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Abstract

The state-of-the-art models for coreference res-
olution are based on independent mention pair-
wise decisions. We propose a modelling ap-
proach that learns coreference at the document-
level and takes global decisions. For this pur-
pose, we model coreference links in a graph
structure where the nodes are tokens in the
text, and the edges represent the relationship be-
tween them. Our model predicts the graph in a
non-autoregressive manner, then iteratively re-
fines it based on previous predictions, allowing
global dependencies between decisions. The
experimental results show improvements over
various baselines, reinforcing the hypothesis
that document-level information improves con-
ference resolution.

1 Introduction

Current state-of-the-art (SOTA) solutions for coref-
erence resolution such as (Toshniwal et al., 2020;
Xu and Choi, 2020; Wu et al., 2020) formulate the
problem in an end-to-end manner where the models
jointly learn to detect mentions and link coreferent
mentions. The objective is to predict the antecedent
of each mention-span in a document, so the model
performs pair-wise decisions of all mentions. After
having the model predictions, related mentions are
grouped into clusters. Under this scenario, each
decision (i.e., whether two mentions are related to
the same entity or not) is independent. Lee et al.
(2018) proposed an iterative method to update the
representation of a mention with information of its
probable antecedents. However, the final decisions
are still made locally.

We propose a modeling approach that learns
coreference at the document-level and takes global
decisions. We propose to model mentions and
coreference links in a graph structure where the
nodes are tokens in the text, and the edges represent
the relationships between them. Figures 1 and 2
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Figure 1: Example of a graph structure for coreference.
Mention spans are shown in bold, and colors represent
entity clusters. The mention heads are underlined.
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Figure 2: Example of a graph in matrix representation.
The connection types are encoded as, 0: no links, 1:
mention links, 2: coreference links.

show a short example taken from the CoNLL 2012
dataset (Pradhan et al., 2012) showing the graph in
two perspectives. Figure 1 shows how the token
nodes in a text are connected with edges drawn
with arrows. We differentiate the connections be-
tween words in a coreference mention, ‘mention
links’, and the ones among mentions in a cluster,
‘coreference links’ (see Sec. 4). Figure 2 shows the
same graph in a matrix representation, where the
number in a cell indicates the type of relation be-
tween the row and the column. Our model receives
a document as input then predicts and iteratively
refines the graph of mentions and coreference links.

We follow a similar approach to the Graph-to-
Graph Transformer (G2GT) proposed in (Moham-
madshahi and Henderson, 2021, 2020) for syntactic
parsing, but instead of encoding sentences, we en-
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code documents. Our model predicts the graph in a
non-autoregressive manner, then iteratively refines
it based on previous predictions. This recursive
process introduces global dependencies between
decisions. Unlike (Mohammadshahi and Hender-
son, 2021), we define different structures for input
and output graphs, to reflect the different roles of
these graphs. To ensure that locality in the input
graph reflects all the relevant relationships, the in-
put graph encodes relations for all mention tokens.
This makes the encoding process easier. To pro-
vide a unique specification of the target graph, the
output only encodes a minimal set of connections.
This facilitates prediction. We initialize the Trans-
former with pre-trained language models, either
BERT (Devlin et al., 2019), or SpanBERT (Joshi
et al., 2020).

Another difference with (Mohammadshahi and
Henderson, 2021) is that our model predicts two
levels of representation. While they predict the
whole graph at each iteration, during the first iter-
ation our model only predicts edges that identify
mention-spans. This is because mention detection
is a sentence-level phenomenon whose outputs are
required as inputs to coreference resolution, which
is a discourse-level phenomenon. But we do not or-
ganise these two tasks in a pipeline. Starting at the
second iteration, the model predicts the complete
graph. This allows the model to refine mention de-
cisions given coreference decisions, and vice versa.
In this way, we propose to use iterative graph re-
finement as an alternative to pipeline architectures
for multi-level deep learning models. The iterative
process finishes when there are no more changes in
the graph or when a maximum number of iterations
is reached.

Ideally, the whole document should be encoded
at once, but in practice there is a limit on the max-
imum length. In order to deal with this issue, we
propose two strategies: overlapping windows and
reduced document. In the first strategy, we split
documents into overlapping windows of the maxi-
mum allowed size K. The segments overlap for a
length K /2. At decoding time, segments are input
in order, and we construct the final graph by joining
all graphs from different segments. In the second
strategy, we use two networks. The mention-span
network is the previously described overlapping
model, and we use it for predicting the first graph.
For the second network, we reduce the document
by including only the tokens of candidate mention-

spans, separated by a special token. This network
refines the initial graph for the following iterations.

The experiments show improvements over the
relevant baselines and state-of-the-art. They also
indicate that the models reach the best solution in a
maximum of three iterations. Given that we predict
the graph at once for each iteration, our model’s
complexity is lower than the baselines. Our contri-
butions are the following:

* We propose a novel modeling approach to
coreference resolution using a graph structure
and multi-level iterative refinement.

* We propose two iterative graph refinement
models that can predict the complete entity
coreference structure of a document.

* We show improvements over baseline models
and the relevant state-of-the-art.

The rest of the paper is organized as follows.
Section 2 presents a summary of coreference reso-
lution approaches related to this paper. Section 3
briefly describes the fundamentals of state-of-the-
art approaches. In Section 4, we define entity men-
tions and their coreference links as a graph, and
fomulate the task as a sequence-to-graph problem.
In Section 5, we present our iterative refinement so-
lution to global modelling of the coreference graph,
and in Section 6, we present two proposed architec-
tures to address the resulting computational issues.
Sections 7, 8 and 9 contain the experimental setup,
results and discussion, respectively. Finally, Sec-
tion 10 draws the conclusions of this paper.

2 Related Work

The first approaches to coreference resolution (CR)
were rule-based systems (Lappin and Leass, 1994;
Manning et al., 2014), but eventually, they were out-
performed by machine learning approaches (Aone
and William, 1995; McCarthy, 1995; Mitkov, 2002)
due to annotated corpora’s creation. In genral, there
are three coreference approaches : mention-pair,
entity-mention, and ranking models. Mention-pair
models set coreference as a binary classification
problem. The initial stage is the mention detection,
where the input is raw text, and the output is the
locations of each entity mention in the text. Men-
tion detection is done as an independent task in
a pipeline model (Soon et al., 2001) or as part of
an end-to-end model (Lee et al., 2017). The next
stage is the classification of mention pairs. At first,
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the best classifiers were decision trees (Soon et al.,
2001; McCarthy, 1995; Aone and William, 1995),
but later, neural networks became the SOTA. The
final stage is reconciling the pair-wise decisions to
create entity chains, usually by utilizing greedy al-
gorithms or clustering approaches. Entity-mention
models focus on maintaining single underlying en-
tity representation for each cluster, contrasting the
independent pair-wise decisions of mention-pair ap-
proaches (Clark and Manning, 2015, 2016). Rank-
ing models aim at ranking the possibles antecedent
of each mention instead of making binary decisions
(Wiseman et al., 2016). An alternative modeling
approach is to perform clustering instead of classi-
fication (Fernandes et al., 2012).

SOTA models for CR are mostly based on Lee
et al. (2017). They introduced the first end-to-end
model that jointly optimizes mention detection and
coreference resolution tasks. These neural network-
based models also simplify the mention input rep-
resentation to be word embedding vectors, instead
of the traditional pipeline of different linguistic fea-
ture extraction tools such as part-of-speech (POS)
tagging and dependency parsing. The following
models proposed improvements over this work.
(Lee et al., 2018) improved the previous model
by introducing higher order inference so the en-
tity’s mention representation will get iteratively
updated with the weighted average of antecedent
representations, where the weights are the predic-
tions from the model at the previous iteration. This
contrasts with our approach in that we iterate over
the whole coreference link graph and we perform
discrete decisions at each iteration. Fei et al. (2019)
use reinforcement learning to directly optimize the
model on the evaluation metrics. Joshi et al. (2019)
uses BERT embeddings (Devlin et al., 2019) as
input. Joshi et al. (2020) introduced a new Span-
BERT embedding model, which is shown to outper-
form BERT for the CR task. Xu and Choi (2020)
showed that higher order inference has low impact
on strong models such as SpanBERT. Toshniwal
et al. (2020) proposed a bounded memory model
trained to manage limited memory by learning to
forget entities. Finally, Wu et al. (2020) formulated
the problem of coreference resolution as question-
answering and trained a model for span prediction.
This model has the advantage of being pretrained
with larger data-sets from the question-answering
task.

3 Baseline: Neural Coreference
Resolution

Neural coreference resolution, as formulated in
(Lee et al., 2017, 2018), is a mention-pair approach.
It uses an exhaustive method defining mentions as
any text span of any size in a document. There,
a document D represents a sequence of tokens of
size N. The objective is to assign an antecedent
y; to each of the M text spans m; in D. The
set of possible antecedents of the span m; is de-
noted as Y (7). This set contains all text spans
with index less than ¢, plus a null antecedent e,
Y(i) = {€,mq,...,m;j—1}. The null antecedent is
assigned when: (a) the span is not an entity men-
tion, (b) the span is the first mention of an entity
in the document. The final mention clusters are
constructed greedily by grouping connected spans
based on the model predictions during decoding
time.

The model is trained to learn a conditional proba-
bility distribution over documents p(y1, ..., yn|D),
assuming independence among each decision of
antecedent assignment y;, as follows:

M
p1, - ym|D) = [[pwilD) ()
=1

In (Lee et al., 2018), the probability distribution
p(y;|D) is inferred over T iterations of the model
over the same input document. At each iteration
t, the span representations are updated with the
weighted average of all possible antecedents at time
t — 1 where the weights are given by the probability
distribution of the model at time ¢ — 1. They called
this model high-order coreference resolution since
each mention representation considers information
from its probable antecedents.

The training optimization is done using cross-
entropy. Given that a mention-span m; can have
more than one true antecedent, the loss considers
the sum of probabilities of all true antecedents in
the annotated data:

M
log H Z p(yi| D) ()

i=1y,€Y(:)NC(3)

where C(7) indicates the cluster of mention-spans
that includes m; in the annotated data. If the span
does not belong to any cluster or all its antecedents
have been pruned, then the span is assigned to the
null cluster C(7) = {€}.
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This model’s complexity is of the order O(N4),
where N is the document length. The complex-
ity is computed by considering all possible text
spans M of the document, so O(M) = O(N?).
Then, it considers all possible combinations of
span-antecedents O(M?). The model prunes spans
and candidate antecedents to predetermined maxi-
mum numbers in order to maintain computational
efficiency.

4 Graph Modeling

We propose to model the set of coreference links
of a document in a graph structure where the nodes
are tokens! and the edges are links of different
types. Given a document D = [z1, ..., zy] of size
N, the coreference graph is defined as the matrix
G < NNVXN of links between tokens. Here, the
relation type between two tokens, z; and z;, is
encoded with integers and is denoted as g; ; €
{0,1,2}. We define three relation types: (0) no
link, (1) mention link, and (2) coreference link, as
illustrated in Figure 2.

Mention links This type of link serves to identify
mentions. We define mention links in two different
manners depending on whether the graph is an
input or output of the model, for functional reasons.
When the graph is an input G*", there is a directed
link from each mention’s token to the mention head,
including the head to itself. When the graph is the
model’s output G°“, there is only one directed link
from the last token of the mention-span to the first
token. Both encoding methods define a mention-
span uniquely, even when having nested mentions;
every mention has a unique start-end combination
and a unique head. The model utilizes the output
for prediction, so it is simpler to predict one single
link, whereas, in the input, the model uses links to
all tokens to provide a more direct representation
of the role of every token in the mention.

Mention heads We simplified the head identifi-
cation process by considering the first token of a
mention span as the head. Although this method
is naive, experiments show that this approximation
works well enough in practice. However, as some
spans can potentially have the same first token in
case of nested mentions, we fix this issue by assign-
ing the next token as the head if the first is already

'The tokenization of the words in the document, and thus
the nodes of the graph, are defined by the input format of the
relevant pre-trained Transformer model.

the head of any other mention. Investigating alter-
native approaches to mention head identification is
future work.

Coreference links This type of link defines the
relationship between a mention and each of its an-
tecedents. We also define coreference links in two
different manners depending on whether the graph
is an input or output of the model. When the graph
is input, there is a link from a mention head token to
the head of each mention in the same cluster. When
the graph is a model’s output, the mention should
be connected to at least one of its antecedents. If
the mention has no antecedent, or corresponds to
the first mention of an entity in the text, then it is
connected to a null antecedent . We use all pos-
sible connections between mentions in an entity
cluster for the input so that the model receives a di-
rect input for each coreference relationship. On the
other hand, we consider that predicting at least one
connection of the mention to its cluster is sufficient
to specify the output graph.

The objective is to learn the conditional prob-
ability distribution p(G|D). This distribution is
initially approximated by assuming independence
among each relation g; ; as:

N i
p(GID) = [T ] p:

i=1j=1

D) 3)

The probability p(g; ;|D) is split in two cases: one
for mention links p,, and the other for coreference
links p.. The mention link probability is defined as:

pm(9ij=1|D) = o(Wy, - [hi, hi]) (4

where W,,, is a parameter matrix, and h; and h;
are the hidden state representations of the tokens
x; and x; respectively. This probability indicates
whether there is a mention starting at position j
and ending at position ¢ of the document D. The
optimization is done using binary-cross-entropy
l0SSy,.
The coreference link probability is defined as:

exp(We - [hi, hy])
Zj’GA(z’) exp(We - [hi, hj])
)
where W is a parameter matrix, and h; and h; are
the hidden state representations of the tokens x;
and x; respectively. Similar to the baseline, we
denote A(7) as the set of all candidate antecedents
of x;. This set contains all mention heads with

pc(gi,jzz‘D) =
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an index less than 4, plus a null head €, A(i) =
{€,2r | k < i and x, € H(D)}, and H(D) is the
set of all candidate mention heads in the document.
The optimization is done with cross-entropy loss.
Given that a mention-span m; can have more than
one true antecedent, the loss considers the sum of
probabilities of all true antecedents in the annotated
data (as in Equation(2)):

loss. = log H Z

i€H(D) jeY(i)nC(4)

pe(9i,i|D)  (6)

where C(i) indicates the annotated cluster of
mention-spans that includes m; in the annotated
data. If the mention does not belong to any clus-
ter, then the span is assigned to the null cluster
C(i) = {€}. The final loss is the sum of [oss,,, and
loss,.

The token’s hidden state representations
{h1,..,hn} are the last hidden layer of a Trans-
former model. @ We use various pre-trained
Transformer models to initialize the weight
parameters, then fine-tune for the coreference task.

5 Iterative Refinement

The strong independence assumption made in Equa-
tion (3) does not reflect the real scenario and could
lead to poor performance. Therefore, we use an
iterative refinement approach to model interdepen-
dencies between relations, similar to G2GT (Mo-
hammadshahi and Henderson, 2021). Under this
approach, the model makes 7' iterations over the
same document D. At each iteration ¢, the pre-
dicted coreference graph G is conditioned on the
previously predicted one GG;—1. The model’s con-
ditional probability distribution is now defined as
follows:

N 1
p(G'D,G" ) = [ pleslD. G @

i=1j=1

This means that the graph should be input to the
Transformer model (Vaswani et al., 2017). Follow-
ing (Mohammadshahi and Henderson, 2021), the
graph is encoded by inputting an embedding for the
type of each relation into the self-attention function
of the Transformer :

Attention(Q, K, V, Ly, L,) =

Q- (K + Ly)T
Vd

softmax ) (V+Ly,) (8)

L, = E(Gi_1) - W,
Ly = E(Gi—1) - Wy,

where

where E is a matrix of embeddings which encode
the types of links in the graph, as illustrated in
Figure 2. Thus, the relationship between a pair of
tokens is encoded as an embedding vector which
is input when computing the attention function for
that pair of tokens. Wp, W, are weight matrices
that serve to specialize E'(G;_1) to be either key or
value vectors. The complexity of our model is of
the order of O(N? x T'), where N is the document
length, and 7' is the number of refinement iterations
of the model.

To illustrate the iterative refinement of a graph,
Figure 3 shows an example of two iterations of the
model. The mention links are indicated with solid
line arrows and the coreference links with dotted
arrows. The initial graph matrix Gé” is full of zeros,
so no connections are drawn. The first predicted
graph G$“* only has mention-links because initially
there were no mention heads to be connected. This
graph is transformed to serve as input Gi" for the
next iteration. Finally, during the second iteration,
the model predicts the coreference graph G$“*. The
model can continue iterating for a maximum of T’
times.

6 Architectures

There exists in practice a maximum length for en-
coding a document due to limited hardware mem-
ory. In this section, we describe two strategies to
manage this issue: overlapping windows and re-
duced document. In the experiments we also report
results for a naive strategy of truncating the doc-
uments at the maximum segment length of K for
both training and testing.

6.1 Overlapping Windows

Here, we split the documents into overlapping seg-
ments of the maximum size K, with an overlap of
K /2 tokens. The segments are encoded individ-
ually in our G2GT model. During training, each
segment is treated as an independent sample. How-
ever, during decoding, the segments are decoded in
order. The subgraph corresponding to the overlap-
ping part is input to the next segment. The union
of the segmented graphs forms the final graph.

6.2 Reduced Document

This model has two parts; one to detect mentions
and the other to perform coreference resolution.
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Figure 3: Example of iterations with G2GT.
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‘ Graph Transformer (Mention Detection) ‘

A young Parisian who goes in search of a gypsy singer, as his father use to listen to her songs.

Figure 4: Example of iterations with G2GT in two stages.

The mention detection is similar to the previously
described model. The coreference resolution part
receives a shorter version of the document as input.
The complete model is described in the following:

Mention Detection This Transformer is non-
iterative so it corresponds to the definition in Equa-
tion (3). To encode the document, we apply over-
lapping windows, as in the previous section. For
prediction, we used the soft-target method pro-
posed in (Miculicich and Henderson, 2020). This
method enables the model to increase the recall
of detection. Given that the candidate mentions
will be fixed for the coreference resolution part, we
need to detect most of them here.

Coreference Resolution This part is a G2GT
with iterative refinement. The input is a shorter
version of the document obtained by concatenating
the tokens from candidate mention-spans with a
separation token in between and removing all other
tokens. To maintain coherence in the document,
we modify the token input representation to the
sum of three vectors: (a) a token embedding, (b) an
embedding of the token’s position in the original

document, so we retain information of distance be-
tween mentions, and (c) the token’s contextualized
representation obtained from the mention detection
part where the original document is encoded. This
second part predicts only coreference links, but the
input graph contains both candidate mentions and
coreference links. The set of candidate mentions
remains the same across all iterations of this second
part, but the mentions are refined in the sense that
the final output only includes the mentions which
are involved in the final coreference links.

Figure 4 shows an example of this architecture
with one iteration over a document. The mention
links are indicated with solid line arrows and the
coreference links with dotted arrows. The first
model predicts the graph of mention-spans G°“.
This graph is transformed into the input format
for the next model G¥*. Then, the second model
predicts the graph of coreference G¢“*. Note that
this coreference resolution model can continue it-
erating for T' times. The final coreference graph
is the output after the final iteration of the second
model. The final set of mentions is only a sub-
set of the mention candidates output by the first
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Train Dev. Test Total Model Iter. MUC B3 CEAF,, Avg F1
# documents 2,802 343 348 3,493 G2GT T=2 1757 684 65.2 69.8
# words 1.3M 160K 170K 1.6M BERT-base T =3 769 693 66.0 70.7
Avg. length 464 466 488 458 truncated T=4 1712 697 66.3 71.0
# entity changes/clusters 35K 45K 45K 44K T=5 712 697 66.3 71.0
# coreference links 120K 14K 15K 150K G2GT T=2 806 698 67.4 72.6
# mentions I55K 19K 19K 194K BERT-base 7T'=3 816 71.0 686 73.7
overlap T=4 815 709 68.7 73.7
Table 1: Dataset statistics and splits. T=5 814 706 68.7 73.5
G2GT T=2 1792 76.1 68.5 71.6
BERT-base 7'=3 80.0 69.6 70.2 73.3
model, namely those mentions which participate in reduced T=4 3819 701 712 4.4
T=5 819 701 71.2 74.4

coreference links.

7 Experimental Setting

7.1 Dataset

We use the CoNLL 2012 corpus (Pradhan et al.,
2012). It contains data from diverse domains e.g.,
newswire, magazines, conversations. We experi-
ment only with the English part. Table 1 shows the
statistics of the dataset; the average length per doc-
ument does not exceed 500 words. We pre-process
the text to extract sub-word units (Sennrich et al.,
2016) with BERT tokenizer (Wu et al., 2016). We
map the positional annotation of mentions from
words to sub-words and retain this mapping for
back transformation during evaluation.

7.2 Model configuration

We use the implementation of Wolf et al. (2019)?
of ‘BERT-base’, ‘BERT-large’ (Joshi et al., 2019)
and ‘SpanBERT-large’ (Joshi et al., 2020). All
hyper-parameters follow this implementation un-
less specified otherwise.

Training The G2GT considers an independent
loss for each different refinement iteration. There is
no back-propagation between refinement iterations
because the model makes discrete decisions when
predicting the graph for the next refinement step.
There are two stopping criteria for the refinement:
(a) when a maximum number of iterations 7' is
reached, or (b) when there are no more changes in
the graph, G; = G¢_1. This criterion is for both
training and testing. Our models are trained with a
maximum segment length of X' = 512 and a batch
size of 1 document. We use Adam (Kingma and
Ba, 2014; Wolf et al., 2019) optimizer with a base
learning rate of 2e—3 and no warm-up. As our
graphs are directed, we use only the lower triangle
of G for predictions. The components of the re-
duced models are trained independently. The coref-

https://huggingface.co/transformers/

Table 2: Refinement iterations 7' on the development
set (CoNLL 2012).

erence resolution follows the currently described
training schema. The mention detection model has
no iterative refinement step and follows the training
schema of the span scoring soft-target approach de-
scribed in (Miculicich and Henderson, 2020), with
p=0.1.

Evaluation At evaluation time, we map back all
sub-word units to words and reconstruct the docu-
ment in CoNLL 2012 format. We use the precision,
recall, and F1 score calculated in three different
manners: MUC that counts the number of links
between mentions, B? that counts the number of
mentions, and CEAF that counts the entity clus-
ters. We did paired bootstrapping re-sampling for
significance test following (Koehn, 2004).

8 Results Analysis

This section describes the results of various base-
lines and our models. First, we analyze the opti-
mum number of refinement iterations, and then we
show results using the best models.

Table 2 shows the performance of our G2GT
models when varying the maximum number of re-
finement iterations 71" from 2 to 5 (1T'=1 is mention
detection only). The results are in terms of the
F1 score of the three coreference metrics and the
average. All three implementations shown in the
table perform the best when using 7'=4. There
is a significant decrease in performance when the
graphs are not refined, 7'=2, showing the impor-
tance of modelling the interdependencies between
coreference relations.

Table 3 shows the evaluation results on the test
set in terms of precision (P), recall (R), and F1
score for each metric. The last column displays the
average F1 of the three metrics. The first section
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MUC B3 CEAF,,
Model 1 R F1 P R F1 P R F1 | Avg. F1
Clark and Manning (2015) 76.1 694 726 | 656 560 604 | 594 530 56.0 63.0
Wiseman et al. (2016) 775 698 734 | 668 570 615 | 62.1 539 577 64.2
Clark and Manning (2016) 792 704 746 | 699 580 634 | 635 555 592 65.7
Lee et al. (2017) 784 734 758 | 686 61.8 650 | 62.7 59.0 60.8 67.2
Fei et al. (2019) 854 779 814 | 779 664 71.7 | 70.6 663 684 73.8
Xu and Choi (2020) 859 855 857 | 790 789 79.0 | 76.7 752 759 80.2
Wau et al. (2020) 886 874 88.0 | 824 8.0 822|799 783 79.1 83.1
Baseline (Lee et al., 2018) 814 795 804 | 722 695 70.8 | 682 67.1 67.6 73.0
+ BERT-base (Joshi et al., 2019) 804 823 814 | 696 738 71.7 | 69.0 685 68.8 73.9
+ BERT-large (Joshi et al., 2019) 847 824 835 | 765 740 753 | 741 698 719 76.9
+ SpanBERT-large (Joshi et al., 2020) 85.8 84.8 853 | 783 779 781 | 764 742 1753 79.6
G2GT BERT-base truncated 784 779 781 | 696 710 703 | 668 673 67.0 71.8
G2GT BERT-base overlap 81.2 828 8.0 | 698 736 71.6 | 696 693 694 74.4
G2GT BERT-base reduced 834 83.1 832 | 70.1 737 719 | 72.1 70.1 710 75.4
G2GT BERT-large truncated 80.1 79.2 796 | 713 71.0 71.1 | 69.1 68.8 689 73.2
G2GT BERT-large overlap 835 832 833 | 745 741 743 | 752 70.1 72.6 76.7
G2GT BERT-large reduced 84.7 83.1 839 | 76.8 740 754 | 753 70.1 726 77.3
G2GT SpanBERT-large overlap 85.8 849 85.3 | 78.7 78.0 783 | 764 745 754 79.7
G2GT SpanBERT-large reduced 859 86.0* 859 | 79.3* 794" 793* | 76.4 759* 76.1* | 80.5*

Table 3: Evaluation on the test set (CoNLL 2012). = significant at p < 0.01 compared to (Joshi et al., 2020),
significant at p < 0.05 compared to (Xu and Choi, 2020)

of the table exhibits scores of different corefer-
ence resolution systems from the literature. The
second section shows the result of the ‘Baseline’
(Lee et al., 2018) system described in Section 3.
This model uses ELMo (Peters et al., 2018) instead
of BERT to obtain token representations. Baseline
plus ‘BERT-base’, ‘BERT-large’ (Joshi et al., 2019)
and ‘° SpanBERT-large’ (Joshi et al., 2020) corre-
spond to the baseline using those pretrained repre-
sentations. We copy all these values from the orig-
inal papers. The last section of the table presents
scores of our graph-to-graph models with iterative
refinement. ‘truncated’ is our model with no spe-
cial treatment for document length; the documents
are truncated at the maximum segment length of K.
‘overlap’ and ‘reduce’ are the models described in
Section 6.

As expected, pre-training with SpanBERT re-
sults in better scores than with BERT, and BERT-
large is better than BERT-base. Not surprisingly,
‘G2GT BERT-base truncated’ and ‘G2GT BERT-
large truncated’ perform poorly in comparison to
the baseline because their information is incom-
plete. For BERT-base, both the ‘overlap’ and ‘re-
duce’ models have better scores than the compara-
ble baseline. For BERT-large and SpanBERT, the
‘overlap’ model has similar scores to the baseline,
but the ‘reduce’ model consistently improves over
the baseline.

Preliminary experiments with G2GT ‘overlap’
in a pipeline approach, where mention detection
is performed before coreference, showed that it is
not better than in a joint approach showed here.
Overall, our G2GT ‘reduce’ method consistently
shows the highest scores across all the models for
each pre-trained model. Our models do not surpass
SOTA (Wu et al., 2020) (shown in grey), but as
mentioned before, this SOTA model is also trained
on the much more abundant data from the question-
answering task, and so it is not directly comparable
to our model. We leave the issue of incorporating
additional data into the training of our model to
future work.

9 Discussion

These results support our claim that coreference
resolution benefits from making global coreference
decisions using document-level information. First,
refinement of coreference decisions using global in-
formation about other coreference decisions clearly
improves accuracy, as indicated by the improved
scores for models with more than one coreference
iteration in Table 2. Second, the model which is
able to combine information from the entire doc-
ument, G2GT ‘reduce’, is clearly better than the
model which performs the task on large windows
of text and then merges the results, G2GT ‘over-
lap’. We believe that the benefits of full-document
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iterative refinement will extend to other discourse-
level phenomena, and that the G2GT architecture
will be an effective way to achieve this benefit.

One issue with our method is the necessity to iter-
atively pass the input through an expensive encoder
model more than once. However, the number of
iterations needed is small, and results in significant
improvement.

The length management methods would not
be necessary if we had more efficient pre-trained
Transformer models or larger-memory GPU hard-
ware which could handle longer sequences. How-
ever, the computational cost of very large Trans-
formers will always be an issue, so in general there
is a need to address the issue of how to reduce
the number of inputs when modelling phenomena
which require large contexts, such as coreference
resolution. This paper contributes towards address-
ing this general issue.

10 Conclusion

We proposed a G2GT model with iterative refine-
ment for coreference resolution. For this purpose,
we define a graph structure to encode coreference
links contained in a document. That enables our
model to predict the complete coreference graph
at once. The graph is then refined in a recursive
manner, iterating the model conditioned on the
document and the graph prediction from the pre-
vious step. This allows global modelling of all
coreference decisions using all document-level in-
formation, but it introduces computational issues
for longer documents. We experimented with two
methods to manage long documents and maintain
computational efficiency. The first method encodes
the document in overlapping segments. The second
method reduces the set of tokens which are input.

The evaluation shows that both methods can out-
perform a comparable baseline, and that the second
method has better performance than the first one
and than all other comparable models. This exper-
iment shows that global decisions and document-
level information are useful to improve coreference
and thus should not be ignored. It also shows that
the models can benefit from increasingly powerful
pre-trained language models, BERT-base (Devlin
et al., 2019), BERT-large (Devlin et al., 2019), and
SpanBERT (Joshi et al., 2020).

By empirically showing the benefits of making
global decisions and using document-level informa-
tion in coreference resolution, this work motivates

further work on this topic. In addition, the model
designs developed in this work provide a viable
approach to addressing the related issues. Address-
ing the computational issues with modelling large
documents in Transformers is an area of active
research, and our proposed methods could be im-
proved in future work.
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