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Abstract

End-to-end sign language generation models
do not accurately represent the prosody in sign
language. A lack of temporal and spatial varia-
tions leads to poor-quality generated presenta-
tions that confuse human interpreters. In this
paper, we aim to improve the prosody in gen-
erated sign languages by modeling intensifica-
tion in a data-driven manner. We present dif-
ferent strategies grounded in linguistics of sign
language that inform how intensity modifiers
can be represented in gloss annotations. To
employ our strategies, we first annotate a sub-
set of the benchmark PHOENIX-14T, a Ger-
man Sign Language dataset, with different lev-
els of intensification. We then use a super-
vised intensity tagger to extend the annotated
dataset and obtain labels for the remaining por-
tion of it. This enhanced dataset is then used
to train state-of-the-art transformer models for
sign language generation. We find that our
efforts in intensification modeling yield bet-
ter results when evaluated with automatic met-
rics. Human evaluation also indicates a higher
preference of the videos generated using our
model.

1 Introduction

Similar to spoken languages, sign language has
rich grammar rules and unique linguistic structures
(Yin et al., 2021a; Emmorey, 2001). Elements of
prosody such as rhythm, stress, or lengthening play
important roles in distinguishing meaning and sig-
naling intensification in sign language (Figure 1),
similar to spoken languages (Brentari et al., 2018).
Thus, it is important for sign language generation
(SLG) systems to be able to learn accurately from
the data and generate presentations that respect
prosody.

Much of the current study on prosodic markers
such as intensifiers (Bolinger, 1972; Rett, 2008;

∗The first three authors have equal contribution.

less clouds very cloudy
WOLKE WOLKE

10 video frames 17 video frames

Sign Not Repeated Sign Repeated

No Delay Delayed Beginning

Smaller Space Use Larger Space Use

Figure 1: In sign language, modifiers are represented
spatially and temporally. Here, two signers from
PHOENIX-14T manually sign German "less clouds",
and "very cloudy". Both of these signs have the same
gloss representation: WOLKE (cloud in German). They
are figuratively the same sign, but the duration, repeti-
tion, temporal pauses, and continuations determine the
exact meaning. This information is lost during sign lan-
guage translation and evaluation.

Ghesquière and Davidse, 2011) are based on lin-
guistic theories of spoken languages and need to be
adapted to signed languages, as prosody is repre-
sented in the visual modality (Wennerstrom, 2001).
Semantic differences are signaled in the visual
modality using spatial and temporal presentations
such as iconicity, gesture duration, as well as tem-
poral pauses (Wilbur et al., 2012). Such distinctive
properties present challenges in SLG systems to
generate presentations with better prosody.

Several SLG systems have been proposed in re-
cent years motivated by their importance to the
Deaf and Hard of Hearing (DHH) communities
(Stoll et al., 2018; Zelinka and Kanis, 2020; Stoll
et al., 2020; Saunders et al., 2021). Transformer-
based models (Saunders et al., 2020b) have been
shown to outperform other neural models (Stoll
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et al., 2020) in generating sign language from gloss
annotations —a shortened approximation of spo-
ken language that has mappings to signs. One of
the key limitations of the state-of-the-art models
is that the prosody of the sign videos generated by
these models does not change with the semantics
of the signs (Duarte et al., 2021). In this paper, we
take a step toward the goal of modeling prosody in
sign language generation by modeling intensifica-
tion. We refer to intensification as the presence of
intensity modifiers that quantify nouns, adjectives
or adverbs in a sentence. The intensity modifiers
can either be an amplifier (e.g., lot of rain) or a di-
minisher (e.g., little rain). Studies in the linguistics
of signed languages show that intensity modifiers
change the duration and tactile emphasis in the
produced sign (Wilbur et al., 2012). Thus, intensi-
fication modeling can impact prosody of generated
signs. However, this potential of intensification is
not realized within current models because they
depend on gloss representation. Intensity mod-
ifiers are often excluded in gloss representation
because they are a sparse approximation of spo-
ken language. As shown in Figure 1, the spatial
and temporal properties of signs differ dramatically
even when they map to the same gloss. State-of-
the-art models cannot be aware of this temporal
and spatial manipulation by modifiers if they are
not represented in the gloss training data.

Our initial analysis of the PHOENIX-14T (Cam-
goz et al., 2018), a German Sign Language dataset,
reveals that 23% of the data has at least one ad-
jective or adverb in the text transcript, but none
in the gloss representation. Since adjectives and
adverbs (e.g., little) often act as intensity modi-
fiers, they are likely to be under-represented in the
gloss as well. This observation motivates the need
for explicit modeling of intensification in the gloss
representation and modifying state-of-the-art mod-
els to incorporate this additional information. We
hypothesize this to have an overall improvement
in the models’ performance both quantitatively in
terms of automated metrics and qualitatively in
terms of human evaluation. To this end, drawing
on linguistics and cognitive science studies of sign
language, we

1. introduce gloss enhancement strategies
grounded in linguistics that respect the role of
modifiers with various levels of intensity.

2. present a supervised tagging model to improve
a given gloss dataset with modifier intensity

levels using strategies we have identified.

3. make available an enhanced version of the
PHOENIX-14T dataset where the glosses are
tagged with intensity levels of modifiers.

4. incorporate modifier information into the Pro-
gressive Transformer (PT) model. We also
propose a novel model that can dynamically
select the generated poses with different gloss
enhancement as input. We make our code and
data publicly available.1

2 Related Work

Prosody of Sign Language Prosodic informa-
tion in sign language has been studied through the
lenses of cognitive sciences and linguistics. Us-
ing brain images, Newman et al. (2010) show
that prosodic signed information is processed by
signers in much the same way as it is by hearing
speakers. In (Sandler, 1999), the intertwined nature
of prosody is observed in a multifaceted manner
for semantics, neurological basis and syntactic un-
derstanding of sign languages. Nicodemus et al.,
(2009) note that prosodic markers play an impor-
tant role as delimiting units during the production
and perception of the signs. These works study the
importance of prosodic markers during the produc-
ing and processing sign language by humans from
a cognitive science perspective. In our work, we
model intensification as a prosodic marker compu-
tationally.

In linguistics research, studies have focused on
the relationship between prosody and syntax in
sign language (Sandler, 2010), role of prosody in
identifying breakpoints in discourse, and detection
of salient events (Ormel and Crasborn, 2012). San-
dler et al. (2020) suggest that pragmatic notions re-
lated to information structure are a part of prosody
in sign language. Although there has been lim-
ited work that highlight the importance of intensity
modifiers in sign language prosody (Wilbur et al.,
2012), our work is the first data-driven empirical
study that studies a large dataset, annotates, then
quantifies and characterizes data-driven strategies
for modeling intensification. Our work is the first
that presents a Transformer-based model for inten-
sification as a step toward modeling prosody.

Sign Language Generation Many works have
looked at sign language processing, such as coref-

1https://github.com/Merterm/
Modeling-Intensification-for-SLG
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erence resolution (Yin et al., 2021b) or gloss aug-
mentation for translating gloss into text (Moryossef
et al., 2021). However, prosody is still understud-
ied in the field of sign language generation and
processing.

The primary aim of SLG is generating sign poses
from texts. Earlier work has explored methods
to generate animated avatars (Cox et al., 2002;
Glauert et al., 2006; McDonald et al., 2015) from
speech or text inputs, but were restricted by the
rule-based systems and the modest size of sign
pose libraries. More recently, with the introduction
of larger corpora such as PHOENIX-14T (Camgoz
et al., 2018), and advanced deep learning model
architectures, generating more accurate and expres-
sive human skeletal sequences from spoken lan-
guage transcripts or annotated glosses has become
possible (Stoll et al., 2018, 2020; Zelinka and Ka-
nis, 2020; Saunders et al., 2020a,b, 2021) while
also including facial expressions (Viegas et al.,
2022). Yet, none of these works attempt at model-
ing intensification or any other indicator of prosody
in hand gestures. Our work is the first that com-
bines linguistic and cognitive findings and proposes
a deep learning model that dynamically selects in-
tensification strategies to generate skeletons with
variations for different levels of intensifiers based
on augmented glosses.

3 Intensification in Sign Language

Gloss annotations in the German Sign Language
weather forecast corpus, PHOENIX-14T, are sim-
ple German words that often do not capture the
subtleties of sign language. For example, "very
cloudy" and "slightly cloudy" are both represented
by a single gloss "WOLKE" (CLOUD). Our analy-
sis shows that in 23 percent of the data, the gloss
representation does not contain any adjectives or
adverbs present in the text transcript. Since inten-
sity modifiers are usually adjectives/adverbs that
quantify intensity of other words, we expect them
to be missing from the gloss representation as well.
Hence, in order for the model to represent inten-
sity modifiers in its latent space, it is necessary to
include them in the training data.

3.1 Gloss Enhancement Strategies

In a data-driven manner, we analyze the best ways
of representing intensity modifiers in gloss annota-
tions based on linguistic theories, cognitive science
and neuroscience perspectives of intensities in sign

language. We discover that the choice of order for
the additional gloss modifier tokens matter. Lin-
guistic analysis of American Sign Language also
shows the importance of this.

Wilbur et al. (2012) explain that depending on
the degree of the adjective, there is a "sharp move-
ment to a stop" in the final timing of the sign, which
is coined as end-marking. They also show that the
initial time interval of a sign also gets modified with
a slight pause in the beginning and a faster contin-
uation of the sign, which is termed as a delayed-
release. Also, there exists other datasets with dif-
ferent annotation schemes, one of which –Public
DGS Corpus– uses a gloss annotation convention
where the phonemes and synonyms that have dif-
ferent signs contain a number that is added as a
suffix to the end of the gloss (Konrad et al., 2020).
Finally, as described by (Nicodemus et al., 2014)
during the end-marking and elongation phase, a
sign might be reiterated to mark the intensification.

Inspired by these previous works in linguistics of
signed languages and in analyzing the dataset with
sign language researchers, we came up with four
strategies to better represent intensity modifiers in
glosses. We use these strategies in four alterna-
tive ways, as shown in Table 1 and are introduced
below:

• End-Marking, where an additional token of
<HIGH-INT> or <LOW-INT> is added after
the intensity-modified gloss to represent the
change in the final timing of the sign as shown
in (Wilbur et al., 2012).

• Delayed Release, where the additional in-
tensity modifier token of <HIGH-INT> or
<LOW-INT> is added before the original
gloss, as described in (Wilbur et al., 2012)
to represent the delayed release in the initial
timing of the sign.

• Suffixation, where an INT suffix is added at
the end of the gloss with an additional numer-
ical value (1 or 2) corresponding to the degree
of intensification. This is analogous to the
Public DGS Corpus annotation (Konrad et al.,
2020).

• Reiteration, where we repeat the intensity-
modified gloss token twice to capture this
in the gloss representation as described by
(Nicodemus et al., 2014).

2899



Figure 2: This figure shows an example annotation. German transcript text and gloss are provided as context along
with their English translations. Each English gloss in the sentence are tagged with 0, 1, 2, corresponding to the
degree of intensification.

Approach Example

Text very cloudy
Original Gloss WOLKE (cloud)

Suffi. WOLKE-INT2
End-mark. WOLKE <INT2>
Delay.-rel. <INT2> WOLKE
Suffix.-reiter. WOLKE-INT2 WOLKE-INT2

Table 1: Gloss Enhancement examples.

3.2 Data Annotation

We start by selecting a subset of the publicly avail-
able PHOENIX-14T dataset (Camgoz et al., 2018)
for the annotations of intensity modification.

Data Sampling. Initial analysis demonstrates
that gloss annotations tend to ignore the adjec-
tives/adverbs, which are signals of intensity mod-
ification. We hypothesize that for samples where
the number of adjectives/adverbs is zero in gloss
annotations but more than zero in texts, the inten-
sity information is more likely to be missed. We
use Spacy (Honnibal and Montani, 2017) part-of-
speech (POS) tagger to tag the text and gloss pairs,
then utilize the hypothesis mentioned above to fil-
ter the data. In the end, we acquire 1557 samples
in the train set, 132 samples in the development
set, and 157 samples in the test set. Afterwards,
the gloss sequences are split into individual gloss
tokens. These gloss tokens are paired with the full
text transcripts, which yields a total of 12.8K gloss
token to sentence pairs – 10.8K from the 1557 in-
stances in train, 1K from the 132 instances in dev
and 1K from the 157 instances test set.

Annotation Protocol. For each of the gloss to-
ken to sentence pair, we ask at least one annotator
to assign labels to the gloss token from the follow-
ing categories: (i) 2 as “high intensity” if there is

an intensity modifier such as “high” in the text sur-
rounding the gloss; (ii) 1 as “low intensity” if the
intensifier in the text marks a low degree intensity;
or (iii) 0 if there is no corresponding modifiers in
the text transcripts.2 Figure 2 shows an example of
the annotation.

Annotator Agreement. Three expert annotators
were recruited according to the rules and regula-
tions of our institution’s human-subject board. To
assess the inter-annotator agreement, we randomly
sampled 700 token-sentence pairs and asked all
three annotators to annotate. The resulting Fleiss’
Kappa (Fleiss, 1974) coefficient is 69.2, which sug-
gests a substantial agreement among the annotators.

3.3 Full Corpus Intensity Enhancement
Utilizing the annotated pairs, we train a battery of
classifiers to automatically predict the gloss labels
for the remaining data points. Having an automated
classifier saves us resources that would otherwise
be needed to tag the whole dataset.

Classifiers. We frame the task as a text pair clas-
sification problem. Given the original text tran-
script and a gloss token, the goal is to predict
a label from: 0 (no intensity modification), 1
(low degree intensity) and 2 (high degree inten-
sity). We experimented with multiple classifica-
tion baselines, including fastText (Joulin et al.,
2017), Bidirectional LSTM and two versions of
fine-tuned BERT (Devlin et al., 2019) models –
German BERT (G-BERT) and multilingual BERT
(M-BERT). All models are trained on the manu-
ally annotated 10.8K training pairs and results are
reported on the 1K test subset.

2We translated the German transcriptions and glosses into
English using the Google Translate API https://cloud.
google.com/translate
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Figure 3: This figure shows the architecture of the Dynamic Selection model. The overall architecture is similar to
the Progressive Transformer, except having two Encoders to select between two different types of strategies. MLP
layer is the decisive step on selecting the strategy from the encoders. Dynamic model uses a weighted mixture of
the decoder outputs (represented with a gradient of blue and red). Dynamichard uses an argmax to pick a source.

Table 2 shows the experiments with different
classifiers. Fine-tuned transformers G-BERT and
M-BERT outperform others by a large margin. The
performance improvement of M-BERT compared
to G-BERT is statistically significant according to
a permutation test.

Error Analysis of Gloss Enhancement We
manually categorize 100 errors made by our best
classifier, M-BERT. The key observations are: i)
30% of the errors are due to ambiguity that anno-
tators may have for hard cases. E.g., "The wind
blows weakly to moderately" can be annotated as
either low-intensity (weakly) or no-intensity (mod-
erately). ii) aligning gloss tokens with text can be
difficult (24%). For example, in "partial snow or
freezing rain", the classifier may consider "partial"
to be aligned with rain, assigning it the label of
"low-intensity" (should be "no-intensity"). Further,
presence of negation (e.g., "not much rain") and
multiple occurrences of the same word (e.g., "in the
Bergland, it snows partly, on the alps it snows for
a long time.") can make alignment a difficult task
for the classifier, and iii) 12% of the errors can be
attributed to noise in original PHOENIX-14T data.
E.g., the gloss representation can contain tokens

Model Features Prec. Recall F1

FastText embed 60.5 62.0 61.0
BiLSTM embed 62.1 66.6 64.1
G-BERT – 74.3 74.2 74.2
M-BERT – 74.2 76.4 75.3

Table 2: GLOSS intensifier classification results. Em-
beddings for FastText and BiLSTM are learned during
training.

that are not related to the transcript. We could not
assign a specific category to 34% of the errors.

Enhancement. We tag all the remaining glosses
with the best-performing classifier, M-BERT, in
the original PHOENIX-14T dataset. We end up
with four versions of enhanced gloss sequences by
incorporating the aforementioned strategies in sec-
tion §3, namely Suffixation, End-marking, Delayed
Release and Suffixation with Reiteration.

4 Model

In this section, we first introduce a baseline model
that has been widely adopted for the sign language
generation task (section §4.1). To better model
the signer’s dynamic intensification choices during
sign production, we further propose a dynamic se-
lection model (Figure 3) that makes use of inputs
with different intensity modification strategies.

4.1 Progressive Transformer Baseline
The main goal of the sign language generation
model is to transform a gloss or text sequence
into skeletal pose coordinates per each frame of
the signing video. Formally, given a gloss se-
quence X = [x1, ...xN ], a sign language genera-
tion model aims to learn the conditional probability
p = (Y |X) where Y represents the corresponding
skeletal pose coordinate sequence Y = [y1, ...yT ].
We use the Progressive Transformer (PT) (Saunders
et al., 2020b) model as our baseline. The model
employs an encoder-decoder architecture to gener-
ate a sign language sequence Ŷ = [ŷ1, ..., ŷT ] in an
auto-regressive manner. The encoder is composed
of L transformer layers, each with one Multi-Head
Attention (MHA) and a feed-forward layer. The
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computed representation of the source sequence
is fed into a modified transformer decoder, which
employs a counter-based decoding mechanism to
guide the generation of continuous joint sequences
ŷ1:T and to decide the end of the generated se-
quence. This strategy can be formulated as:

[ŷt+1, ĉt+1] = PT (ŷt|ŷ1:t−1, x1:N ) (1)

where ŷt+1 and ĉt+1 are the generated joint se-
quence and the counter value for the generated
frame t+ 1. The model is trained using the mean
square error (MSE) loss between the generated se-
quence ŷ1:T and the ground truth y1:T :

LMSE =
1

T

T∑
i=1

(yi − ŷi)2 (2)

It is worth noting that, as stated by (Huang et al.,
2021), the proposed decoding mechanism provides
weak supervisions with the initial ground-truth
frame and guided counter sequences during the
inference time.

4.2 Dynamic Selection Generator
The PT baseline can generate sign poses from a
single source of gloss end-to-end. However, in dif-
ferent scenarios, the signers may employ diverse
intensification strategies to present meanings for
the same gloss word (i.e. they may use a ges-
ture with a delayed-release to represent “heavy
thunderstorm” and later employ an end-marking
to strengthen the intensity of another sign). To
model this, we propose a new structure on top of
the PT baseline. Given a text sequence, we mix k
sources of glosses with different information goals
and generate signed languages that dynamically
pick the source gloss. In general, we can have mul-
tiple encoders, Encoder1···k, to encode the glosses
separately and obtain the representations src1···k.
We utilize a single decoder to decode the output
representation k times from k sources of encoders,
each with a different encoded input representation:

srck = Encoder(xk1:N ) (3)

ŷkt+1 = Decoder(ŷkt |ŷk1:t−1, srck) (4)

We employ a multi-layer perceptron (MLP) fol-
lowed by a softmax activation function to generate
selection probability distributions of each source
for individual frames, which we call as importance
coefficients, ICt+1, that are conditioned on the de-
coded representations {ŷkt+1}:

ICt+1 = {α1
t+1, ..., α

k
t+1} = IC({ŷkt+1}) (5)

This strategy is different from (Saunders et al.,
2021) where our decoded representation ykt+1 aims
at generating source-dependent sequences, while
(Saunders et al., 2021) applies the self-attention on
the decoded sequences only. We have two variants
while generating the weighted output: Dynamic
and Dynamichard. The final dynamic output is a
weighted mixture of the two candidate sequences:

ŷt+1 =

K∑
i=1

αk
t+1ŷ

k
t+1 (6)

In this specific model we set the k to be 2. For the
Dynamichard variant of the model which picks the
most plausible view at each frame as ŷt+1 = ŷkt+1

where k = argmax
i
{αi

t+1}.

5 Evaluations and Results

Evaluation of sign language generation is challeng-
ing due to the lack of an automatic metric to assess
the quality of generated signs. The standard prac-
tice (Saunders et al., 2020b) is to translate the poses
back to the text domain and compare with ground
truth text. This is called back-translation. Such
automatic evaluation however, cannot accurately
capture the quality of the generated signs (Yin et al.,
2021b). Thus, to complement our automatic evalu-
ation, we ask sign language experts to evaluate the
generated signs. Lastly, we perform a qualitative
analysis of the back translated text to i) confirm
increased presence of intensity modifiers, ii) iden-
tify limitations of our models, and iii) pitfalls of
existing metrics.

5.1 Automatic Evaluation

Splits and Metrics. Prior analysis on a subset
of the PHOENIX-14T’s dev set unveils the im-
balanced distribution of data regarding the inten-
sity modification phenomena. Thus, results on
the original data split could not faithfully evaluate
the model’s capability to generate intensification-
specific sentences. To this end, we develop a new
data split – we collect data points which have at
least one gloss labeled as either low or high inten-
sity to construct the "with intensification" subset,
and leave the remaining in a "without intensifi-
cation" group. We report the BLEU-1, BLEU-4
(Papineni et al., 2002), ROUGE (Lin, 2004) on the
back translated texts. We retrain the Sign Language
Transformer (Camgoz et al., 2020) (SLT) to trans-
late the sign skeletal sequences back into German
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DEV SET
with intensification (248) without intensification (271) full

B1 B4 RG BS B1 B4 RG BS B1 B4 RG BS

Baseline 25.07 6.24 22.61 72.20 35.46 17.98 36.84 77.46 29.92 11.90 30.05 74.95

Suffix. 25.72 6.71 24.03** 72.61 37.73** 19.35** 38.92** 77.88 31.32* 12.81 31.81** 75.36
Delay.-rel. 27.03** 6.67 24.31** 72.97 37.75** 18.39 38.55** 77.84 32.03** 12.35 31.74** 75.51
End-mark. 27.32** 7.29 24.46** 72.52 36.48 18.08 37.26 77.42 31.59* 12.51 31.15 75.08
Suff.-reiter. 26.23* 6.74 24.78** 72.78 35.98 17.97 37.92 77.74 30.77 12.20 31.64* 75.37

Dynamic 25.88 6.52 23.82* 72.54 35.65 17.80 37.59 77.86 30.44 11.99 31.01 75.32
Dynamichard 26.01 6.36 24.98** 73.06 36.35 18.25 38.75** 77.87 30.83 12.20 32.17** 75.57

TEST SET
with intensification (314) without intensification (328) full

B1 B4 RG BS B1 B4 RG BS B1 B4 RG BS

Baseline 25.28 5.92 21.98 72.02 35.17 17.40 35.97 76.85 29.86 11.51 29.13 74.49

Suffix. 26.31 6.54 24.56** 73.10 33.70 17.14 34.60 76.87 29.73 11.71 29.69 75.03
Delay.-rel. 19.33 3.43 16.29 69.56 36.07 17.53 36.49 77.31 27.08 10.27 26.61 73.52
End-mark. 23.98 6.67 22.38 72.09 34.94 17.28 35.27 76.60 29.05 11.73 28.96 74.39
Suff.-reiter. 25.04 6.24 23.41* 73.13 34.85 17.63 36.43 77.65 29.58 11.74 30.06 75.44

Dynamic 26.06 6.79 23.89** 72.76 35.42 17.21 36.53 77.42 30.39 11.79 30.34 75.13
Dynamichard 26.51* 6.95 24.68** 73.11 33.63 16.97 34.87 77.17 29.81 11.81 29.90 75.18

Table 3: Gloss to pose (G2P) model performances with different enhanced gloss as input. The original dev/test
instances are split based on whether it contains tagged gloss generated by our best tagger in section §3.3. B1, B4,
RG and BS refer to BLEU-1, BLEU-4, ROUGE and BERTScore respectively. The marks * and ** denote that
the results are significant comparing to baseline with the significance level p < 0.1 and p < 0.05 respectively. Best
performances are shown in bold typeface.

texts. For the more fine-grained settings of intensi-
fication-focused evaluation, we additionally report
the BertScore (Zhang* et al., 2020), an automatic
metric for text generation that correlates better with
human judgements, to measure the semantic simi-
larities. We report statistical significance with boot-
strap resampling on both 90% and 95% confidence
levels (Efron and Tibshirani, 1993; Koehn, 2004).

Result. We train a baseline PT model on the orig-
inal dataset and compare it to others which are
trained on the enhanced data. We observe that, as
shown in full columns of Table 3, the enhanced
glosses improve the quality of skeleton genera-
tion on the original split of dataset. We can see
that our proposed intensification enhancement tech-
niques obtain an average of 0.6 improvement on
BLEU-4 score over the dev set, with significant
improvement of more than 1.6 on ROUGE. We do
not observe a significant difference in the test set
evaluations. Our proposed models obtain the high-
est ROUGE score, with negligible drop of BLEU
scores comparing to models based on single source
of gloss on dev set.

Regarding the new “with” and “without intensi-

fication” splits, we first observe that there exists a
considerable score difference across all three met-
rics between the two groups. We hypothesize that
current sign language generation models are biased
towards reconstructing sentences without any in-
tensification modifiers and lack the capability to
represent the intensity modification. Over the “with
intensification” subset, most enhanced data obtain
significant improvements on BLEU-1 and ROGUE
score. Meanwhile, Suffixation results in stable per-
formance gain over the “without intensification”
subset. This demonstrates the model’s capability to
distinguish between different intensified texts, such
that the difference between rain and shower signs
can be obtained while the provided glosses remain
the same. The harnessing of repetitions on top of
Suffixation glosses bring in minor improvements on
“with intensification” dev cases, and major gains
are attributed to the “without intensification” test
cases. In the end, our proposed Dynamic model
obtains the highest test set performance, where the
gains are mainly attributed to the improvements
over the “with intensification” subgroup.
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Figure 4: This figure illustrates the comparison between baseline and the intensification-enhanced model. Gloss
annotations are linked to their corresponding frames. Here, ground truth skeleton uses wider movements due to
the "heavy" modifier, and the intensification-enhanced outputs replicate the phenomena better than baseline.

Figure 5: Human evaluation results for the generated
skeletons.

5.2 Human Evaluation

We carry out a comparative human evaluation over
50 skeleton videos generated by both the baseline
and our best performing model for human anno-
tations. For each paired video, we ask deaf sign
language users to identify the video that they found
to be better than the other. They are specifically
instructed to observe the following qualities and
make their decisions: naturalness of the hand move-
ments, alignment of the hand movements (exclud-
ing finger movements) with the ground truth, repre-
sentation of intensity by the hand movements, and
overall understandability.

As shown in Figure 5, outputs generated by our
model trained on the enhanced glosses were pre-
ferred by signers (50% for our model vs. 26% for
baseline). This difference is statistically different
from chance as shown from a chi-squared test with
p = .00017. This further suggests that a qualita-

tive improvement using our enhancement strate-
gies is evident. Aspects that are not fully captured
by the metric-based evaluations are more clear in
the human evaluations which show that incorporat-
ing intensity into the model is crucial. Enhanced
glosses can generate more natural videos that de-
pict the intensity of the signs. It should be noted
that the solution to the problem at hand needs fur-
ther improvement as suggested by the considerable
number of "no preference" votes.

5.3 Backtranslation Analysis

We hypothesize that due to enhanced glosses, there
should be more intensity modifiers in the back
translated text. To verify this, we compare the
numbers of adjectives/adverbs in back translated
text as an approximation of counting intensity mod-
ifiers. We observe that more adjectives/adverbs
which appear in the original transcript are being
generated in the "with intensification" partition by
our model (an average of 0.79 per sentence com-
pared to 0.75 of the baseline). As expected, we see
less of a difference in the "without intensification"
partition (0.87 compared to 0.86). This suggests
our model is better at producing adjectives/adverbs
that may act as intensity modifiers.

To better understand our model’s behavior, we
manually inspect 100 instances randomly drawn
from the “with intensification” cases for a qualita-
tive analysis. We compare the back translated texts
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Examples (Translated from German) B1 B4 RG BS
Better capture of intensity modifiers
G. Truth The wind usually blows weakly from different directions. - - - -
Baseline The wind blows weak to moderate 47.8 0 55.7 81.9
Enhanced The wind usually blows weakly from different directions. 100 100 100 100
Model hallucinations
G. Truth The wind blows weak to moderate at the sea also fresh - - - -
Baseline On the Alps and in the south, the wind blows weak to moderate 50 0 46.2 81.7
Enhanced The wind blows in the south weak otherwise weak to moderately 36.8 0 50.1 81.9

sometimes fresh to strong gusty from south to West
Metrics failure
G. Truth Tonight there are still a few thunderstorms possible in the south, otherwise - - - -

rain only falls here and there, in places fog forms
Baseline Tonight, especially in the south and east there are rain or snow or freezing rain 37.9 15.4 39.6 75.4
Enhanced Tonight, especially in the south and east here and there a few drops or flakes 32 0 36.9 75.6

Table 4: Examples of qualitative analysis over 100 back translated texts from the videos generated by baseline
and our intensification enhanced model. Bold texts refer to the intensity modifiers that are missing in the gloss,
blue highlight marks good generations and red highlight marks the errors. Our model can better retain the

intensity information than the baseline. Meanwhile, as shown in the third example, n-grams based metrics may fail
to reward the better intensity modifier representation.

generated by the baseline and Dynamichard. We
evaluate the presence and correctness of modifiers
instead of the overall quality of the back translated
text. The key observations are: i) in 30% of the
cases, back translated text generated by our model
has better representation of intensity modifiers com-
pared to baseline, ii) in 3% of the cases, our model
hallucinates and over-generates intensity modifiers,
and iii) in 23% of the cases, at least two of the
four automatic metrics did not reward Dynamichard

for having better intensification. Table 4 shows
examples of these observations.

6 Discussion and Conclusion

One limitation of our study is the lack of spatial and
temporal context in the automatic back-translation
evaluation. The lack of a proper evaluation met-
ric is a problem that needs to be addressed by an
orchestrated effort from different fields surround-
ing the sign language research community. The
necessity of more research in related fields is fur-
ther highlighted by the fact that there are very few
publicly available resources for sign language with
glosses, limiting our choice and scope of datasets
to the PHOENIX-14T dataset. Some corpora exists
for American Sign Language such as How2sign
(Duarte et al., 2021), but without glosses, it ren-
ders certain sign language processing infeasible.
Another limitation is the cumulative error propa-
gation that dissipates through the intensity classi-
fier, progressive transformer and back-translation,
amplifying the total error. There is no dataset or
method to do individual error analyses for each

part of this pipeline. Thus, our error analyses were
conducted in an incremental fashion as the errors in
later stages of the pipeline depend on earlier errors.

Despite these limitations, we show that the strate-
gies of intensification, grounded in the linguistics
of signed languages, contribute to the improvement
of end-to-end sign language generation systems.
This modeling effort is supported by our metric-
based and human evaluation results. For future
work, we plan to further analyze the effects of these
strategies on the perception of sign language under-
standing. We also plan to expand on the intensity
modifier paradigm to further research in modeling
prosody in sign language.
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A Error Analysis of Gloss Enhancement

We manually categorized 100 errors made by our
best classifier, M-BERT. The key observations are:
i) 30% of the errors are due to ambiguity that an-
notators may have for hard cases. E.g., "The wind
blows weakly to moderately" can be annotated as
either low-intensity (weakly) or no-intensity (mod-
erately). ii) aligning gloss tokens with text can
be difficult (24%). For example, in "partial snow
or freezing rain", the classifier may consider "par-
tial" to be aligned with rain, assigning it label of
"low-intensity" (should be "no-intensity"). Further,
presence of negation (e.g., "not much rain") and
multiple occurrences of same word (e.g., "in the
Bergland, it snows partly, on the alps it snows for
a long time.") can make alignment a difficult task
for the classifier, and iii) 12% of the errors can be
attributed to noise in original PHOENIX data. E.g.,
the gloss representation can contain tokens that are
not related to the transcript. We could not assign a
specific category to 34% of the errors.

B Gloss Classifier Implementation

SVM Baselines To construct the features for our
text pair classification, we first concatenate the
gloss token with the german text. Then we use
term frequency-inverse document frequency (tf-idf)
vectorizer to generate word and character n-gram
vectors. These vectors are then used to train linear
SVM classifiers. We use scikit-learn 3 implementa-
tion with default parameters for training. The SVM
models primarily serve as baselines. The SVM
results are shown in Table 5.

Model Features Prec. Recall F1

SVM W[2-5] 70.0 45.6 50.4
SVM C[2-5] 63.8 54.0 57.2

Table 5: GLOSS intensifier classification results for
SVMs. W and C represent word and character.

FastText In our implementation, we use two sep-
arate embedding layers. One for the text and one
for the gloss token. The embeddings for the text is
averaged using pooling and then concatenated with
the embedding of gloss token. This concatenated
vector is then passed through a linear layer and
sigmoid function to generate the predictions. We

3https://scikit-learn.org/stable/
modules/generated/sklearn.svm.LinearSVC.
html
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use embedding size of 100 and train for 10 epochs.
We cross-entropy loss and ADAM optimizer with
default learning rate. We use PyTorch 4 for our
implementation.

Bidirectional LSTM Similar to FastText, we
have two separate embedding layers of size 100
for the text and the gloss token. the difference is
that the output of text embedding layers are passed
through a 2-layer bidirectional LSTM with hidden
size of 300, dropout of 0.3. The output of the
LSTM layers are then concatenated with the output
of gloss embedding layer. The concatenated output
is then passed through ReLU activation function
and then passed through a linear layer. Similar to
FastText, we train for 10 epochs, use cross-entropy
loss and ADAM optimizer with default learning
rate. PyTorch is used for implementation.

Fine-Tuned Transformers For our task. we
fine-tune bert-base-multilingual (M-BERT) and
german-bert-base-uncased (G-BERT) 5. M-BERT
is pretrained on Wikipedia text from 104 languages
(including German). G-BERT is pretrained on
Wikipedia dump, EU Bookshop corpus, Open Sub-
titles, CommonCrawl, ParaCrawl and News Crawl.
The architecture of both models consists of 12
transformer blocks, hidden size of 768 and 12 self-
attention heads. Since our task is classifying a pairs
of texts, we fine-tune the models for sentence-pair
classification. We use PyTorch implementation by
HuggingFace 6 for the fine-tuning. We fine-tune
for 5 epochs with learning rate of 5e-05.

Computational resources and running time
Given our training data is small, the SVM base-
lines are very fast to train. They take less than 5
minutes to train. With an NVIDIA 2070 RTX GPU,
the fastText and BiLSTM models take less than 10
minutes each. Fine-tuning each pre-trained BERT
model with the same GPU but fewer epochs (5)
take less than 10 minutes.

C Dataset Statistics

We use the publicly available benchmark,
PHOENIX14T (Camgoz et al., 2018) dataset. This
dataset comprises a collection of weather fore-
cast videos in German Sign Language (DGS), seg-
mented into sentences and accompanied by Ger-

4https://pytorch.org/
5https://huggingface.co/dbmdz/

bert-base-german-uncased
6https://github.com/huggingface/transformers

man transcripts from the news anchor and sign-
gloss annotations. It contains videos of 9 different
signers with 1066 different sign glosses and 2887
different German words. The video resolution is
210 by 260 pixels per frame and 30 frames per
second. The dataset is partitioned into training,
validation, and test set with 7,096, 519, and 642
sentences, respectively.

D Transformer (Re-)Implementation

We implemented Progressive Transformers models
for sign language generation task (§4.1) based on
the code 7 released by (Saunders et al., 2020b). We
used the hyper-parameters from (Saunders et al.,
2020b) and aimed at reproducing their reported
results. To the best of our knowledge, albeit still
slightly below on ROUGE-L F1 scores, our re-
ported results on the baseline model are the near-
est to the high value reported in the original pa-
per, which does not have any checkpoint releasing.
Both encoder and decoder are built with 2 layers, 4
heads and embedding size of 512. We apply Gaus-
sian noise with a noise rate of 5, as proposed by
Saunders et al. (2020b). All parts of the network
are trained with Xavier initialisation (Glorot and
Bengio, 2010), Adam optimization (Kingma and
Ba, 2015) with default parameters and a learning
rate of 1e-3. The model takes 5 hours to train on 1
NVIDIA GeForce 1080Ti GPU. For our proposed
Dynamic Selection model, to control the model
size and make it a fair comparison, we halve the
encoder and decoder’s embedding size to 256. The
Multi-Layer Percetron (MLP) model is composed
of two linear layers with dimension of 256 and
a ReLU activation. The model takes 8 hours to
train on 1 NVIDIA GeForce 1080Ti GPU. We im-
plemented the back-translation model on top of
the original SLT code (Camgoz et al., 2020). The
transformer models are built with 1 layer, 2 head
and embedding size of 128. The feature size is
changed to 150, which is the sequence length of
generated skeleton joints sequence. The recogni-
tion loss weight and translation loss weight are set
to 5 and 1 respectively. The model takes around 1
hour for training and evaluation. All models intro-
duced above are implemented with Pytorch (Paszke
et al., 2019).

7https://github.com/BenSaunders27/
ProgressiveTransformersSLP
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Model Model Parameter

PT model

Baseline 15.3M
Suffix. 15.4M

Delay.-rel. 15.4M
End-mark. 15.4M
Suff.-reiter. 15.5M

Dynamic model

Soft 6.2 M
Hard 6.2 M

Table 6: Models Parameter Comparison.

E Parameter Comparison and Dynamic
Model Experiment

The total parameter number of each model is pre-
sented in Table 6. For PT-based model, the param-
eter differs due to the varied size of the vocabulary
sizes. Regarding the dynamic model, our early ex-
periments show that duplicating the encoder and
keeping other parameters fixed lead to worse re-
sults than the baseline model with a single encoder.
This could be attributed to the limited size of our
training data. We carefully tune the parameters,
find that two smaller encoders could result in a
stably better performance across multiple runs.

To verify the effects of mixing up two different
strategies, we retrain a Dynamichard model with
duplicated suffixation enhanced data. This differs
from the original model which combines suffixa-
tion and end-marking strategies. As shown in in
Table 7, on the “with intensificaiton” split, the orig-
inal Dynamic model performs better than the one
with duplicated inputs. In the “without intensifica-
tion” split, the duplicated split gives comparable
results with the baseline which is trained on the
original data.

F Retrained SLT model

Given the different versions of degree enhanced
dataset (§3.3, besides the baseline which is trained
with the original gloss, we further retrain differ-
ent versions of SLT models on the original text,
skeleton joints sequence and the new gloss triples.
This can serve as an estimation of the model’s back
translation quality given the oracle sign sequence.
Table 8 shows the results.
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DEV SET
with intensification (248) without intensification (271) full

B1 B4 RG BS B1 B4 RG BS B1 B4 RG BS

Baseline 25.07 6.24 22.61 72.20 35.46 17.98 36.84 77.46 29.92 11.90 30.05 74.95

Suffix. 25.72 6.71 24.03** 72.61 37.73** 19.35** 38.92** 77.88 31.32* 12.81 31.81** 75.36

Dynamichard 26.01 6.36 24.98** 73.06 36.35 18.25 38.75** 77.87 30.83 12.20 32.17** 75.57
– two suffix. 25.87 7.20 24.16 72.66 36.87 18.30 38.54 77.97 31.00 12.56 31.67 75.43

TEST SET
with intensification (314) without intensification (328) full

B1 B4 RG BS B1 B4 RG BS B1 B4 RG BS

Baseline 25.28 5.92 21.98 72.02 35.17 17.40 35.97 76.85 29.86 11.51 29.13 74.49

Suffix. 26.31 6.54 24.56** 73.10 33.70 17.14 34.60 76.87 29.73 11.71 29.69 75.03

Dynamichard 26.51* 6.95 24.68** 73.11 33.63 16.97 34.87 77.17 29.81 11.81 29.90 75.18
– two suffix. 26.34 6.82 24.34** 73.10 34.92 17.46 36.25 77.49 30.30 11.94 30.33 75.35

Table 7: Gloss to pose (G2P) model performances on different variants of Dynamic Model. The baseline is trained
using the original data. The original dev/test instances are split based on whether it contains tagged gloss generated
by our best tagger in section §3.3. B1, B4, RG and BS refer to BLEU-1, BLEU-4, ROUGE and BERTScore
respectively. The marks * and ** denote that the results are significant comparing to baseline with the significance
level p < 0.1 and p < 0.05 respectively.

DEV SET TEST SET

Gloss Type BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE

Baseline 30.50 20.78 15.53 12.33 30.31 30.60 20.59 15.19 12.03 29.52

Suffix. 29.02 19.88 14.66 11.66 29.58 29.30 19.88 14.66 11.59 29.28
Delay.-rel. 28.72 19.71 14.79 11.77 29.63 29.31 19.93 14.70 11.62 28.98
End-mark. 29.28 19.99 14.99 12.01 29.88 29.32 20.01 15.01 11.93 29.04

Suffix. reiter. 31.15 21.80 16.50 13.14 31.11 29.76 20.77 15.70 12.60 29.15

Table 8: Translation results of the SLT model (Camgoz et al., 2020) used for back-translation. All models are
trained and evaluated with ground truth hand and body skeleton joints (manual) and different choices of augmented
gloss. The Baseline model is trained on the original gloss with no intensification marker.
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