
Findings of the Association for Computational Linguistics: ACL 2022, pages 2824 - 2835
May 22-27, 2022 c©2022 Association for Computational Linguistics

Cutting Down on Prompts and Parameters:
Simple Few-Shot Learning with Language Models

Robert L. Logan IV1 Ivana Balažević∗2 Eric Wallace3
Fabio Petroni4 Sameer Singh1 Sebastian Riedel4,5

1UC Irvine 2DeepMind 3UC Berkeley
4Facebook AI Research 5University College London
{rlogan,sameer}@uci.edu balazevic@deepmind.com

ericwallace@berkeley.edu {fabiopetroni,sriedel}@fb.com

Abstract

Prompting language models (LMs) with train-
ing examples and task descriptions has been
seen as critical to recent successes in few-shot
learning. In this work, we show that finetun-
ing LMs in the few-shot setting can consid-
erably reduce the need for prompt engineer-
ing. In fact, one can use null prompts, prompts
that contain neither task-specific templates nor
training examples, and achieve competitive ac-
curacy to manually-tuned prompts across a
wide range of tasks. While finetuning LMs
does introduce new parameters for each down-
stream task, we show that this memory over-
head can be substantially reduced—finetuning
only the bias terms can achieve comparable
or better accuracy than standard finetuning
while only updating 0.1% of the parameters.
All in all, we recommend finetuning LMs for
few-shot learning as it is more accurate, has
relatively stable performance across different
prompts, and can be made nearly as efficient
as using frozen LMs.

1 Introduction

Few-shot learning—the ability to learn tasks with
limited examples—is an important academic and
practical challenge (Lake et al., 2015). In state-
of-the-art NLP, few-shot learning is performed by
reformulating tasks as natural language “prompts”
and completing those prompts with pre-trained lan-
guage models (Brown et al., 2020; Schick and
Schütze, 2021a). Prompts that are well-designed
can substantially improve accuracy (Zhao et al.,
2021; Lu et al., 2021). However, finding these
prompts is difficult: it requires a non-trivial combi-
natorial search over the prompt’s wording (a.k.a. its
pattern or template), whether and how to include
training examples, and how to convert language
model probabilities into class predictions. Conse-
quently, prompts are often designed using human

∗Work done while an intern at Facebook AI Research.

intuition that is hard to replicate and apply in a
principled manner (Perez et al., 2021).

In this work, we seek to mitigate prompt engi-
neering by identifying a class of simple prompts
that are effective across many tasks for masked
language models (LMs). We find that, when us-
ing prompt-based finetuning (Schick and Schütze,
2021a; Gao et al., 2021), the prompt requires
less optimization than previously thought; in fact,
the pattern and training examples can be com-
pletely cut out (e.g., Figure 1, right). These null
prompts—simple concatenations of the inputs and
the [MASK] token—achieve comparable accuracy
to manually-written patterns while drastically sim-
plifying prompt design: users only need to decide
the label names (a.k.a. the verbalizer) and where to
place the [MASK] token. The effectiveness of null
prompts also challenges the common wisdom that
the success of few-shot learning is due to inductive
biases present in the prompt.

A key drawback of prompt-based finetuning is
that it has large memory requirements for each new
downstream task at inference time (Figure 1, left).
In contrast, in-context learning (Brown et al., 2020)
allows reusing the large-scale LM across tasks, but
it requires significant prompt engineering. To de-
termine whether memory efficiency and simple
prompt selection can be simultaneously achieved,
we experiment with either: (1) making prompts
for in-context learning similarly easy to create, or
(2) making prompt-based finetuning more memory
efficient. For (1), we simplify prompt engineer-
ing for in-context learning by automatically tuning
the prompt’s tokens or embeddings, an approach
that has been successful in the non-few-shot set-
ting (Shin et al., 2020; Lester et al., 2021). For (2),
we study lightweight finetuning alternatives that up-
date a smaller set of parameters: BitFit (Ben-Zaken
et al., 2021), Adapters (Houlsby et al., 2019), and
calibration layers (Zhao et al., 2021).

2824

mailto:rlogan@uci.edu
mailto:sameer@uci.edu
mailto:rlogan@uci.edu
mailto:balazevic@deepmind.com
mailto:ericwallace@berkeley.edu
mailto:fabiopetroni@fb.com
mailto:sriedel@fb.com
mailto:sriedel@fb.com

100%
10%

1%
0.1% 0.0

100.0

0.1

Finetuned Params

0

50

100
51.2

90.6 90.6
CB (F1)

In-Context Prompt-Based
Finetuning

Ours
0

25
50
75 55.6 62.9 65.1

QQP (F1)

In-Context

{What does it feel like to be on Xanax?}1 and {Do 4mg Xanax bars exist?}2 have different
meanings. {How do you know if you’re unconditionally in love with someone?}1 and
{How do you know if you’re in love with someone and might only be denying the fact to
yourself?}2 have similar meanings. {Will GST affect the price level in India?}1 and {Will
GST effect the price level in India?}2 have [MASK] meanings.

Prompt-Based
Finetuning

{Will GST affect the price level in India?}1 ? [MASK] , I want to know {Will
GST effect the price level in India?}2

Null Prompts
(Ours)

{Will GST affect the price level in India?}1 {Will GST effect
the price level in India?}2 [MASK]

Figure 1: Different Methods of Few-Shot Learning. Right: We visualize different types of prompts for QQP. We
denote the input fields using curly brackets {}, the manually-written pattern using magenta, and the verbalizers
using green. We show that null prompts, ones that do not contain training examples or task-specific patterns, can
achieve competitive accuracy. Left: We compare different methods for model finetuning. Unlike standard prompt-
based finetuning, we propose to update only the masked LM’s bias terms (BitFit). This achieves competitive
accuracy while only updating 0.1% of the parameters.

We show that the latter approach—prompt-based
finetuning with lightweight updates—is consider-
ably more successful. In particular, learning only
the model’s bias terms (BitFit) can achieve com-
petitive or better few-shot accuracy than standard
finetuning while only requiring switching out 0.1%
of the parameters at inference time to perform dif-
ferent tasks. On the other hand, automated prompt
tuning for in-context learning generally fails to find
prompts that are competitive with manual ones.
Taken together, our results show that prompt-based
finetuning is preferable because it is more accurate,
works well for different types of prompts, and can
be made nearly as efficient as using frozen LMs.

2 Prompting Language Models

We use masked LMs for few-shot learning. Follow-
ing Schick and Schütze (2021a), we have:
• a pre-trained masked LM, with T denoting its

vocabulary and T ∗ the set of all token sequences.
• a small set of training inputs xi ∈ X and their

corresponding labels yi ∈ Y .
• a pattern P : X → T ∗ that maps inputs to cloze

questions containing a single [MASK] token. Ad-
ditionally, a verbalizer v : Y → T that maps
each label to a single vocabulary token. We call
the pattern and verbalizer together the prompt.

In our work, we consider different ways of con-
structing the prompt (Section 2.1) and updating the
masked LM’s parameters (Section 2.2). Table 1
contains an overview of existing prompting meth-
ods and the settings they are evaluated in.

2.1 Constructing the Prompt
The prompt is important: in some settings, differ-
ent prompts can cause accuracy to vary from near
chance to near state-of-the-art (Zhao et al., 2021).
However, finding good prompts can be difficult.
Prompt construction requires a non-trivial combi-
natorial search over the prompt’s wording, whether
to include training examples, and how to convert
LM probabilities to class predictions. As a conse-
quence, prompts are either designed using human
intuition that is hard to replicate and apply in a
principled manner (Perez et al., 2021), or using
automated methods (Shin et al., 2020; Gao et al.,
2021; Lu et al., 2021). These methods search for
elements such as: (1) the text of the pattern, (2)
the tokens in the verbalizers, and (3) whether and
how training examples are prepended before the
test input. Although automated prompt search can
match the accuracy of manual tuning, it introduces
its own complexities. For example, the prompts
from Gao et al. (2021) achieve comparable results
to manually-designed prompts but are found using
generative models and careful validation.

In this paper, we show that prompt-based finetun-
ing (see Section 2.2) can considerably reduce the
importance of the prompt. This does not contradict
past work—the extreme importance of the prompt
is only true when models are not finetuned.

2.2 Prompting Approaches for Few-Shot
Learning

In-Context Learning An increasingly popular
strategy for few-shot learning is prompting frozen

2825

Method Finetuned Params Prompt Design Few-shot

AUTOPROMPT (Shin et al., 2020) None Learned (Discrete) 7
Prompt Tuning (Lester et al., 2021) Prompt Token Embeds Learned (Continuous) 7
OPTIPROMPT (Zhong et al., 2021) Prompt Token Embeds Learned (Continuous) 7
Soft Prompts (Qin and Eisner, 2021) All Contextualized Embeds Learned (Continuous) 7

GPT-3 (Brown et al., 2020) None Manual 3
PET (Schick and Schütze, 2021a) All Manual 3
LM-BFF (Gao et al., 2021) All Learned (Discrete) 3
P-Tuning (Liu et al., 2021) All + Prompt Token Embeds Learned (Continuous) 3
Null Prompts + Bitfit (Ours) Bias Terms None 3

Table 1: Overview of Existing Work on Prompting. Finetuned Params indicates the parameters altered during
training. Prompt Design indicates how prompts are created; we use null prompts. Few-Shot indicates using few-
shot training and validation sets.

LMs (Brown et al., 2020). This strategy relies
solely on in-context learning (a.k.a. priming),
where the LM learns by conditioning on the prompt
rather than updating its parameters. In-context
learning has been shown to be successful when
using very large (e.g., billions of parameters) LMs,
as these models better leverage the prompt.

Prompt-Based Finetuning Rather than using
frozen LMs, prompt-based finetuning methods
finetune all of the LM’s parameters (Schick and
Schütze, 2021a; Le Scao and Rush, 2021; Gao
et al., 2021). For masked LMs, this is done by con-
structing training examples that contain a [MASK]
token and finetuning the masked LM to generate
the correct verbalizer token in that position.

The main advantage of prompt-based finetuning
over in-context learning is that it achieves higher ac-
curacy, especially when the LM is relatively small,
e.g., millions of parameters (Schick and Schütze,
2021b). The main downside is that the same model
can no longer be reused across different tasks, thus
reducing efficiency. The efficiency is impacted in
two ways. First, it requires large amounts of disk
space at test time because numerous model check-
points must be stored. Second, during training
time, it requires large amounts of GPU memory to
perform updates on massive LMs.

In this paper, we will show an additional benefit
to prompt-based finetuning—it makes prompt engi-
neering easier. We will also show that the memory
inefficiency of prompt-based finetuning can be dras-
tically mitigated using lightweight finetuning alter-
natives. These lightweight methods allow one to
switch out only a small subset of model parameters
at inference time in order to solve multiple tasks,
and also drastically reduce training-time memory
costs. Moreover, in many cases these lightweight

methods also improve model accuracy. Our work is
related to Le Scao and Rush (2021), who show that
different manually-written patterns lead to similar
accuracy for prompt-based finetuning.

3 Experimental Setup

3.1 Datasets and Hyperparameter Tuning

We use the following classification datasets
from GLUE (Wang et al., 2019b) and Super-
GLUE (Wang et al., 2019a): BoolQ, CB, MNLI,
MRPC, QNLI, QQP, RTE, and SST-2.1

To build few-shot datasets, past work collects
K examples from each label for training and K
examples from each label for development (Gao
et al., 2021). Despite this setup often being denoted
as K-shot learning, it effectively uses 2K exam-
ples and splits the examples evenly into train and
development. We instead propose to use cross vali-
dation to perform more principled model selection.
Concretely, we sample 2K examples from each
label and use 4-fold cross validation to determine
the best hyperparameters. After finding the best
hyperparameters, we train on the first K examples
and early stop on the second K examples. We use
K = 16 following past work (Gao et al., 2021).

We sample our examples from each dataset’s
original training set. Since transformers’ perfor-
mance in few-shot settings can be highly dependent
on weight initialization (Dodge et al., 2020), we ini-
tialize the weights with 10 different random seeds
and report the mean and variance of the model
performance. We use each dataset’s original de-
velopment set for our final evaluation and use the
standard evaluation metrics (accuracy or F1) as-
sociated with each dataset. We do not check the

1We also evaluated on WiC and WNLI. We omit these
results because all models achieved near-random accuracy.

2826

Figure 2: How # Wins are Computed. For a given
dataset, we perform a Welch’s t-test to determine if
there is a significant difference in accuracy for each pair
of methods. The method which performs better than
most other methods (i.e., the row with the most yellow
squares; BitFit in this case) is considered the “winner”
of the task, and its # Wins is incremented by 1. In the
figure above, we show a subset of methods evaluated
on a single dataset.

final evaluation metrics during any tuning of the
hyperparameters to ensure that we are doing “true”
few-shot learning (Perez et al., 2021).

3.2 Masked Language Models

Following past work (Schick and Schütze, 2021b),
we use the RoBERTa (large, 330M params, Liu
et al., 2019) and ALBERT (xxl-v2, 223M params,
Lan et al., 2020) masked LMs provided by the Hug-
gingFace transformers library (Wolf et al., 2020).
Training and evaluation were performed on a het-
erogeneous compute cluster with the following min-
imum specs: 2xNVIDIA GeForce GTX 1080 Ti’s,
8-core Intel Core i7 CPU, 64 GB RAM.

3.3 Comparing Few-Shot Methods by # Wins

The results for different few-shot learning meth-
ods can be quite different across datasets and seeds
for the training set (Zhao et al., 2021; Schick and
Schütze, 2021a). To compare different methods at
a high level, we use a metric denoted as # Wins:
the number of datasets that a given method per-
forms significantly better than all other methods
on. We compute this metric for a given dataset
by first performing a Welch’s t-test to determine
if there is a significant difference in accuracy for
each pair of methods. The method which performs
better than most other methods is considered the
“winner” of the task and its # Wins is incremented
by 1. There are multiple winners in the case of a
tie. See Figure 2 for a demonstration.

4 Simplifying Prompt Engineering

In this section, we run prompt-based finetuning
and ablate different elements of the prompt. We
consider the following ablations:

• Manual Prompt (Prior): We use manually-
written prompts from Schick and Schütze
(2021a,b), and Gao et al. (2021). We show the
patterns and verbalizers in Appendix A1.

• Manual Prompt (w/o Engineering): We simu-
late standard prompt design by manually writing
one prompt for each task using our intuition. We
show the prompts in Appendix A2.

• Prompt Tuning: Inspired by Liu et al. (2021)
and Lester et al. (2021), we use the pattern from
Manual Prompt (Prior) but randomly initialize
the embeddings of the pattern tokens and learn
them using gradient-based optimization. This
ablates the gains from human-designed patterns.

• Null Prompt: We use the same verbalizer as
Manual Prompt (Prior) but use a pattern that con-
sists of only the input fields and a [MASK] token
(Appendix A3). This ablates the pattern entirely.

• Null Verbalizer: We use the same pattern as
Manual Prompt (Prior) but—following Opitz
(2019) and Le Scao and Rush (2021)—select
random tokens for the verbalizer. This ablates
the gains from a human-designed verbalizer.

• Null Prompt + Verbalizer: We use both null
prompts and random tokens for the verbalizer.

In all cases, we finetune all of the masked LM
parameters. We show the accuracy of the above
prompts as well as traditional finetuning (using a
[CLS] token and a classification head) in Figure 3.2

Manual Prompts Perform Best The manually-
written prompts from prior work perform best on
average for both models. On the other hand, our
manual prompts (w/o Engineering) are noticeably
worse than the ones from prior work and are out-
performed by many other methods.
Null Prompts Are Competitive In many cases,
prompt tuning and null prompts perform compa-
rably to manually-written prompts, especially for
RoBERTa. For instance, both of these methods
outperform manual prompts (w/o Engineering) in

2For fair comparison we use the finetuning recommenda-
tions of Mosbach et al. (2021) to improve stability.

2827

Boo
lQ CB

M
NLI-m

M
NLI-m

m
M

RPC
QNLI

QQP
RTE

SST-2
0

25

50

75

100
RoBERTa (Large)

Wins
0

5

Boo
lQ CB

M
NLI-m

M
NLI-m

m
M

RPC
QNLI

QQP
RTE

SST-2
0

25

50

75

100
ALBERT (XXLarge-V2)

Wins
0

2

4

Manual Prompt (Prior)
Manual Prompt (w/o Engineering)

Prompt Tuning
Null Prompt

Null Verbalizer
Null Prompt + Verbalizer

[CLS] Finetuning

Figure 3: Simplifying the Selection of Prompts. We apply prompt-based finetuning in conjunction with six
different types of prompts. We report accuracy or F1 on each dataset. Manually-designed prompts from prior work
achieve the best accuracy but require manual tuning on validation sets. On the other hand, null prompts and prompt
tuning both perform competitively without requiring any tuning of the pattern.

60 65 70 75 80

Dev

50

60

Te
st

R2 = 79.05

Figure 4: Correlation of Dev and Test Performance
of Null Prompts on MNLI. The only decision to make
when using null prompts is which order to concatenate
the mask token and the input fields. One can choose the
best option using a tiny held-out development set. We
show the results for MNLI, with the few-shot develop-
ment set accuracy on the x-axis.

terms of # Wins. These results are exciting from
a practical perspective as they show that one can
achieve competitive few-shot results without resort-
ing to any tuning of the prompt.

From an analysis perspective, these results also
show that effective few-shot learning can be accom-
plished without any inductive bias from a manually-
written pattern. In fact, combining null prompts
with null verbalizers, which involves no human
design at all, still significantly outperforms stan-
dard [CLS] finetuning for numerous tasks (3 for
RoBERTa and 5 for ALBERT at p = 0.05). This
shows that some of the effectiveness of prompt-
based finetuning is due to its basic setup, i.e., pre-
dicting on a [MASK] token with an MLM head.

Null Prompts or Prompt Tuning? Both null
prompts and prompt tuning achieve competitive
results without resorting to manual prompt design.
We advocate for using null prompts over prompt
tuning because they are easier to use. Null prompts
only require choosing which order to concatenate
the input fields and the [MASK] token. Prompt tun-
ing requires choosing the number of embeddings,
their placement, their initialization, etc.

Null Prompts Simplify Prompt Search One
complication that arises in standard prompt-based
finetuning is that prompts become a hyperparame-
ter of the finetuning procedure, and have a combi-
natorially large search space. On the other hand, de-
termining the concatenation order for null prompts
is trivial by just trying all of the few possible op-
tions and choosing which one works best on the
validation set. To see this, in Figure 4 we plot the
accuracy on the few-shot development set and the
full test set for different concatenation orders for
RoBERTa on MNLI.3 The development and test ac-
curacy is strongly correlated (R2 = 79.05), which
demonstrates that tuning the concatenation order is
easy even when validation data is scarce.

Impact of Dataset Size We next investigate
whether the observations made in the previous para-

3We use MNLI because the concatenation order has a large
impact on performance.

2828

48 16 32

K

0.50

0.75

M
et

ri
c

BoolQ

48 16 32

K

CB

48 16 32

K

MNLI-m

48 16 32

K

MNLI-mm
RoBERTa (Large)

48 16 32

K

0.50

0.75

M
et

ri
c

BoolQ

48 16 32

K

CB

48 16 32

K

MNLI-m

48 16 32

K

MNLI-mm
ALBERT (XXLarge-V2)

[CLS] Finetuning
Null Prompt

Manual Prompt (Prior)

Figure 5: Impact of Dataset Size. We plot a subset of
learning curves for K ∈ {4, 8, 16, 32} (results for all
datasets are provided in Appendix A1). Shaded regions
indicate the range of performance across 10 different
random seeds. In general, we find that as K increases
the accuracy of prompt tuning with null prompts tends
to be close to that of manual prompts, and substantially
better than traditional finetuning.

graphs hold across different dataset sizes. Intu-
itively, when the amount of data is small, manual
prompts may outperform other approaches because
the inductive bias provided by the prompt has the
most impact when there is little data to learn the
task at hand. In Figure 5 we compare the accuracy
of prompt-based finetuning using manually-written
prompts and null prompts to traditional finetuning,
using the same setup described in Section 3.1 but
varying K ∈ {4, 8, 16, 32}. Full results for all
datasets are provided in Appendix A1. Although
there is some instability at lower values of K, we
find that the accuracy of both prompt-based fine-
tuning approaches tends to be similar, and is either
substantially better or on-par with traditional fine-
tuning. In other words, null prompts are competi-
tive with manual prompts, even when K is small.

5 Achieving Simplicity and Efficiency

Thus far, we have shown that prompt-based fine-
tuning can simplify prompt engineering at the cost
of memory inefficiency—a new set of parameters
must be learned for each task. This is in contrast to
in-context learning, which holds all model weights
fixed but is heavily influenced by small prompt

modifications (Zhao et al., 2021; Lu et al., 2021).
In this section, we investigate how to achieve both
memory efficiency and simple prompts. Concretely,
in Section 5.1 we try to simplify prompt engineer-
ing for in-context learning by tuning the prompt,
and in Section 5.2, we reduce the number of learned
parameters for prompt-based finetuning.

5.1 Simplifying In-Context Learning With
Prompt-Only Tuning

Here, we try to make prompt engineering for in-
context learning as simple as prompt-based fine-
tuning by automatically finding the prompt. Con-
cretely, we focus on the emerging class of methods
that do prompt-only tuning: learning the prompt
while keeping the rest of the model fixed (Shin
et al., 2020; Lester et al., 2021). We consider:

• AUTOPROMPT: Following Shin et al. (2020),
we search for discrete tokens to use in the input
instead of manually-designed patterns. Search is
performed using the original hyperparameters.

• Prompt Tuning (Short): We use the same
prompt tuning approach described in the previous
section but we keep the masked LM fixed.

• Prompt Tuning (Long): Based on the advice
of Lester et al. (2021), we increase the number
of learned prompt embeddings to 20 in order to
expand the learning capacity.

For reference, we also report the results from
prompt-based finetuning with null prompts. We
show the results for RoBERTa in Figure 6. We
find that only tuning the prompt is relatively un-
successful. First, on average it fails to match the
performance of manually-designed prompts. Sec-
ond, all methods struggle to match the accuracy of
prompt-based finetuning. In fact, for many of the
datasets, prompt-only methods perform worse by a
wide margin (e.g., 40% absolute difference in F1

score on CB). This shows that finetuning masked
LMs in the few-shot setting leads to substantially
higher accuracy than prompt-only tuning.

Our Results versus Recent Prompt Tuning
Work We find that only tuning the prompt per-
forms substantially worse than finetuning the entire
LM. This is in contrast to recent work, which ar-
gues that prompt-only tuning is competitive with
finetuning (Lester et al., 2021; Li and Liang, 2021).
We believe these are not contradictions but rather
differences in the models and settings. Li and Liang

2829

Boo
lQ CB

M
NLI-m

M
NLI-m

m
M

RPC
QNLI

QQP
RTE

SST-2
0

25

50

75

100

Wins
0

5

In-Context
AutoPrompt

Prompt Tuning (Short)
Prompt Tuning (Long)

All Parameters (Null Prompts)

Figure 6: Prompt-Only Tuning. We try to simplify prompt engineering for in-context learning (i.e., using frozen
models) by directly learning the prompt. The performance (accuracy/F1) for prompt-only tuning is substantially
lower than finetuning the LM parameters for RoBERTa-large. Thus, we recommend finetuning over in-context
learning in the few-shot setting.

Boo
lQ CB

M
NLI-m

M
NLI-m

m
M

RPC
QNLI

QQP
RTE

SST-2
0

25

50

75

100

Wins
0

2

4

6

Calibration (≈ 101 Params)

LM Head Tuning (≈ 103 Params)

BitFit (≈ 105 Params)

Adapters (≈ 107 Params)

All Parameters (≈ 108 Params)

Figure 7: Parameter-Efficient Prompt-Based Finetuning. We perform prompt-based finetuning using different
lightweight finetuning schemes. We show the accuracy or F1 on each dataset for RoBERTa-large. BitFit achieves
the highest accuracy on average and only modifies 0.1% of the parameters.

(2021) focus on left-to-right LMs for generation
tasks, whereas we focus on masked LMs for classi-
fication tasks. They also finetune additional param-
eters in intermediate layers of the model. These
differences may explain the difference in prompt-
ing accuracies. Moreover, Lester et al. (2021) show
that prompt-only tuning becomes less competitive
as models get smaller; we use even smaller mod-
els than evaluated in their work. Consequently,
although we find that finetuning a masked LM is
superior to prompt-only tuning, there may be other
settings in which they fair similarly.

5.2 Memory-Efficient Finetuning
Given the inadequacies of prompt-only tuning, we
next study if prompt-based finetuning can be made
memory-efficient. To do so, we focus on reducing
the number of trainable parameters, taking inspira-
tion from recent work in the non-few-shot setting.
The benefits of these methods is that they: (1) re-
duce storage costs at test time when running many

tasks (one can store only the modified parameters
for each task), and (2) reduce memory costs at train-
ing time, as fewer optimized parameters means
much smaller statistics in optimizers like Adam.
We consider four lightweight finetuning methods:

• Adapters: We use Adapters (Houlsby et al.,
2019), neural networks layers that are inserted be-
tween the feedforward portion of the Transformer
architecture. We use the default Adapters hyper-
parameters from Houlsby et al. (2019) (≈ 107

parameters per task).

• BitFit: Following Ben-Zaken et al. (2021), we
only update the bias terms inside the Transformer
(≈ 105 parameters per task).

• LM Head Tuning: We update the embeddings in
the MLM output layer that are associated with the
verbalizer tokens (≈ 103 parameters per task).

• Calibration: Following Zhao et al. (2021), we
learn an affine transformation on top of the log-

2830

BoolQ CB MNLI MRPC QNLI QQP RTE SST-2 Wins
(acc) (F1) (acc) (F1) (acc) (F1) (acc) (acc) (#)

R
oB

E
R

Ta

In-context 49.2 51.2 48.0 / 48.1 28.0 55.2 55.6 60.7 84.1 0
[CLS] finetuning 51.0 74.3 39.4 / 38.6 77.8 58.2 61.9 54.5 72.9 1
Prompt-based Finetuning

All Parameters 63.9 90.6 66.5 / 61.6 74.1 57.4 62.9 68.8 92.6 3
+ Null Prompt 59.9 91.2 61.6 / 57.8 76.1 65.8 65.9 54.6 83.8 3

BitFit 66.7 89.8 69.3 / 70.0 69.7 62.3 66.3 64.9 92.1 6
+ Null Prompt 67.2 90.6 67.5 / 62.9 68.2 66.4 65.1 65.4 89.6 3

A
L

B
E

R
T

In-context 68.0 19.9 35.4 / 35.2 20.7 50.1 0.3 53.1 49.1 0
[CLS] finetuning 53.3 56.5 36.0 / 38.6 76.9 66.6 58.5 54.1 62.9 2
Prompt-based Finetuning

All Parameters 73.5 91.1 65.0 / 56.0 75.2 73.9 59.9 61.4 93.2 8
+ Null Prompt 53.7 89.4 58.2 / 53.7 78.5 67.3 62.0 59.2 91.5 3

BitFit 77.2 86.7 64.6 / 61.6 79.7 73.1 61.4 58.6 92.0 8
+ Null Prompt 52.8 86.3 55.3 / 58.0 65.5 63.8 52.7 57.2 89.7 1

Table 2: Final Few-Shot Results from representative methods. Wins are computed on a per-datasets basis and the
“winners” of the different approaches are highlighted in bold. Prompt-based finetuning significantly outperforms in-
context learning and traditional [CLS] finetuning, even without any tuning of the prompt (null prompt). Moreover,
prompt-based finetuning can be highly memory efficient using bias-only finetuning (BitFit). We show matched
and mismatched results for MNLI.

its associated with the verbalizer tokens (≈ 101

parameters per task).

We run prompt-based finetuning for each method
with the prompts from Manual Prompts (Prior). We
also report the accuracy of finetuning all of the
parameters for reference.

Results We show the results in Figure 7. There
are diminishing returns as the parameter count is
increased. In particular, substantial gains are made
when going from calibration to LM head tuning to
BitFit, however, there is either a marginal improve-
ment or even a decrease in performance when going
to Adapters or All Parameters. The BitFit method
provides the best accuracy-efficiency trade-off, and
even outperforms finetuning all of the parameters
in terms of # Wins. This suggests that updating all
of the LM’s hundreds of millions of parameters on
only 16 data points is suboptimal.

5.3 Putting Everything Together
We finally combine null prompts and memory-
efficient finetuning. We show the results from this
method, as well as the other best few-shot methods,
in Table 2. Overall, we recommend finetuning with
null prompts and BitFit: it achieves competitive
accuracy, is simple to set up, and introduces small
memory costs for each new task.

6 Conclusion and Future Work

Two high-level methods exist in few-shot prompt-
ing: using a frozen LM (in-context learning) and

finetuning the LM on the few training examples
(prompt-based finetuning). In this work, we demon-
strate two new advantages of prompt-based fine-
tuning. First, we show that it performs comparably
across different prompt choices. In fact, there is a
simple class of prompts—null prompts—that can
be flexibly applied to different tasks without de-
grading performance relative to manually-written
and learned prompts. Second, we demonstrate
that prompt-based finetuning can be made memory
efficient: finetuning only the bias terms (BitFit)
achieves comparable or better accuracy than fine-
tuning all the parameters while being 1000x more
memory efficient. Taken together, using null pat-
terns with BitFit is an approach that is efficient,
simple-to-tune, and competitive in accuracy. Code
and instructions for reproducing our results is avail-
able at: https://github.com/ucinlp/null-prompts.

Our results motivate future analysis of few-shot
learning methods. Concretely, we show that the
success of prompt-based finetuning is not solely
explained by carefully-chosen patterns or verbal-
izers. This suggests that the gains from prompt-
based finetuning are partially due to its low-level
setup, i.e., predicting on a [MASK] token with a
pre-trained MLM head. More generally, we hope to
further analyze why and how small changes to dif-
ferent few-shot learning methods can lead to wildly
different accuracies. We also hope to extend our
findings to both very large and left-to-right LMs,
as our current results are for masked LMs that are
relatively small by modern standards.

2831

https://github.com/ucinlp/null-prompts

Acknowledgements

We would like to thank Danqi Chen, Timo Schick,
and Hinrich Schütze for their careful corrections
to an earlier version of this manuscript. We also
would like to thank the reviewers for their thought-
ful feedback. This work is funded in part by
the DARPA MCS program under Contract No.
N660011924033 and by research awards from
Amazon and the Allen Institute for Artificial In-
telligence. Additionally, Robert is supported in
part by the Irvine Initiative in AI, Law, and Soci-
ety fellowship, and Eric by the Apple Scholars in
AI/ML fellowship.

References
Elad Ben-Zaken, Shauli Ravfogel, and Yoav Goldberg.

2021. BitFit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. In Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Informa-
tion Processing Systems 2020, NeurIPS 2020, De-
cember 6-12, 2020, virtual.

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali
Farhadi, Hannaneh Hajishirzi, and Noah Smith.
2020. Fine-tuning pretrained language models:
Weight initializations, data orders, and early stop-
ping. ArXiv preprint, abs/2002.06305.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.
Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 3816–3830, Online. Association for Computa-
tional Linguistics.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly.
2019. Parameter-efficient transfer learning for NLP.
In Proceedings of the 36th International Confer-
ence on Machine Learning, ICML 2019, 9-15 June
2019, Long Beach, California, USA, volume 97 of
Proceedings of Machine Learning Research, pages
2790–2799. PMLR.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B
Tenenbaum. 2015. Human-level concept learning
through probabilistic program induction. In Science.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite BERT for self-supervised
learning of language representations. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

Teven Le Scao and Alexander Rush. 2021. How many
data points is a prompt worth? In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 2627–2636, On-
line. Association for Computational Linguistics.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045–3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
4582–4597, Online. Association for Computational
Linguistics.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021. GPT
understands, too. ArXiv preprint, abs/2103.10385.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. ArXiv preprint, abs/1907.11692.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian
Riedel, and Pontus Stenetorp. 2021. Fantastically or-
dered prompts and where to find them: Overcoming
few-shot prompt order sensitivity. ArXiv preprint,
abs/2104.08786.

Marius Mosbach, Maksym Andriushchenko, and Diet-
rich Klakow. 2021. On the stability of fine-tuning
BERT: misconceptions, explanations, and strong
baselines. In 9th International Conference on Learn-
ing Representations, ICLR 2021, Virtual Event, Aus-
tria, May 3-7, 2021. OpenReview.net.

Juri Opitz. 2019. Argumentative relation classification
as plausibility ranking. In Proceedings of the 15th
Conference on Natural Language Processing (KON-
VENS 2019): Long Papers, pages 193–202, Erlan-
gen, Germany. German Society for Computational
Linguistics & Language Technology.

2832

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://arxiv.org/abs/2002.06305
https://arxiv.org/abs/2002.06305
https://arxiv.org/abs/2002.06305
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.295
http://proceedings.mlr.press/v97/houlsby19a.html
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://doi.org/10.18653/v1/2021.naacl-main.208
https://doi.org/10.18653/v1/2021.naacl-main.208
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://arxiv.org/abs/2103.10385
https://arxiv.org/abs/2103.10385
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2104.08786
https://arxiv.org/abs/2104.08786
https://arxiv.org/abs/2104.08786
https://openreview.net/forum?id=nzpLWnVAyah
https://openreview.net/forum?id=nzpLWnVAyah
https://openreview.net/forum?id=nzpLWnVAyah

Ethan Perez, Douwe Kiela, and Kyunghyun Cho. 2021.
True few-shot learning with language models. ArXiv
preprint, abs/2105.11447.

Guanghui Qin and Jason Eisner. 2021. Learning how
to ask: Querying LMs with mixtures of soft prompts.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 5203–5212, Online. Association for Compu-
tational Linguistics.

Timo Schick and Hinrich Schütze. 2021a. Exploiting
cloze-questions for few-shot text classification and
natural language inference. In Proceedings of the
16th Conference of the European Chapter of the As-
sociation for Computational Linguistics: Main Vol-
ume, pages 255–269, Online. Association for Com-
putational Linguistics.

Timo Schick and Hinrich Schütze. 2021b. It’s not just
size that matters: Small language models are also
few-shot learners. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 2339–2352, Online. As-
sociation for Computational Linguistics.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV,
Eric Wallace, and Sameer Singh. 2020. AutoPrompt:
Eliciting Knowledge from Language Models with
Automatically Generated Prompts. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
4222–4235, Online. Association for Computational
Linguistics.

Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R. Bowman. 2019a. Superglue:
A stickier benchmark for general-purpose language
understanding systems. In Advances in Neural Infor-
mation Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pages 3261–3275.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019b.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In 7th
International Conference on Learning Representa-
tions, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019. OpenReview.net.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2020. HuggingFace’s Trans-
formers: State-of-the-art natural language process-
ing. In EMNLP Demo Track.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Im-
proving few-shot performance of language models.

In Proceedings of the 38th International Confer-
ence on Machine Learning, ICML 2021, 18-24 July
2021, Virtual Event, volume 139 of Proceedings of
Machine Learning Research, pages 12697–12706.
PMLR.

Zexuan Zhong, Dan Friedman, and Danqi Chen. 2021.
Factual probing is [MASK]: Learning vs. learning
to recall. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 5017–5033, Online. Association for
Computational Linguistics.

2833

https://arxiv.org/abs/2105.11447
https://doi.org/10.18653/v1/2021.naacl-main.410
https://doi.org/10.18653/v1/2021.naacl-main.410
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
http://proceedings.mlr.press/v139/zhao21c.html
http://proceedings.mlr.press/v139/zhao21c.html
https://doi.org/10.18653/v1/2021.naacl-main.398
https://doi.org/10.18653/v1/2021.naacl-main.398

Dataset Pattern Verbalizer

BoolQ {passage}. Question: {question}? Answer: [MASK]. True: "Yes"
False: "No"

CB {premise}? [SEP] [MASK], {hypothesis}
entailment: "Yes"
contradiction: "No"
neutral: "Maybe"

MNLI {sentence1}? [SEP] [MASK], {sentence2}
entailment: "Yes"
contradiction: "No"
neutral: "Maybe"

MNLI-mm {sentence1}? [SEP] [MASK], {sentence2}
entailment: "Yes"
contradiction: "No"
neutral: "Maybe"

MRPC {sentence1} and {sentence2} have [MASK] meanings. 0: "different"
1: "similar"

QNLI {question}? [SEP] [MASK], {sentence} entailment: "Yes"
not_entailment: "No"

QQP {question1} and {question2} have [MASK] meanings. 0: "different"
1: "similar"

RTE {sentence1}? [SEP] [MASK], {sentence2} entailment: "Yes"
not_entailment: "No"

SST-2 {sentence} It was [MASK] . 0: "terrible"
1: "great"

Table A1: Prompts denoted as “Manual Prompts (Prior)”. We use prompts inspired from past work (Schick and
Schütze, 2021a; Gao et al., 2021). The fields between curly brackets indicate dataset-specific inputs. Predictions
are made on the [MASK] token in each prompt. For prompt tuning, we tune the tokens in the pattern.

Dataset Pattern Verbalizer

BoolQ Passage: {passage} Question: {question} Answer: [MASK]. True: "true"
False: "false"

CB Premise: {premise} Hypothesis: {hypothesis} Label: [MASK]
entailment: "yes"
contradiction: "no"
neutral: "maybe"

MNLI Premise: {sentence1} Hypothesis: {sentence2} Label: [MASK]
entailment: "yes"
contradiction: "no"
neutral: "maybe"

MNLI-mm Premise: {sentence1} Hypothesis: {sentence2} Label: [MASK]
entailment: "yes"
contradiction: "no"
neutral: "maybe"

MRPC {sentence1} and {sentence2} are the [MASK]. 0: "different"
1: "same"

QNLI Question: {question} Sentence: {sentence} Label: [MASK] entailment: "yes"
not_entailment: "no"

QQP {question1} and {question2} are the [MASK]. 0: "different"
1: "same"

RTE Premise: {sentence1} Hypothesis: {sentence2} Label: [MASK] entailment: "yes"
not_entailment: "no"

SST-2 {sentence} Overall my impression is [MASK] . 0: "bad"
1: "good"

Table A2: Prompts denoted as “Manual Prompts (w/o Engineering)”. We manually write one prompt for each
task, using only our intuition, and do not tune or edit them in any way after evaluating them. Fields between curly
brackets indicate dataset-specific inputs. Predictions are made on the [MASK] token in each prompt. For prompt
tuning, we tune the tokens in the pattern.

2834

Dataset Pattern Verbalizer

BoolQ {passage} {question} [MASK] True: "Yes"
False: "No"

CB {premise} [MASK] {hypothesis}
entailment: "Yes"
contradiction: "No"
neutral: "Maybe"

MNLI {sentence1} [MASK] {sentence2}
entailment: "Yes"
contradiction: "No"
neutral: "Maybe"

MNLI-mm {sentence1} [MASK] {sentence2}
entailment: "Yes"
contradiction: "No"
neutral: "Maybe"

MRPC {sentence1} {sentence2} [MASK] 0: "different"
1: "similar"

QNLI {question} [MASK] {sentence} entailment: "Yes"
not_entailment: "No"

QQP {question1} {question2} [MASK] 0: "different"
1: "similar"

RTE {sentence1} [MASK] {sentence2} entailment: "Yes"
not_entailment: "No"

SST-2 {sentence} [MASK] 0: "terrible"
1: "great"

Table A3: Null Prompts used for results in Sections 4 and 5.

4 8 16 32

K

0.4

0.6

0.8

M
et

ri
c

BoolQ

4 8 16 32

K

CB

4 8 16 32

K

MNLI-m

4 8 16 32

K

MNLI-mm

4 8 16 32

K

MRPC

4 8 16 32

K

QNLI

4 8 16 32

K

QQP

4 8 16 32

K

RTE

4 8 16 32

K

SST-2
RoBERTa (Large)

[CLS] Finetuning Null Prompt Manual Prompt (Prior)

4 8 16 32

K

0.4

0.6

0.8

M
et

ri
c

BoolQ

4 8 16 32

K

CB

4 8 16 32

K

MNLI-m

4 8 16 32

K

MNLI-mm

4 8 16 32

K

MRPC

4 8 16 32

K

QNLI

4 8 16 32

K

QQP

4 8 16 32

K

RTE

4 8 16 32

K

SST-2
ALBERT (XXLarge-V2)

[CLS] Finetuning Null Prompt Manual Prompt (Prior)

Figure A1: Impact of Dataset Size. We plot learning curves for K ∈ {4, 8, 16, 32}. Shaded regions indicate the
range of performance across 10 different random seeds.

2835

