
using one single GPT (Wang et al., 2020) for emo-
tion prediction and retrieval of stickers. However,
existing models are only trained on an end-to-end
matching objective that implicitly guides the mod-
els to understand multimodal information. In our
work, we design finer-grained auxiliary tasks that
instill knowledge of stickers and their contextual-
ized usage in a more efficient way.

[CLS] c1 c2 [MASK] c4 …

Dialog context

[SEP] [MASK] [MASK] …

Aux task1: masked 
context prediction

Aux task3: sticker
semantic prediction

Aux task2: sticker
emotion classification

Main task:
context-sticker matching
0 / 1

c3 e1 e2 … emotion label

Transformer Block 1

…

Transformer Block N

Embedding Layer Vision Transformer

Figure 2: An overview of our training task design. The
base model architecture is a multimodal BERT that
learns to predict whether the candidate sticker is ap-
propriate given the dialogue context. Three auxiliary
tasks are proposed to enhance the model’s ability to
understand multimodal input. ci and ei represent tokens
of dialogue context and semantic label respectively.

Visual Dialogue. Visual dialogue is a task to an-
swer questions about the factual content of the
real-world image (Liang et al., 2021; Das et al.,
2017a,b). In contrast, selecting appropriate stick-
ers in open-domain dialogue requires understand-
ing sentiment and semantic expression of user-
generated, artistic style images.

3 Method

3.1 Task Definition

We assume there is a multi-turn dialogue context
C = {u1, ..., uN}, and a candidate sticker set
S = {s1, ..., sM}, where ui represents the i-th
utterance in the dialogue, and si represents the i-th
candidate sticker. N is the number of utterances
in the dialogue and M is the number of candidate
stickers. In this work, we suppose that there is only
one appropriate sticker s∗ ∈ S, and s∗ and uN
belong to the same speaker. The goal is to train a
model that can select the right sticker s∗ among all
candidates S given the dialogue history C.

3.2 Method Overview

An overview of the design of our training tasks
is shown in Figure 2. Our main task is to decide
whether the candidate sticker is appropriate given
the dialogue context. To accomplish this task, we
concatenate the embedded dialogue context and
the sticker embedding as inputs to BERT. Then we
apply a binary classification layer on top of the hid-
den state of the [CLS] token. In order to enhance
the model’s ability to understand the multimodal
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input, we design three auxiliary tasks: 1) masked
context prediction, which improves the model’s
understanding of dialogue context; 2) sticker emo-
tion classification, which aims to make the model
better understand sticker’s emotion; 3) sticker se-
mantic prediction, which instills semantic infor-
mation of stickers to the model. Next, we will
introduce our three auxiliary tasks in detail.

3.3 Task 1: Masked Context Prediction
The masked context prediction task follows the
masked language modeling (MLM) task in BERT
(Devlin et al., 2019). One difference is that we
additionally append the embedding of the appro-
priate sticker to the input embeddings. In this way,
the model can learn to utilize stickers for dialogue
reconstruction, and thus the interaction between
the two modalities is enhanced. The loss for this
task is denoted as Lctx, and takes the same form of
cross-entropy loss as in the original MLM task.

3.4 Task 2: Sticker Emotion Classification
In the dataset we used, stickers are annotated with
one context-dependent emotion, which means one
sticker could have different emotions in different
dialogue contexts. Therefore, we design a sticker
emotion classification task to enable the model to
utilize the text and sticker information simultane-
ously for understanding sticker emotion. Specif-
ically, we take the hidden state corresponding to
the sticker and apply a softmax layer with cross-
entropy loss on top of it for emotion classification.
The loss for this task is denoted as Lemo.

3.5 Task 3: Sticker Semantic Prediction
Task 1 and Task 2 emphasize learning the implicit
meaning of stickers and their correlation with di-
alogue text. However, many stickers express a
clear intention that indicates their proper usage
context, e.g., greetings and declines. We believe
empowering our model to predict and utilize the
semantic meaning of stickers is beneficial for our
task. Hence, we further design a semantic label
prediction task. We modify our model’s inputs by
inserting a fixed-length sequence of [MASK] to-
kens after the dialogue. The model is trained to
recover the label text from the hidden states of the
[MASK] tokens. The loss is formulated as the sum
of cross-entropy loss for each token in label and is
denoted as Lsem. Since the dataset we used has no
ground truth semantic labels for stickers, we take
the textual information recognized by an OCR tool

as semantic labels for stickers. Note that Lsem is
only applied for those stickers with text recognized.

3.6 Total Loss
Besides the above three auxiliary tasks, our main
task is a binary classification of whether a candidate
sticker is appropriate given the dialogue context.
We take all dialogue-sticker pairs in the dataset as
positive samples and randomly sample stickers to
create an equal number of negative samples. The
cross-entropy loss is denoted as Lmain.

Our final loss is a combination of the four loss:

L = Lmain + αLctx + βLemo + γLsem (1)

where α, β, γ are manually tuned hyperparameters.

4 Experiments

4.1 Dataset
We use the Chinese version of the MOD dataset
from DSTC10-Track11. The dataset is grounded in
a dialogue scenario and contains various stickers
with contextualized emotion annotation. We split
each dialogue into several samples, each containing
a text sequence of dialogue history and an accom-
panying sticker. Note that this dataset is revised
from the unpublished one used in Fei et al. (2021).

4.2 Baselines
We compare our model with the following base-
lines from recent related work: 1) SRS (Gao et al.,
2020), which encodes dialogue history and candi-
date sticker separately, and then employs a deep
interaction network and a fusion network to score
each candidate sticker; 2) MOD-GPT (Fei et al.,
2021), which uses one single GPT to generate re-
sponse text and match sticker; 3) CLIP, which fine-
tunes pretrained CLIP (Radford et al., 2021) for
sticker selection using the same contrastive loss.

4.3 Results and Analysis
The result is shown in Table 1. Our full model
(MMBERT+ctx+emo+sem) outperforms all base-
lines on two test sets, and achieves the best per-
formance in almost all settings. As expected, all
the results get worse on the hard test set and when
selecting one amongst all stickers. As only one

1https://openai.weixin.qq.com/dstc/
DescriptionEN. See Appendix A for more details.

2We only provide the results with 10 candidate stickers as
their public code does.
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R10@1 R10@2 R10@5 MRR10 RALL@1 RALL@2 RALL@5 MRRALL

easy test

SRS2 30.51 54.24 71.28 48.15 - - - -
MOD-GPT 31.20 54.81 72.13 49.20 5.10 9.05 15.57 11.46
CLIP 38.44 56.45 82.27 56.76 6.00 9.39 16.61 12.69
MMBERT 45.44 66.78 90.95 64.03 5.69 10.08 19.44 13.98
MMBERT+ctx 47.06 67.34 90.76 65.00 5.91 10.26 20.72 14.44
MMBERT+ctx+emo 48.80 70.67 92.29 66.88 6.07 11.26 22.02 15.22
MMBERT+ctx+emo+sem 49.14∗∗ 69.46∗∗ 91.76∗∗ 66.67∗∗ 7.40∗∗ 12.07∗∗ 22.08∗∗ 15.99∗∗

hard test

SRS 23.85 45.30 63.52 40.33 - - - -
MOD-GPT 25.50 49.22 64.03 40.51 3.52 6.12 12.76 9.23
CLIP 32.81 48.55 76.17 51.28 5.79 8.91 15.14 11.55
MMBERT 32.47 50.40 78.32 51.88 3.90 6.62 13.15 9.71
MMBERT+ctx 33.11 51.04 78.98 52.60 4.21 7.71 13.82 10.38
MMBERT+ctx+emo 35.39 52.26 78.14 53.65 4.87 8.18 14.66 11.06
MMBERT+ctx+emo+sem 36.64∗∗ 55.48∗∗ 80.78∗∗ 55.40∗∗ 6.06 9.65∗ 15.79 12.40∗∗

Table 1: Performance of the models on DSTC10 dataset. All the numbers are scaled by 100. The easy test set contains only the
same stickers seen during training, while the hard test set has unseen stickers. The footnotes 10 and ALL indicate the numbers of
candidate stickers considered for each train and test case, which are 10 (ground truth sticker plus 9 randomly sampled stickers)
or all available stickers respectively. R@k is the recall rate of top-k predicted stickers and MRR the Mean Reciprocal Rank of
ground truth stickers. The abbreviations ctx, emo and sem correspond to the auxiliary task 1, 2 and 3 respectively in Section 3. A
paired t-test is conducted between the full model (MMBERT+ctx+emo+sem) and CLIP (∗: p < 0.05, ∗∗: p < 0.01).

Bad guy, definitely.

Figure 3: Examples of word saliency in the dialogue
history. Word saliency is computed as Frobenius norm
of its gradient with regard to the main task loss. Darker
color indicates the word is more important. The words
in red denote the text in the sticker.

out of the numerous and various online stickers
is considered correct, the task is inherently chal-
lenging. We find that CLIP is a strong baseline
due to its better generalization ability on the hard
set, compared with our base model which has no
auxiliary task (MMBERT). This may be because
CLIP is pretrained on a large number of image-
text pairs. However, with multitask learning, our
full model outperforms CLIP, although BERT has
never seen images during pretraining. Thus, we
conclude that our multitask learning method can
improve sticker selection by explicitly guiding the
model to understand multimodal information.

Figure 4: The diversity of the predicted and ground truth
stickers in the easy test set.

We also perform an ablation study to verify the
effect of each auxiliary task. A clear trend emerges
that the performance improves as each auxiliary
training task is added to MMBERT, verifying the
efficacy of our task design. One exception is that
MMBERT+ctx+emo performs slightly better than
our full model in terms of R10@2, R10@5, and
MRR10. However, the inconsistency disappears
when considering all stickers as candidates. Fur-
thermore, our full model performs significantly bet-
ter on the hard test set which contains unseen stick-
ers. Hence, we conclude that introducing semantic
information improves the model’s generalization
ability. We also find that our full model achieves
60% accuracy on the validation set for the auxiliary
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shy afraidcurious disdainful

最近有想去青岛玩的吗

(Does anybody want to go to Qingdao recently)

已经在青岛了

(I am already in Qingdao)

你是青岛人还是也打算去那边玩呀

(Are you from Qingdao or are you 
also planning to go there to play)

青岛人目前在青岛呢。如果想
来可以一起玩的

(Qingdao native. Currently in Qingdao. If you 
want to come here we can play together)

你是青岛人还是也打算去那边玩呀

(Thank you. Do you have time recently)

Figure 5: A failing case of our model. The leftmost
sticker is selected by our model among the four candi-
date stickers. The appropriate sticker is marked with
a red rectangle. The red words explain the stickers’
emotions or meanings.

angry thankful cutehelpless

本本关不了机了，求帮助

(I can't turn off the computer, please help)

有问题重启不了。关不了机。我想扣
电池

强制关机！等等重启看看

(Force shutdown! Wait to restart and see)

(Cannot restart if there is a problem. Can't turn
off the machine. I want to button the battery)

Figure 6: A case in which our model’s prediction is
not the same as the answer but also appropriate. The
leftmost sticker is selected by our model among the four
candidate stickers. The appropriate sticker is marked
with a red rectangle. The red words explain the stickers’
emotions or meanings.

sticker emotion classification task with 52 emotion
labels in total, which is reasonable and confirms
our model can learn from the auxiliary tasks.

We visualize the saliency of different words in
the dialogue history in Figure 3, which shows that
the more relevant words (e.g., guessed, good and
modest) in the dialogue history contribute more to
our model’s prediction. Notably, our model could

attend to some distant words (e.g., good), not just
the words inside the previous utterance.

We also analyze the prediction diversity of our
full model. As shown in Figure 4, the predictions of
our model are diverse in general, covering almost
all stickers in the whole candidate set. We note
that a few stickers are predicted significantly more
times than other stickers, which is because they
appear much more frequently than other stickers in
the training set. We leave addressing the imbalance
problem of the training set as our future work.

4.4 Case Study

We present a successful case in Figure 1, where
the ground truth sticker has no OCR information,
making it challenging for the model to understand
its semantic meaning. Moreover, the model needs
to understand that the dialogue is in a delighted
context, and the stickers’ emotions and meanings
in order to distinguish the most appropriate sticker
from the others. This case suggests our model has a
good understanding of dialogue history and sticker
emotion and semantic meaning with the help of
auxiliary tasks.

We show a failing case of our model in Figure 5.
In this case, the appropriate sticker never appears
in the training set. Considering the hard test set is
more challenging than the easy test set, improving
the generalization ability of our model is thus an
important direction of future work. The same is
true for baselines.

In the dataset we used, only one sticker is consid-
ered correct. However, we observe cases where the
model’s selection is not the same as the answer but
is also appropriate. An example is shown in Figure
6. Therefore, the results in Table 1 indicate a lower
bound performance and our model may perform
better in practice.

5 Conclusion

In this paper, we address the challenging task of se-
lecting appropriate stickers in open-domain multi-
turn dialogue. We propose a multitask learning
method with three auxiliary tasks to enhance the un-
derstanding of dialogues and stickers. Experiments
show that our model outperforms strong baselines,
confirming the effectiveness of our multitask learn-
ing method for sticker selection. Although our ex-
periments are conducted on a Chinese dataset, our
methods are expected to work for other languages.
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A Dataset Details

Statistics of the dataset are shown in Table 3. There
are 307 stickers in total and 228 out of them have
textual information extracted by OCR. For stick-
ers without emotion labels or semantic labels, we
simply ignore the emotion classification loss or the
semantic prediction loss. A better way to deal with
the missing labels is left as future work.

For each dialogue sample, we ignore stickers in
the middle of the dialogue history, as we found in
preliminary experiments that removing them has
no significant impact on the performance.

B Implementation Details

For all the models implemented by ourselves in
our experiments, we set the batch size to 8 and
use AdamW optimizer with cosine scheduler. For
the CLIP baseline, as there is no available CLIP
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R10@1 R10@2 R10@5 MRR10 RALL@1 RALL@2 RALL@5 MRRALL

easy test

MMBERT+ctx+emo 48.80 70.67 92.29 66.88 6.07 11.26 22.02 15.22
MMBERT+ctx+emo+sem 49.14 69.46 91.76 66.67 7.40 12.07 22.08 15.99
MMBERT+ctx+emo+sem-OCR 49.95 70.89 92.13 67.39 6.63 12.07 22.18 15.80
MMBERT+ctx+emo+sem-OCR+data 47.06 67.50 91.07 65.12 6.03 9.74 19.75 14.23

hard test

MMBERT+ctx+emo 35.39 52.26 78.14 53.65 4.87 8.18 14.66 11.06
MMBERT+ctx+emo+sem 36.64 55.48 80.78 55.40 6.06 9.65 15.79 12.40
MMBERT+ctx+emo+sem-OCR 32.87 50.03 76.07 51.51 4.58 7.74 13.70 10.44
MMBERT+ctx+emo+sem-OCR+data 33.42 50.94 78.78 52.49 4.75 7.80 14.31 10.75

Table 2: Effect of incorporating semantic label prediction and OCR feature on DSTC10 dataset. All the numbers are
scaled by 100. The easy test set only contains stickers ever seen in the training set, while the hard test set contains
stickers unseen during training. R10@k and RALL@k mean recall rate of ground truth stickers from top-k stickers
chosen by the models, given a candidate set of 10 or all available stickers respectively. MRR10 and MRRALL represent
Mean Reciprocal Rank of ground truth stickers among 10 or all available stickers. MMBERT+ctx+emo+sem-OCR
means not using OCR information for other tasks except sticker semantic prediction. MMBERT+ctx+emo+sem-
OCR+data means not using OCR information for other tasks except sticker semantic prediction and adds extra
sticker-description pairs for sticker semantic prediction task.

Train Valid Easy test Hard test

# samples 211575 3542 3215 7028
# emo samples 209890 3495 - -

# utterances 1666208 26040 25447 59773
# tokens 10400 2718 2780 3818
# stickers 283 249 239 278

Avg. # utterances 7.88 7.35 7.92 8.50
Avg. # tokens 18.42 12.47 12.91 14.54

Table 3: Dataset statistics. Easy test set’s stickers all
appear in the train set, while the hard test set contains
stickers which don’t appear in the train set. One orig-
inal dialogue could be split into several samples, each
containing one sticker response. The token num is com-
puted by the tokenizer of BERT. # emo samples means
the number of samples containing emotion annotation.
Avg. # tokens means the average number of tokens for
each utterance.

model especially pretrained in Chinese, we use a
multilingual version adapted via knowledge dis-
tillation (Reimers and Gurevych, 2020)3. We cut
the dialogue history to take only the last sentence
in order to fit the length limit of CLIP’s text en-
coder. We also tried to use the last two or more sen-
tences, but found that the performance decreased.
All BERT-based models and MOD-GPT use the
image encoder in the CLIP baseline. We set the
CLIP image encoder’s learning rate to 5e-7 and
the text encoder’s learning rate to 9e-6. For BERT-
based models, we set the learning rate to 9e-6 and

3https://www.sbert.net/docs/
pretrained_models.html#image-text-models

fix the image encoder following (Fei et al., 2021).
The maximum epoch is set to 10. For the total loss,
α is set to 0.05, β is set to 0.2 and γ is set to 0.1.
All the hyperparameters are selected based on the
validation set. The maximum training time for one
epoch is about 5 hours on one single V100 GPU.

C Effect of Semantic Information

In our full model, we also added semantic labels
to other tasks’ inputs, i.e., the main task of context-
sticker matching, the masked context prediction
task and the sticker emotion classification task. It
raises an interesting question of how the perfor-
mance will change if we remove this information.
The result is shown in Table 2. As we can see, the
sticker semantic prediction task is more beneficial
for the easy test set, while adding OCR information
to other tasks is more beneficial for the hard test set.
We conjecture that because of the relatively small
number of stickers (less than 300), it could be eas-
ier for the model to memorize the meaning of all
stickers in the dataset, which potentially damages
the model’s generalization ability on unseen stick-
ers in the hard test set. Adding OCR information
for other tasks greatly alleviates this phenomenon
because it could offer semantic labels for unseen
stickers and enhance the model’s generalization
ability.

We also tried to enhance the model’s general-
ization ability by incorporating additional sticker-
description pairs from another source into the
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RALL@1 RALL@2 RALL@5 MRRALL

easy test

CLIP 7.49/2.95/4.54 11.23/6.09/5.14 18.21/13.23/4.98 14.29/9.54/4.75
MMBERT+ctx+emo+sem 8.69/4.85/3.84 12.80/10.75/2.05 19.69/27.12/-7.43 15.89/16.28/-0.39

hard test

CLIP 6.82/3.58/3.24 10.23/6.46/3.77 16.60/12.66/3.94 12.74/9.26/3.48
MMBERT+ctx+emo+sem 6.95/4.50/2.45 10.68/7.77/2.91 16.48/14.62/1.86 13.24/10.91/2.33

Table 4: Performance of our full model and CLIP on the divided dataset. The three values divided by / correspond
to the performance on the sub dataset where stickers have text, the performance on the sub dataset where
stickers don’t have text and their difference. All the numbers are scaled by 100. The easy test set contains only
the same stickers seen during training, while the hard test set has unseen stickers. R@k is the recall rate of top-k
predicted stickers and MRR the Mean Reciprocal Rank of ground truth stickers. The abbreviations ctx, emo and sem
correspond to the auxiliary task 1, 2 and 3 respectively in Section 3.

sticker semantic prediction task. As Table 2 shows,
this method could increase the performance on the
hard test set as expected, but the performance on
the easy test set drops significantly, which may be
attributed to the distribution difference between the
additional data and our original data.

D Analysis of Sensitivity to the Text in
Stickers

To explore whether stickers have text or not could
affect the model’s performance, we split each test
set into two parts, i.e., stickers with recognized text
labels versus those without text labels. The number
of samples in each part is 2164 and 1051 for the
easy set, and 4429 and 2599 for the hard set. We
compare the performance of our full model with
that of CLIP on the divided test sets in Table 4. To
avoid randomness in candidate set construction, we
only compare the two models with the whole candi-
date set. In general, our full model and CLIP work
better when the stickers have text, which suggests
that the text in the sticker could help the model
better understand the sticker.4 However, our model
is less sensitive to whether stickers have text or not
according to the smaller difference value compared
with CLIP. This implies our model is more robust
to different kinds of candidate stickers.

4Strictly speaking, there may be other factors that make
the two parts inherently different in difficulty, but a fair com-
parison is difficult to make. Intuitively, stickers without text
labels are generally harder to understand for the models.
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