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Abstract

Machine translation typically adopts an
encoder-to-decoder framework, in which
the decoder generates the target sentence
word-by-word in an auto-regressive manner.
However, the auto-regressive decoder faces
a deep-rooted one-pass issue whereby each
generated word is considered as one element
of the final output regardless of whether it
is correct or not. These generated wrong
words further constitute the target historical
context to affect the generation of subsequent
target words. This paper proposes a novel
synchronous refinement method to revise
potential errors in the generated words
by considering part of the target future
context. Particularly, the proposed approach
allows the auto-regressive decoder to refine
the previously generated target words and
generate the next target word synchronously.
The experimental results on three widely-used
machine translation tasks demonstrated the
effectiveness of the proposed approach.

1 Introduction

Recently, the encoder-decoder framework has
obtained impressive results over various machine
translation tasks (Barrault et al., 2020; Akhbardeh
et al., 2021). Typically, decoder first represents
those generated target words as a dependent-time
target representation, and then uses an attention
mechanism to summarize a dependent-time context
from the source input for generating the next
target word. Since this generated target word is
conditioned on previously generated target words
at each time step, the decoding process is often
called auto-regressive decoding. Finally, decoder
generates a target language sentence word-by-word
in the auto-regressive decoding manner (Bahdanau
et al., 2015; Vaswani et al., 2017).

However, the auto-regressive decoder often
encounters an inherent one-pass issue whereby
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each generated target word is one element of
the final output of the machine translation model
regardless of whether it is correct or not. These
generated wrong target words are further added to
the target historical context to affect the generation
of subsequent target words, which hinders the
performance of machine translation. Take a
Chinese-to-English translation case in Figure 1
generated by a trained neural machine translation
(NMT) model (Vaswani et al., 2017), we illustrate
the once-generation issue. In the generated target
translation “Tgt", there is first an inappropriate
translation “clean up" compared with “monitor" in
the reference “Ref". The “clean up" is regarded as
the final translation to confuse the understanding
of the meaning of the source sentence. When these
inappropriate or incorrect target words constitute
part of the target historical context, the once-
generation issue further affects the generation of
subsequent target words, for example, “drivers’
mobile phone" is far away from the meaning
of source sentence “the driver plays mobile
phone while driving". To verify this issue, we
artificially revised the inappropriate translation
“clean up" as “monitor" during the decoding, and
observed that the subsequent translation “driver
plays mobile phone while driving" in “Revised"
almost completely expresses the corresponding
Chinese meaning. We believe that correcting
the potential errors in generated translations will
improve the quality of the translations.

Many efforts have been initiated on revising
potential errors in the generated target translation
for machine translation, for example, automatic
post-editing (Niehues et al., 2016; Zhou et al.,
2017; Junczys Dowmunt and Grundkiewicz, 2017)
and two-pass decoding (Xia et al., 2017; Geng
et al., 2018; Nema et al., 2019; Ghazvininejad
et al., 2019). Despite their success, most of
these approaches asynchronously simulated the
generation of the next target word and the revision
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上海市 松江区 交管部门 近期 使用 电子 警察
[Shanghai] [Songjiang District] [Traffic Control Department] [recently] [used] [electronic] [police] 
整治 驾驶员 开车 玩 手机 ，一个星期 查获 30         多 起

[monitor] [driver] [driving] [plays] [mobile  phone]     [in  a  week] [detected] [30] [more than] [cases]

Src: 

Shanghai  Songjiang District Traffic Control Department recently used electronic police to monitor  
whether the driver plays mobile phone while driving and detected more than 30 cases in a week

Ref: 

traffic control department of Songjiang District in Shanghai recently used electronic police 
to clean up drivers’ mobile phone, and find more than 30 seizures a week

Tgt: 

traffic control department of Songjiang District in Shanghai recently used electronic police to 
monitor driver plays mobile phone during the driving , and find more than 30 cases a week

Revised: 

Figure 1: Chinese-to-English translation cases generated by the standard decoder and the decoder with artificial
revision. Note: English words in color are translations from the corresponding Chinese words with the same color.

of the generated target words or required a complex
modification of the existing models. In this
paper, we propose a novel method to refine the
potential errors in the generated target words
and generate the next target word synchronously.
To this end, during the decoding, we consider
their target future context for a part of previously
generated target words, to synchronously obtain
the refinement probabilities of the previously
generated words and the generation probability
of the next target word at each time step. When
the refinement probability is greater than the
previous generation probability on the same
position, we replace the original generated target
word with the revised target word. These refined
target words together with the currently generated
target word further provide an accurate target
historical context for the generation of subsequent
target words. Additionally, the proposed
approach is easily introduced into the auto-
regressive decoder without complex modification.
We extensively evaluated it on three widely-
used machine translation benchmarks, including
WMT14 English-to-German, WMT14 English-to-
French, and WMT17 Chinese-to-English, and the
experimental results demonstrated the effectiveness
of the proposed approach.

2 Background

In this paper, we use the advanced encoder-
decoder framework, Transformer (Vaswani et al.,
2017), to introduce the language generation models.
To simplify the process, we simply format the
main self-attention network (SAN) module and
do not involve other modules (e.g., positional
encoding, multiple stacked layers, and so on).
Encoder represents the source input X={x1, · · · ,

xJ} as the source representation H= {h1, · · · ,
hJ} using SANs. Decoder then generates the
target sentence word-by-word based on H with
attention mechanism and the generated target
fragment. Specifically, given a sequence of word
vectors in the generated target fragment {E[y1], · · · ,
E[yi−1]} (E is the embedding matrix of the target
language vocabulary), they are packed into key-
value matrices Ki−1 and Vi−1 at the i-th time-step:

Ki−1 = Vi−1 = M(E[y1], · · · ,E[yi−1]), (1)

where the function M(·) packs a sequence of word
vectors into a matrix. Another SelfATTs module is
then used to learn the target representation si:

si = SelfATTs(ci−1,Ki−1,Vi−1), (2)

where ci−1∈Rdmodel is the previous context vector
and dmodel is the dimension of language generation
model. si is then fed into another SelfATTc to
compute the dependent-time context vector ci:

ci = SelfATTc(si,Ke,Ve), (3)

where Ke and Ve are key and value matrices,
respectively, that are transformed from the source
representation H according to Eq.(1). The
probability distribution Pg(yi|y<i, X) is then
computed using the MLP layer:

Pg(yi|y<i, X) ∝ MLP(ci). (4)

yi with the maximum probability is selected as the
output of decoder at the i-th time-step. To obtain
the language generation model θ, the training
objective maximizes the conditional generation
probability over the training dataset {[X,Y]}:

J (θ) = Pg(Y|X; θ). (5)
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(b) Auto-regressive decoder with synchronous refinement.

Figure 2: (a) The auto-regressive decoder; (b) The auto-regressive decoder with synchronous refinement where red
and black arrows denote the refinement data flow and the generation data flow.

3 Methodology

Intuitively, when there is a target sentence with
several incorrect target words, a native target
language speaker often detects incorrect words
according to the contextual information and tries
to revise them. We infer that there are two key
aspects in the artificial refinement process: i) How
to identify those incorrect target words based on the
context information; ii) How to revise the identified
incorrect target words. To this end, we propose to
simulate the above artificial refinement process, to
refine the previously generated target words and
generate the next target word synchronously.

3.1 Synchronous Refinement
Formally, at the i-th time step, given a key-value
matrix pair {Ki−1, Vi−1} (see Eq.(1)) of the
generated target language fragment {E[y1], E[y2],
· · · , E[yi−1]}, we first pack the context vectors {c1,
c2, · · · , ci−1} to generate the previous target words
into a matrix Ci−1 using Eq.(1):

Ci−1 = M(c1, c2, · · · , ci−1). (6)

We then use Ci−1 instead of ci−1 in Eq. (2) to learn
the target representation matrix Si:

Si = SelfATTs(Ci−1,Ki−1,Vi−1), (7)

where Si ∈ Ri×dmodel is a matrix which includes
the updated target representations of previously
generated target words {s′1, s′2, · · · , s′i−1} in
addition to the current target representation si.
Here, for each of the previously generated target
words, SelfATTs considers a subset of the future
target context to update its target representation.
For example, s′3 of y3 encodes its future target
words {y3, · · · , yi−1} in addition to its previous

target words {y1, y2}. The target future context,
which has been shown to be useful for generating
the target language in machine translation (Zhang
et al., 2018; Zheng et al., 2018; Zhou et al.,
2019; Zheng et al., 2019), provides more evidence
information for correcting one among all the
generated target words in this paper.

Then, Si is fed into Eq. (3) to learn a sequence
of the context vectors Ci:

Ci = SelfATTc(Si,Ke,Ve), (8)

where Ci ∈ Ri×dmodel is a matrix which includes
the updated context vectors of previously generated
target words {c′1, · · · , c′i−1} in addition to the
current context vector ci. We then use Ci as the
input to Eq.4 to obtain the combined probabilities:

Pr(y
′
1, · · · , y′i−1, yi|y<i, X) ∝ MLP(Ci), (9)

where Pr(·) includes i − 1 additional refinement
probability distributions at each time step i. That
is, {y′1, · · · , y′i−1} provides a potential error set for
revising the generated target words. Furthermore,
we select target words with max probabilities
from refinement probability distributions as the
target candidate words to be refined. When each
refinement probability of {y′1, · · · , y′i−1} is greater
than its counterpart in the generation probability
{y1, · · · , yi−1} at previous time step, the previously
generated target word yk (0<k<i) will be replaced
with the refined target word y′k. Finally, the revised
target fragment {ŷ1, · · · , ŷi−1, yi} are computed:

P (ŷ1, · · · , ŷi−1, yi|y<i, X) =

max[Pg(y1, · · · , yi−1, 0|y<i, X),

Pr(y
′
1, · · · , y′i−1, yi|y<i, X)]. (10)
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vectors {ci�N , ci�N+1, · · · , ci�1} into C0
i�1:253

C0
i�1 = M(ci�N , ci�N+1, · · · , ci�1). (11)254

Then, we feed the local target representation255

matrix C0
i�1 into Eq.7 instead of the original target256

representation matrix C0
i�1, and thereby efficiently257

perform refinement of local generated target words258

according to Eqs.8, 9, and 10 in turn.259

3.2 Model Training260

In the proposed Local-refinement, when the261

number of refined target words is N , each262

generated target word in the fixed window will263

be refined at most N times This means that we264

need to open up N+1 decoding paths, which265

may be inefficient for the training of neural266

network models. To efficiently inject this local-

i-th time-step full refinement mask
1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 0
6 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1

Table 1: Mask matrix for learning the target
representation during the training, where black "1" and
blue "1" unmask the past context and the future context
(i.e., N=3) for the proposed synchronous refinement.

267
refinement capability into the training of language268

generation models, we introduce an additional269

local-refinement mask to select the target future270

context words for the refinement mechanism.271

Compared with the existing lower triangle mask272

(similar to black indexes in Table 1), the local-273

refinement mask contains additional target future274

context words closest to the target word to be275

omitted. After a target word is generated, it will be276

refined in the subsequent N sequential steps. This277

means that the number of future target words is278

different. Therefore, the local-refinement mask is279

to randomly select future target words not greater280

than N to cover a variety of different future contexts281

as red parts in Table 1.282

J (✓) = Pg(Y|X; ✓) + Pr(Y|X; ✓). (12)283

Then, we use the original lower triangular284

mask and the proposed refinement mask to learn285

the generation and refinement context vectors,286

respectively. This allows the language generation287

model to simultaneously simulate the generation 288

of generated target words and the refinement of the 289

current target word during the training, respectively. 290

Thus, the training objective maximizes the 291

generation and the refinement probabilities over 292

the training dataset {[X, Y]}: 293

4 Experiments 294

We evaluated the proposed method on the four 295

typical language generation tasks, including stan- 296

dard machine translation, simultaneous machine 297

translation, text summarization, and storytelling. 298

4.1 Standard Machine Translation 299

We evaluated the proposed method on three 300

widely-used standard machine translation tasks: 301

WMT14 En)De includes 4.43 million bilingual 302

sentence pairs, and we used the newstest2013 303

and newstest2014 datasets as the dev set and test 304

set, respectively; WMT14 En)Fr includes 36 305

million bilingual sentence pairs, and we used the 306

newstest2013 and newstest2014 datasets as the dev 307

set and test set, respectively; and WMT17 Zh)En 308

includes 22 million bilingual sentence pairs, and we 309

used the newsdev2017 and newstest2017 datasets 310

as the dev set and the test set, respectively. The 311

byte pair encoding algorithm (Sennrich et al., 2016) 312

was adopted, and the vocabulary size was set 313

to 40K. We set the dimension of all input and 314

output layers to 512, the dimension of the inner 315

feedforward neural network layer to 1024, and the 316

total heads of all multi-head modules to 8 in both 317

the encoder and decoder layers. Each training 318

batch consisted of a set of sentence pairs that 319

contained approximately 4000⇥8 source tokens 320

and 4000⇥8 target tokens. To evaluate the test 321

sets, following the training of 200,000 batches, 322

we used a single model obtained by averaging 323

the last five checkpoints, which validated the 324

model with an interval of 2,000 batches on the 325

dev set. We trained all models on eight V100 326

GPUs and evaluated them on a single V100 GPU. 327

We chose the Transformer NMT model (Vaswani 328

et al., 2017) as our baseline. For other configures 329

of Transformer (e.g., Trans.base/big) models, we 330

followed the settings in (Vaswani et al., 2017). We 331

used the multi-bleu.perl script as the evaluation 332

metric for the three translation tasks. 333

4.1.1 Translation Results 334

Table 2 showed BLEU scores of the baseline 335

Trans.base/big models, +Local-refinement, +De- 336

4
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(b) Refinement mask for local constraint.

Figure 3: Full refinement mask and refinement mask with local constraint (i.e., N=3) for learning the target
representation during the training, and red number denotes the used future context in the proposed synchronous
refinement.

Note that during the inference, the greedy search
was used to refine previously generated target
words while beam search was only used to
generate the next target word. This makes the
search complexity of decoding with refinement
as consistent as that of the original decoding
with beam search, thereby efficiently performing
the synchronous refinement in the existing auto-
regressive decoding.

3.2 Local Constraint
For the proposed synchronous refinement, most
of the generated target words will be refined
many times, that is, the number of refinement
operations is proportional to the length of the
final target sentence. However, the native target
language speaker may only revise the previously
generated target words a few times. Thus, there
may be a potential risk of “over-refinement” in
the synchronous refinement, that is, excessive
refinement operations may lead to new errors.
To reduce the risk of “over-refinement”, we
further design a local constraint (see Figure 2)
that focuses on refining part of the previously
generated target words closest to the target word
to be omitted at each time step, inspired by
the local attention (Luong et al., 2015) and the
fixed iteration prediction (Ghazvininejad et al.,
2019). Specifically, in the i-th time step, we select
N previously generated target words {E[yi−N ],
E[yi−N+1], · · · , E[yi−1]} closest to the target
word to be omitted, and pack the context vectors
{ci−N , ci−N+1, · · · , ci−1} into C′i−1:

C′i−1 = M(ci−N , ci−N+1, · · · , ci−1). (11)

Then, we feed the local target representation matrix
C′i−1 into Eq. (7) instead of C′i−1, and thereby

efficiently focus on the revision of part of generated
target words according to Eqs.8, 9, and 10 in turn.

3.3 Model Training
When the local constraint of the synchronous
refinement is set to N , each generated target word
will be refined at most N times. This may be
inefficient for the training of machine translation
models. To efficiently inject this synchronous
refinement capability into the training of machine
translation models, we introduce an additional
refinement mask to select the target future context
words under the local constraint. Compared
with the existing lower triangle mask, the local
constraint contains additional target future context
words closest to the target word to be omitted, as
shown in Figure 3. After a target word is generated,
it will be refined in the subsequent N sequential
steps, which indicates that the number of future
target words is different. Therefore, the refinement
mask with local constraint is to randomly select
future target words not greater than N to cover a
variety of different future contexts as blue parts in
Figure 3.

Then, we use the proposed refinement mask
to learn the generation and refinement context
vectors at each time step. This allows the machine
translation models to synchronously simulate the
generation of generated target words and the
refinement of the current target word during the
training. Thus, the training objective maximizes
the generation and the refinement probabilities over
the training dataset {[X,Y]}:

J (θ) = Pg(Y|X; θ) + Pr(Y|X; θ). (12)

Note that the proposed refinement mechanism
retains the auto-regressive property of decoder
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Methods
En-De Zh-En En-Fr

BLEU #Speed1. #Speed2. #Param. BLEU BLEU
Trans.base 27.67 13.2k 3.7k 65.0M 24.28 38.42

+Deliberation (Xia et al., 2017) 28.11 11.1k 3.1k 77.8M 24.62 38.94
+Two-stream (Song et al., 2020) 28.17 11.8k 3.4k 79.3M 24.76 39.17
+SynRefinement 28.37+ 12.6k 3.5k 65.0M 24.98++ 39.46++

Trans.big 28.57 11.2k 2.8k 221.2M 24.84 41.21
+Deliberation (Xia et al., 2017) 28.96 9.3k 2.2k 267.6M 24.97 41.59
+Two-stream (Song et al., 2020) 29.11 9.7k 2.3k 272.4M 25.06 41.55
+SynRefinement 29.22++ 10.1k 2.5k 221.2M 25.18+ 41.97+

Table 1: Main results of Trans.base/big, +SynRefinement, and comparison +Deliberation and +Two-stream models
for standard machine translation tasks. “#Speed1.” and “#Speed2.” denote the training and decoding speeds
(tokens/sec, k for thousand), and “#Param.” denotes the size of model parameters (M for million). “+/++” after
BLEU scores indicate that our approach was significantly better than Trans.base/big models at significance levels
p<0.05/0.01 (Collins et al., 2005). Results were reported on average by conducting 3 runs of training.

to ensure the fluency of the target sentence.
Meanwhile, the refinement of the generated target
words is synchronized with the generation of the
current target word at each time step. Particularly,
the proposed approach can be easily introduced into
the encoder-decoder machine translation models
without complex modifications.

4 Experiments

4.1 Setting and Data set
We evaluated the proposed SynRefinement on three
widely-used standard machine translation tasks:
WMT14 En⇒De includes 4.43 million bilingual
sentence pairs, and we used the newstest2013
and newstest2014 datasets as the dev set and test
set, respectively; WMT14 En⇒Fr includes 36
million bilingual sentence pairs, and we used the
newstest2013 and newstest2014 datasets as the dev
set and test set, respectively; and WMT17 Zh⇒En
includes 22 million bilingual sentence pairs, and we
used the newsdev2017 and newstest2017 datasets
as the dev set and the test set, respectively. The
byte pair encoding algorithm (Sennrich et al., 2016)
was adopted, and the vocabulary size was set
to 40K. We set the dimension of all input and
output layers to 512, the dimension of the inner
feedforward neural network layer to 1024, and the
total heads of all multi-head modules to 8 in both
the encoder and decoder layers. Each training
batch consisted of a set of sentence pairs that
contained approximately 4000×8 source tokens
and 4000×8 target tokens. To evaluate the test
sets, following the training of 200,000 batches,
we used a single model obtained by averaging
the last five checkpoints, which validated the

model with an interval of 2,000 batches on the
dev set. We trained all models on eight V100
GPUs and evaluated them on a single V100 GPU.
We chose the Transformer NMT model (Vaswani
et al., 2017) as our baseline. For other configures
of Transformer (e.g., Trans.base/big) models, we
followed the settings in (Vaswani et al., 2017). We
used the multi-bleu.perl script as the evaluation
metric for the three translation tasks.

4.2 Translation Results

Table 1 showed BLEU scores of the baseline
Trans.base/big models, +SynRefinement, +Deliber-
ation (Xia et al., 2017) and +Two-stream (Song
et al., 2020) attention models for comparison.
First, +SynRefinement performed better than the
baseline Trans.base/big models for three language
pairs. This indicates that the proposed refinement
mechanism improved the performance of NMT.
Second, +SynRefinement was superior to the
comparison +Deliberation network model, which
confirms our hypothesis that jointly simulating
generation and refinement of target sentence was
better than the isolated multi-pass decoding way.
Additionally, +SynRefinement outperformed the
comparison +Two-stream attention model. Also,
+SynRefinement did not increase any additional
model parameters but +Two-stream attention
increased about 19.7% model parameters compared
to the baseline Trans.base model. Meanwhile, both
training and decoding speeds of +SynRefinement
were faster than those of +Deliberation and +Two-
stream models. This means that the proposed
refinement can more efficiently relieve the “one-
pass” issue for the machine translation.
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Figure 4: BLEU scores for Trans.base and +SynRefinement models for various hyperparameters N (x-axis) on
three translation tasks.

4.3 Hyperparameter N of SynRefinement

In Section 3.3, we designed a local constraint
to reduce the “over-refinement” risk. Thus, the
hyperparameter N in Eq. (11) was used to control
the range of refinement operations. Figure 4 shows
BLEU scores for Trans.base and +SynRefinement
models for various hyperparameter N (x-axis) on
the WMT14 En-De, WMT17 Zh-En, and WMT14
En-Fr dev sets. +SynRefinement achieved the
highest BLEU scores with N=5 for three dev sets.
As a result, we set the hyperparameter N as five to
conduct the main experiments shown in Table 1.

4.4 Ablation of Local Constraint and
Refinement Mask

Methods En-De Zh-En En-Fr
Trans.base 27.57 24.28 38.42

+Refinement Mask 27.73 24.39 38.78
+Local Constraint 27.89 24.62 38.95
+Both 28.37 24.98 39.46

Table 2: Ablation results of local constraint and
refinement mask.

We incrementally added Refinement Mask and
Local Constraint into the training and decoding
passes of Trans.base model to evaluate their
effectiveness. Table 3 showed the ablation
results of Trans.base, +Refinement Mask, +Local
Constraint, and Both (+Refinement Mask+Local
Constraint) models. First, when Refinement
Mask and Local Constraint were introduced
to the training and the decoding, respectively,
BLEU scores were higher than those of the
Trans.base model on three translation tasks.
The proposed approach was beneficial to the

performance improvement of NMT. Second, when
both Refinement Mask and Local Constraint were
introduced into the training and decoding of the
Trans.base model simultaneously, performance
improved further. This means that maintaining
consistent refinement operations in training and
decoding helped NMT generate faithful and fluent
target translation.

4.5 Investigation of SynRefinement
Operation

Refinement times En-De Zh-En En-Fr
#1 1,829 1,139 2,187
#2 1,121 621 1,431
#3 691 403 896
#4 277 189 382
#5 169 107 189

Total 4,087 2,459 5,085

Table 3: Statistical results for different refinement
times on the same position for three translation tasks.

The proposed SynRefinement aims to revise
potential errors in the generated target words.
To investigate the effectiveness of synchronous
refinement operations, we counted the number
of different refinement times (e.g., replacement
and deletion operation) on the same position
during the inference. For example, “#2” denotes
the number of BPE tokens that have been
replaced (or refined) twice during the decoding.
Table 3 showed statistical results for translations
(include 74,487, 57,497 and 92,207 BPE tokens,
respectively) of three translation tasks generated
by Trans.base+SynRefinement models in Table 1.
We observed that among the translations generated
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Figure 5: BLEU scores of various target translation lengths for the three translation tasks.

上海市 松江区 交管部门 近期 使用 电子 警察 整治 驾驶员
[Shanghai] [Songjiang District] [Traffic Control Department] [recently] [used] [electronic] [police] [monitor] [driver] 
开车 玩 手机 ，一个星期 查获 30         多 起

[driving] [plays] [mobile  phone]     [in  a  week] [detected] [30] [more than] [cases]

Src: 

Shanghai  Songjiang District Traffic Control Department recently used electronic police to monitor  whether the 
driver plays mobile phone while driving and detected more than 30 cases in a week

Ref: 

traffic control department of Songjiang District in Shanghai recently used electronic police to clean up 
drivers' mobile phone, more than 30 seizures a week

Trans.base: 

traffic control department of Songjiang District in Shanghai recently used electronic police to monitor that 
the driver plays mobile phone, and discovered more than 30 cases in a week

+SynRefinement: 

Figure 6: Chinese-to-English translation cases generated by Trans.base and +SynRefinement models. Note:
English words in color are translations from the corresponding Chinese words with the same color.

on the three tasks, total refinement operations
of the same position occurred in 4,087, 2,459,
and 5,058 positions, respectively. This indicates
that the proposed SynRefinement worked during
the decoding. When refinement times gradually
increased from #1 to #5 on the same position, the
number of such BPE tokens was greatly reduced.

4.6 Effect of Different Target Lengths
In the proposed SynRefinement, the number
of refined words increased as the length of
the generated target translation increased. To
investigate the effect of SynRefinement on
translations with different lengths, we divided each
test set into six groups according to the length of
the target translations. For example, “20” indicates
that the length of target translations was between
twenty and thirty. Figure 5 shows BLEU scores
of the Trans.base and +SynRefinement models for
the WMT14 En-De, WMT17 Zh-En, and WMT14
En-Fr test sets.

First, when the length of target translations
was between zero and ten, BLEU scores of
+SynRefinement were almost the same as those

of Trans.base model. This reason may be that
the refinement operation was performed from the
fifth time step for three translation tasks. Second,
when the length of the target translations was more
than ten, BLEU scores of +SynRefinement were
higher than those of Trans.base models for three
translation tasks. Particularly, the extent of the
improvement gradually increased as the length of
the target translations increased. This means that
+SynRefinement improved the quality of the target
translations, especially long target translations.

4.7 Case Study
Figure 6 showed Chinese-to-English translation
cases generated by Trans.base and +SynRefinement
models. Trans.base first generated an inappropriate
translation “clean up” and missed two key verbs
“plays” and “detected”, and thereby generated
a incorrect translation “seizures” compared to
the “Ref”. Thus, the meaning in the target
fragment was extremely confusing after “clean
up” in the translation generated by the Trans.base
model. +SynRefinement considered the future
context “that the driver mobile phone” together
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with the past context “traffic ... police to” to revise
“clean up” as the correct “monitor”. “monitor”
constituted part of the target historical context
which allowed +SynRefinement model to generate
two missed key verbs “plays” and “discovered”.
+SynRefinement further generated the correct
target word “cases” compared to the inappropriate
“seizures”. As a result, the translation generated by
+SynRefinement was closer to the reference than
that generated by the Trans.base model.

5 Related Work

5.1 Automatic Post-Editing

For the refinement of target output in the classical
machine translation (MT), a direct method is
automatic post-editing (APE) (Simard et al., 2007).
APE is the process of automatic correction of raw
MT output, so that a closer resemblance to human
post-edited MT output is achieved. Béchara et al.
(2011) proposed to automatically create a new
joined MT output and source token pairs to improve
the automatic post-editing results (Béchara et al.,
2012; Pal et al., 2017). Also, the MT output is
refined by humans or another model (Niehues et al.,
2016; Junczys Dowmunt and Grundkiewicz, 2017),
which indicates that the generating and refining are
two separate processes in APE.

5.2 Two-Pass Auto-regressive Decoding

As the encoder-decoder framework becomes
the dominant machine translation method, the
generated potential errors caused by the “one-
pass” issue still is a challenge. Many studies
proposed two-pass decoding to revise the fixed
potential errors in the auto-regressive machine
translation (Yang et al., 2016; Xia et al., 2017;
Zhang et al., 2018; Geng et al., 2018; Zhou
et al., 2019; Nema et al., 2019; Song et al.,
2020). For example, review network (Yang
et al., 2016) was proposed to refine the source
representation for the caption generation model.
Compared with reviewing the source information,
a deliberation network (Xia et al., 2017) proposed
two levels of decoders which generate a draft of
the target sentence and polish the draft of the target
sentence for MT, respectively. Additionally, most
relevant to our work is that Song et al. (2020)
leveraged the scheduled sampling to simulate the
prediction errors during training and designed
an additional content-stream attention network to
correct the generated error information, which

requires complex two-stream attention (Yang et al.,
2019) or dual attention (Novak et al., 2016). The
refinement network (Nema et al., 2019) for the QA
task used a dual attention network to refine the
question generated by the first decoder, thereby
making the answer correct in the second decoder.

5.3 Iterative Refinement for
Non-autoregressive Decoding

Non-autoregressive decoding (Gu et al., 2018)
was introduced to generate all words at once, but
its performance was far away from that of the
auto-regressive decoding due to lack of sufficient
dependency modeling among target words. Lee
et al. (2018) designed an iterative inference
strategy to minimize the generation latency. Then,
Ghazvininejad et al. (2019) proposed to first predict
all of the target words non-autoregressively, and
then repeatedly masked out and regenerated the
subset of words for iterative refining the target
translation. Different from the refinement of
discrete target words, the iterative inference (Lee
et al., 2020) was proposed to iterative perform
refinement in the continuous space for enhancing
dependency between target words.

Discussion: Inspired by iterative refinement
for non-autoregressive decoding, we proposed
a novel synchronous refinement for machine
translation. The proposed approach differs from
previous studies in two ways. First, our method
allows the machine translation models to refine
the previously generated target words and to
generate the current target word synchronously
instead of APE with separate refinement and
asynchronous two-pass (or multi-pass) decoding.
Second, the proposed SynRefinement can be
introduced to the machine translation models
efficiently without complex modification of the
existing machine translation models. Additionally,
the proposed SynRefinement can help the real-
time machine translation scenarios to satisfy the
practical application requirements.

6 Conclusion

This paper explored part of the target future
context to revise fixed potential errors in the
generated target fragment caused by the “one-
pass” issue of the auto-regressive decoder. We
proposed a novel SynRefinement approach to
the machine translation, where the refinement of
generated target words is synchronized with the
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generation of the next target word at each time
step. Meanwhile, the proposed SynRefinement
can be easily introduced into the encoder-decoder
framework without complex modifications. We
evaluated the effectiveness of the proposed
approach on three classical machine translation
tasks. In the future, we will try to explore how to
intelligently identify and correct generation errors.
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