
Findings of the Association for Computational Linguistics: ACL 2022, pages 2705 - 2718
May 22-27, 2022 c©2022 Association for Computational Linguistics

Generalized but not Robust? Comparing the Effects of Data Modification
Methods on Out-of-Domain Generalization and Adversarial Robustness

Tejas Gokhale∗ Swaroop Mishra∗ Man Luo∗
Bhavdeep Singh Sachdeva Chitta Baral

Arizona State University
{tgokhale, srmishr1, mluo26, bssachde, chitta}@asu.edu

Abstract
Data modification, either via additional train-
ing datasets, data augmentation, debiasing,
and dataset filtering, has been proposed as
an effective solution for generalizing to out-
of-domain (OOD) inputs, in both natural lan-
guage processing and computer vision litera-
ture. However, the effect of data modification
on adversarial robustness remains unclear. In
this work, we conduct a comprehensive study
of common data modification strategies and
evaluate not only their in-domain and OOD
performance, but also their adversarial robust-
ness (AR). We also present results on a two-
dimensional synthetic dataset to visualize the
effect of each method on the training distribu-
tion. This work serves as an empirical study to-
wards understanding the relationship between
generalizing to unseen domains and defending
against adversarial perturbations. Our findings
suggest that more data (either via additional
datasets or data augmentation) benefits both
OOD accuracy and AR. However, data filter-
ing (previously shown to improve OOD accu-
racy on natural language inference) hurts OOD
accuracy on other tasks such as question an-
swering and image classification. We provide
insights from our experiments to inform future
work in this direction.

1 Introduction

Deep neural networks have emerged as a widely
popular architectural choice for modeling tasks in
multiple domains such as (but not limited to) com-
puter vision (Yuille and Liu, 2021), natural lan-
guage processing (Hochreiter and Schmidhuber,
1997; Vaswani et al., 2017), and audio (Hannun
et al., 2014). While these models are highly capa-
ble of learning from training data, recent studies
show that they are quite prone to failure on new
test sets or under distribution shift (Taori et al.,
2020), natural corruptions (Hendrycks and Diet-
terich, 2019), adversarial attacks (Goodfellow et al.,
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2015), spurious correlations (Beery et al., 2018),
and many other types of “unseen” changes that
may be encountered after training. This shortcom-
ing stems from the i.i.d. assumption in statistical
machine learning which guarantees good perfor-
mance only on test samples that are drawn from an
underlying distribution that is identical to the train-
ing dataset. For instance, digit recognition models
trained on the black-and-white MNIST training
images are almost perfect (> 99% accuracy) on
the corresponding test set, yet their performance
on colored digits and real-world digits from street
number plates is less than 75%. Similarly, state-of-
the-art NLP models have been shown to fail when
negation is introduced in the input (Kassner and
Schütze, 2020). These findings pose a significant
challenge to the practical adoption of these models
and their reliability in the real-world.

To test model performance beyond the tradi-
tional notion of in-domain (ID) generalization, two
prominent ideas have emerged: out-of-domain
(OOD generalization) a.k.a. domain generaliza-
tion1, and adversarial robustness. The OOD gener-
alization objective expects a model which is trained
on distributionD to perform reliably on unseen dis-
tributions De, e ∈ {1, . . . , n}, that differ from D.
For a trained classifier f∗, OOD accuracy on previ-
ously unseen distribution De is defined as:

acceOOD = E
(x,y)∼De

[I(f∗(x) = y)] (1)

To define adversarial robustness, consider an input
x and a true label y. For a classifier loss function
`, a loss-maximizing perturbation δ∗ within ∆ε (an
ε-bounded neighborhood of x) is defined as:

δ∗x = max
δ∈∆ε

`(f∗(x+δ),y). (2)

The second idea is that of adversarial robustness.
Recent work on adversarial examples has revealed

1In this paper we use these two terms interchangeably.
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the vulnerability of deep neural networks against
small perturbations of the original data. Adversar-
ial robustness in such under this setting is defined
as the accuracy of the classifier on adversarial sam-
ples x+δx, where the perturbation lies within an
`p norm bound: ||δx||p < ε.

accrob = E
(x,y)∼D

I(f∗(x+δx) = y). (3)

In the context of text classification, the norm-bound
can also be in the form of small character-level or
word-level perturbations such as swapping, insert-
ing, or deleting characters or words. In essence,
adversarial robustness measures the invariance of
the classifier to small perturbations of the input.

Various methods have been developed that either
improve OOD generalization or improve adversar-
ial robustness. Notable among these are techniques
that modify the distribution of the training dataset.
In this paper, we focus on three major data modifi-
cation techniques – the use of additional datasets
(also known as multi-source training), data aug-
mentation, and data filtering; in addition we also
consider model-based debiasing techniques which
do not alter the data distribution explicitly. We
study the performance of these methods on three
representative tasks – natural language inference
(NLI), extractive question answering (QA), and
image classification (IC).

Our first aim in this paper is to understand
whether the increase or decrease in OOD gener-
alization by each method over the naive baseline
(standard training on the source dataset) is consis-
tent across tasks. To further conduct fine-grained
analysis, we also analyze the effect of these meth-
ods on in-domain (ID) accuracy on the test set for
each task, since in the ideal case improvement in
OOD performance should not come at the cost of
in-domain accuracy.

Recent work seeks to understand the relation-
ships between in-domain and out-of-domain perfor-
mance: for instance, Miller et al. (2021) empirically
show that ID and OOD performance are strongly
correlated, Raghunathan et al. (2020); Yang et al.
(2020) show a trade-off between robustness and ac-
curacy for adversarially trained models. However it
is not clear how methods designed for OOD gener-
alization affect robustness. This is largely because
work on domain generalization reports only IID
and OOD metrics, and work on robustness reports
only ID and robustness metrics. Our second aim
is to understand the effect of these generalization

methods on adversarial robustness.
In addition to our experiments on NLP and

vision tasks, we also provide an experiment on
a synthetic binary classification dataset where
points lie in a 2-dimensional feature space and are
separated by concentric circles into class labels.
This setting allows us to visualize the effect of data
modification techniques on the training distribution
and the resulting performance.

Our findings can be summarized as follows:

• More data benefits OOD generalization,
• Data filtering hurts OOD generalization, and
• Data filtering significantly hurts adversarial

robustness on all benchmarks.

These findings and our additional analysis raise
new questions for robustness and domain general-
ization research. Significant among these are the
importance of both diversity and number of train-
ing samples for inductive bias and generalization
guarantees, the problems associated with data fil-
tering in terms of robustness, and the importance
of a comprehensive set of evaluation metrics that
could be adopted for future work.

2 Categorization of Domain
Generalization Methods

In this section, we provide a categorization of meth-
ods that are typically used as baselines for domain
generalization. We briefly explain the method and
provide relevant related work in which these ideas
are used as methods for domain generalization.
Throughout this paper, we will refer to the orig-
inal training distribution as the “source” and the
out-of-distribution datasets as the “targets”.

Single-Source Training (SS) refers to the
“vanilla” baseline which is trained only on the
source dataset, without any dataset modification.
SS utilizes no other information apart from the
single source dataset D and updates parameters θ
of classifier f to minimize the risk on the source
using approaches such as ERM (Vapnik and Cher-
vonenkis, 1991).

minimize
θ

E
(x,y)∼D

`(f(x; θ),y). (4)

Multi-Source Training (MS). This method is
identical to SS except that additional training
datasets D′ are used for risk minimization.

minimize
θ

E
(x,y)∼D∪D′

`(f(x; θ),y). (5)
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Usually D′ are designed for the same task as D
but may have different styles, characteristics, or
sources of collection. For instance, while both
SNLI (Bowman et al., 2015) and MNLI (Williams
et al., 2018) are datasets for natural language infer-
ence with identical class labels, SNLI was collected
from image captions, while MNLI was collected
from Open American National Corpus2.

Gulrajani and Lopez-Paz (2020) provide an ex-
tensive comparitive study of models trained for
multi-source domain generalization for image clas-
sification and surprisingly find that if multiple
source domains are available, ERM is empirically
the best approach as compared to specially de-
signed DG methods such as meta-learning (Li et al.,
2018a), learning domain-invariant features (Ganin
et al., 2016), invariant risk minimization (Arjovsky
et al., 2019), etc. These findings have also been
observed on text classification experiments in (Koh
et al., 2021). Hendrycks et al. (2020a) show that
pre-training transformer architectures on diverse
data leads to higher OOD accuracies on multiple
tasks such as semantic textual similarity, sentiment
classification, reading comprehension and natural
language inference.

Data Augmentation (DA). When additional
training distributions are not directly available,
transformations of samples in D using pre-defined
augmentation functions can be used to create D′
and train the model. Such data augmentation func-
tions are typically derived from existing knowledge
about the invariance of the task w.r.t. certain trans-
formations. For instance, for image classification,
addition of small noise, small translations, scal-
ing, etc. are common data augmentation functions,
since they do not change the true label for the im-
age. Similarly, for text inputs, synonyms of words
are commonly used since they do not change the
semantics of the sentence. NLP data augmenta-
tion techniques include UDA (Xie et al., 2020),
EDA (Wei and Zou, 2019), and back-translation
for question answering (Longpre et al., 2019).

Data Filtering (DF). Dataset filtering has been
previously explored for quality control, such as,
removing noise and artifacts to curate and improve
publicly sourced datasets. However, there has been
recent interest in considering DF as a method for
bias reduction and generalization. This idea can be
traced back to work by Zellers et al. (2018, 2019),

2https://www.anc.org/

that proposed DF as an algorithmic method to avoid
annotation artifacts and spurious correlations dur-
ing dataset construction. AFLite (Bras et al., 2020)
extended this idea to a generic filtering methodol-
ogy that can work without any pre-defined rules
or strategies. Instead, AFLite operates by utiliz-
ing several weak learners (such as support-vector
machines) trained over small subsets to identify
samples that are easy to classify. It is argued that
such samples are more likely to carry biases, and
as such, could be removed. AFLite suggests that
reduction of a dataset to even 10% of the original
size can boost OOD accuracy on NLI. In the vi-
sion domain, similar ideas have been proposed con-
currently, including REPAIR (Li and Vasconcelos,
2019) and RESOUND (Li et al., 2018b), in which
instead of completely removing samples, biased
samples are assigned smaller weights. However
these methods require a prior knowledge of the
bias variable. Liu et al. (2021) have recently pro-
posed a simple approach which upweights samples
which have higher loss – this is shown to improve
worst-group accuracy without having access to the
bias variable.

Model De-biasing (DB). Methods under this cat-
egory do not directly alter the training dataset, but
instead resort to changes in the modeling technique
– these changes can be in terms of the optimization
function, regularization, additional auxiliary costs,
etc. The main idea in DB is to utilize known biases
(or identify unknown biases) in the data distribu-
tion, model these biases in the training pipeline, and
use this knowledge to train robust classifiers (Clark
et al., 2019; Wu et al., 2020; Bhargava et al., 2021).
In the image classification literature, there is grow-
ing consensus on enforcing a consistency on differ-
ent views (or augmentations) of an image in order
to achieve debiasing (Hendrycks et al., 2020c; Xu
et al., 2020; Chai et al., 2021; Nam et al., 2021).
Unlike DF, model de-biasing does not directly al-
ter the training distribution, but instead allows the
model to learn which biases to ignore.

3 Toy Example: Concentric Circles

We begin with a simple two-dimensional example
to illustrate our experimental setting and to show
how each method affects the distribution of the
training set. Consider the set of points shown in
Figure 1 where the points belong to two class la-
bels (either 0 or 1) and are seen to lie on concentric
circles. Points with label 0 are closer to the origin,
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Figure 1: Our toy experimental setting consists of
points in R2 belonging to two classes (0/1). This il-
lustration shows the discrepancy between the source
dataset (SS) and the out-of-domain dataset (OOD).

while points with label 1 are closer to a distance of
1 from the origin. Our aim is to start with the single
source dataset and train the model to generalize on
the out-of-domain (OOD) dataset. An important
thing to note here is that the source dataset contains
a subset of points with label 0 (orange) clustered
around (0.4, 0.0) and a subset with label 1 clus-
tered around (−1, 0.0). This implies that class-0
is biased towards x > 0, while class-1 is biased
towards x < 0. In total, our SS dataset consists of
10000 samples, of which 20% are biased.

We apply three data modifications: additional
source (MS), gaussian data augmentation (DA)
∼N (0, 0.1), and data filtering (AFLite) which re-
duces the dataset size to 10%. Note that we do not
show model debiasing (DB) here, since it does not
alter the data distribution. Figure 2 shows the effect
on the data distribution. The most striking is the ef-
fect of DF which removes all samples previously in
the biased clusters near (0.4, 0.0) and (−1.0, 0.0).

Equipped with these resulting datasets, we train
a linear SGD classifier with log-loss and evaluate
the robustness of each model in terms of in-domain
and OOD accuracies. We also evaluate adversarial
robustness by using standard PGD attacks. Results
are shown in the textboxes in Figure 2. It can
be seen that data filtering significantly hurts both
OOD generalization and robustness. This finding
motivates our experiments to understand the effect
of each method for NLP and vision tasks.

4 Experiments

In this section, we present three tasks and their cor-
responding experimental setup, evaluation protocol
and our findings. A summary of methods belong to

each category is provided in Table 1 and the abbre-
viations SS, MS, DA, DB, DF are used henceforth.

4.1 Natural Language Inference (NLI)

NLI is the task of determining whether a hypoth-
esis is true (entailment), false (contradiction), or
undetermined (neutral) given a premise.

Methods. We use RoBERTa as the backbone
model for each method and SNLI (Bowman et al.,
2015) as our source training corpus. A model
trained with expected risk minimization (ERM)
on SNLI alone, forms our single-source (SS) base-
line. A model trained with a combination of SNLI
and MNLI (Williams et al., 2018) forms our multi-
source (MS) baseline. We apply EDA (Wei and
Zou, 2019) to augment our training dataset with
100% of additional data to train a DA model. The
LMH debiasing method from Clark et al. (2019)
represents our DB model. For data filtering, we
use AFlite (Bras et al., 2020) to filter out 90% of
the SNLI training data, and use the remaining 10%
data to train our DF model – this setting is based
on the experiments from (Bras et al., 2020).

Evaluation Protocol. We report accuracy on the
SNLI test set (IID), and to evaluate generalization,
we report accuracy on NLI diagnostics (Wang
et al., 2018), Stress test evaluation (Naik et al.,
2018a) and HANS (McCoy et al., 2019a). We use
two metrics for evaluating robustness:
• model-based robustness uses BAE adversarial

attack (Garg and Ramakrishnan, 2020), imple-
mented using TextAttack (Morris et al., 2020),
and reports robustness as number of queries (se-
quential perturbations) needed to fool the model.

• model-free robustness uses six pre-defined op-
erations to transform SNLI test inputs into ad-
versarial examples. These six methods are:
CLARE (Li et al., 2021a), character-swap (Pruthi
et al., 2019), Checklist (Ribeiro et al., 2020),
EDA (Wei and Zou, 2019), counter-fitted em-
beddings (Emb) (Alzantot et al., 2018a).

Results. Table 2 shows the performance of each
method in terms of in-domain and out-of-domain
accuracy. We observe that four methods all im-
prove the generalization performance on average
but decrease the in-domain performance. Espe-
cially, DF method is the best in terms of OOD
accuracy, but is the worst in terms of in-domain
performance. We also see a trend that four meth-
ods improve the generalization in all sets of NLI-
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Figure 2: This figure illustrates the effect of data modification techniques on the training distribution. The leftmost
figure shows the training distribution in the single-source setting. The introduction of a second dataset or Data-
augmentation (done using small perturbations of source samples with Gaussian noise) makes the distribution more
diverse in the multi-source (MS) and data augmentation (DA) setting respectively. On the other hand, data filtering,
in order to remove spurious correlations from the dataset, removes points from certain sectors of the distribution.
The effect of each strategy on OOD generalization and robustness is shown below each plot.

Method Category Tasks

Natural Language Inference Question Answering Image Classification

SS (Single-Source ERM) SNLI NQ (Kwiatkowski et al., 2019) MNIST
MS (Multi-Source ERM) SNLI + MNLI NQ + SQuAD+NQA+HQA+SQA+TQA MNIST + USPS
DA (Data Augmentation) EDA (Wei and Zou, 2019) QG (Chan and Fan, 2019) M-ADA (Qiao et al., 2020)
DB (Model De-biasing) LMH (Clark et al., 2019) Mb-CR(Wu et al., 2020) RandConv (Xu et al., 2020)
DF (Data Filtering) AFLite (Bras et al., 2020) AFLite (adapted for QA) AFLite

Table 1: List of method categories and specific methods that we use under each task setting in nour experiments.
Details for each can be found in Section 4 for the corresponding task.

Diagnostics and HANS, while all four methods do
not show improvement on generalization on Dis-
traction and Noise sets of Stress dataset.

Table 3 shows the robustness evaluation. We
see that except for DF, all methods improve the
robustness under both model-based and model-free
evaluation. MS improves the robustness in all trans-
formations except for EDA. DA achieves the best
robustness by model-based evaluation but is not
consistent in terms of different transformations of
model-free evaluation. DB improves the robustness
in terms of every transformation and achieves the
best robustness in terms of average of model-free
evaluation. DF significantly hampers the model-
free robustness with a drop in all transformations.

4.2 Question Answering (QA)

We focus on extractive QA. Given a passage (or
“context”) and a question, the task is to extract the
answer span from the passage.

Methods. We use BERT (Devlin et al., 2019)
as the backbone model for each method. We use
MRQA (Fisch et al., 2019) which is a collection of
12 publicly available multi-domain QA datasets –

with Natural Questions (NQ) (Kwiatkowski et al.,
2019) as the source dataset. SQuAD, NewsQA,
HotpotQA, SearchQA, and TriviaQA are used as
additional datasets for multi-source training. Simi-
lar to NLI, we use EDA for DA by applying EDA
on the question. We apply the augmentation to all
samples in the training set and combine them with
the original set to train a DA model. For model de-
biasing (DB), we use Mb-CR approach (Wu et al.,
2020), where a teacher and bias models are trained
a priori, and are used for debiasing.

We modify AFLite for our QA task of span pre-
diction, since AFLite was originally designed for
classification tasks. To do so, we first randomly
divide the training set into 10 subsets (or folds)
S1:10. For k∈{1, . . ., 10}, we pick Sk as the held-
out test set, and train models on the rest, and obtain
10 such models. At test time, models are used for
predicting an answer by only looking at the context
(without access to the question) – this allows us to
identify strong spurious correlations in the dataset.
Based on the predictions, samples are sorted on the
basis of their F1 score. A higher F1 score implies
that the model is more likely to answer the question
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Method In-Domain
Acc. (%)

OOD Acc. (%)
NLI-Diagnostics Stress Test HANS

Avg
Kno. Lex. Log. PAS Comp. Distr. Noise Lex. Subs. Consti.

SS 89.6 51.8 65.7 57.8 72.6 77.9 73.5 79.8 88.4 28.2 21.7 61.74
MS 87.8 52.1 66.8 57.8 72.8 79.6 72.4 79.2 92.0 33.6 26.7 63.30
DA 87.2 52.1 66.0 58.1 72.6 79.6 71.8 79.2 92.8 32.8 26.4 63.14
DB 81.8 52.4 66.0 58.4 72.8 79.3 71.8 79.5 92.2 33.8 27.5 63.37
DF 62.6 53.9 66.5 58.7 68.9 79.1 72.0 79.5 94.1 46.3 38.5 65.75

Table 2: NLI Result: In-domain (IID) accuracy and out-of-domain generalization (OOD) on the NLI benchmark
using SNLI as source dataset. 3 See Table 1 for method abbreviations.

Method Model Based
#Num Queries

Model Free Accuracy (%)

CharSwap EasyData Embedding WordNet CheckList CLARE Avg

SS 53.56 81.3 72.0 81.9 77.0 89.4 76.3 79.65
MS 54.44 81.5 71.6 82.0 78.2 89.2 77.5 80.00
DA 55.06 77.7 74.1 80.7 80.2 86.6 80.5 79.97
DB 54.82 81.5 72.4 82.3 78.0 89.2 77.0 80.07
DF 51.13 65.2 56.8 66.2 62.5 72.3 62.5 64.25

Table 3: NLI Result: Comparison of robustness in terms of model-based evaluation (number of queries needed to
fool the model) and model-free (accuracy on adversarial transformations). 2 See Table 1 for method abbreviations.

without even knowing the question. We retain 10%
samples with the lowest F1 scores – these represent
the task since the model is not likely to predict the
correct answer without knowing the question.

Evaluation Protocol. We report exact-match
(EM) accuracy for MRQA. To evaluate the gen-
eralization performance, we use six OOD develop-
ment sets from MRQA: DROP, RACE, BioASQ,
TextbookQA, RelationExtraction, and DuoRC. For
robustness, we use the “Morphues” attack (Tan
et al., 2020) on the question as the model-based
evaluation, the attack method is similar to NLI.
Model-free methods are the same as NLI.

Results. Table 4 shows the performance of each
method in terms of in-domain and out-of-domain
accuracy. We observe that two methods, MS and
DB, improve the generalization performance on
each out-of-domain dataset and also improve the
in-domain performance. The improvement of MS
is larger than DB. DA improves on some out-of-
domain datasets but not all, and it also improves the
in-domain performance. DF dramatically reduces
both out-of-domain and in-domain datasets.

Table 5 shows that except for DF, all meth-
ods improve over SS for both model-based and
model-free robustness evaluation. MS, DA, and DB
improve the robustness in all transformations of
model-free evaluation as well as the model-based
evaluation, where MS achieves the best perfor-

mance in model-based and model-free evaluation.
DF significantly hampers the model-free robustness
with drop in all transformations, meanwhile, the
model-based robustness also drops.

4.3 Image Classification

We conduct our experiments on the standard do-
main generalization benchmark “Digits”, which
is a collection of handwritten digit classification
datasets belonging to 10 classes (digits 0–9). Fol-
lowing standard practice(Volpi et al., 2018), we
train models on 10000 images from MNIST (Le-
Cun et al., 1998) as the source, and use SVHN (Net-
zer et al., 2011), SYN and MNIST-M (Ganin and
Lempitsky, 2015) as the OOD datasets.

Methods. We use DigitNet (Volpi et al., 2018) as
our backbone image classifier architecture. Our SS
baseline uses MNIST for training; MS uses MNIST
and USPS (Denker et al., 1988). For data aug-
mentation we rely on M-ADA (Qiao et al., 2020)
which is a perturbation-based min-max algorithm
to create augmented data. Our debiasing method
is RandConv (Xu et al., 2020) which utilizes a ran-
dom convolutional layer to generate novel views
of each input image, and a KL-divergence based
loss function that encourages the classifier to pre-
dict consistent predictions for each version of the
image. This leads to the model being debiased on
spurious features like background, texture, or color
of digits. We use AFLite as our DF method.
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Method In-Domain
EM. (%)

OOD EM. (%)

DROP RACE BioASQ TBQA R.E. DuoRC Avg

SS 63.76 20.09 19.29 33.91 28.61 62.82 32.71 32.91
MS 65.07 26.88 27.45 45.01 40.52 72.86 43.44 42.69
DA 63.84 19.23 19.73 32.31 28.54 61.97 32.31 32.35
DB 64.58 20.83 19.73 34.64 31.20 63.64 35.98 34.34
DF 49.56 9.25 11.72 20.94 19.63 45.28 21.45 21.38

Table 4: QA Result: Source (IID) accuracy and domain generalization (OOD) on the Question Answering bench-
mark with NaturalQuestions as source dataset. EM: Exact-Match. See Table 1 for method abbreviations.

Method Model Based
#Queries

Model Free EM. (%)

CharSwap EasyData Embedding WordNet CheckList CLARE Avg

SS 19.55 60.29 52.17 61.21 58.41 63.22 61.92 59.54
MS 21.97 62.22 52.65 63.22 59.84 64.42 63.55 60.98
DA 21.91 60.88 54.52 62.02 59.82 63.42 62.36 60.5
DB 20.40 61.62 53.16 62.35 59.32 64.03 63.01 60.58
DF 19.19 47.97 42.48 48.55 47.19 49.34 48.72 47.38

Table 5: QA Result: Comparison of robustness in terms of model-based evaluation (number of queries needed to
fool the model) and model-free (accuracy on adversarial transformations). 2 See Table 1 for method abbreviations.

Method
In-Domain
Acc. (%)

OOD Acc. (%)

MNIST-M SVHN SYNTH Avg

SS 98.40 58.09 33.85 45.94 45.96
MS 98.54 59.79 33.87 48.42 47.36
DA 99.30 67.94 42.55 48.95 53.15
DB 98.86 87.67 54.95 63.37 68.66
DF 95.27 51.04 22.07 27.83 33.65

Table 6: Source (in-domain) accuracy and domain gen-
eralization (OOD accuracy) on the Digits benchmark
with MNIST-10k as source dataset.2

Evaluation Protocol. We report IID accuracy on
the MNIST test set and generalization as the accu-
racy on our OOD datasets. For evaluating adver-
sarial robustness we use Foolbox (Rauber et al.,
2017) and use 10 attack methods (both `2 and `∞
versions of FGSM, PGD, BIM, AUN, and Deep-
Fool). Robustness is calculated as the accuracy
for 20 values of ε between [0, 2], and is plotted as
robustness curves for visualization, along with the
average values for area under the curve (AUC).

Results. Table 6 shows the performance of each
method in terms of in-domain and OOD accuracy.
MS, DA and DB, improve the generalization perfor-
mance on each OOD dataset and also improve the
in-domain performance, where DB displays best
generalization capacity. DF dramatically reduces
the OOD performance with significant reduction
across all datasets; the in-domain accuracy also
decreases. Figure 3 shows robustness (accuracy)

and area under the curve (AUC) for each plot. It
can be observed that DF is worse than SS for all
10 attack variants. We observe that DA and DB are
better than SS, and the drop for DF is the largest.

5 Analysis

Based on the results of three tasks, we have the
following observations about the performance of
each method compared to the SS baseline:

• MS increases OOD accuracy on all three tasks
and robustness on two tasks (NLI and QA).

• DA increases OOD on two tasks (NLI and IC)
and robustness on all three tasks.

• DB increases OOD on three tasks and robust-
ness on two tasks (NLI and QA).

• DF decreases OOD on two tasks (QA and IC)
and robustness on all three tasks.

Decrease in NLI in-domain accuracy is seen
for all methods, even though these lead to increase
in OOD accuracy. This suggests that the training
dataset (SNLI) has a large shift w.r.t. OOD datasets.

More data implies more OOD generalization:
While this trend is observed for both MS and DA,
there is one anomaly – DA for the QA task leads to
marginal decrease compared to SS (a difference of
0.56%). This finding is aligned with Longpre et al.
(2019), who report no significant effect of data aug-
mentation (back translation) on OOD performance
for question answering. This points to the need
for improving data augmentation techniques in QA.
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Figure 3: Evaluation of adversarial robustness (using 10 attack methods) for MNIST10k.
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Figure 4: Comparison between SS and DF models
trained with different percentages of MNIST10k.
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Figure 5: Pearson Correlation between OOD accuracy
and robustness for SS and DF models on MNIST10k.

On the other hand, the performance drop due to DF
is significantly large for QA (11.53%).

Decrease in MNIST robustness: For MNIST,
the DA method (M-ADA (Qiao et al., 2020)) is the
best in terms of robustness and also improves OOD
accuracy. M-ADA is an “adversarial data augmen-
tation” method, i.e., it uses a min-max objective to
find loss-maximizing perturbations and uses these
perturbations as augmented data. It is therefore
intuitive that such a method would do well on the
adversarial robustness metric (although robustness
evaluation was not reported by Qiao et al. (2020)).

Marginal Improvement on Robustness: From
the results, it is easy to see that the improvement
on OOD is more noticeable than robustness, for ex-
ample, MS improves OOD performance by ∼10%,
but improves only by ∼1% under model-free eval-
uation. While this observation is reasonable since
each method is designed to improve the generaliza-
tion, new methods that improve both generalization
and robustness should be encouraged.

5.1 Correlation between Adversarial
Robustness and OOD Generalization

Our experiments reveal the alarming finding that
across the board, DF reduces adversarial robust-
ness. To investigate further, we conduct an anal-
ysis on the Digits benchmark and compare SS
and DF when trained with equal amounts of data
({10%, 20%, . . . , 100%}). Note that for SS the
data are sampled randomly, while for DF the data
are obtained via AFLite data filtering. Results are
shown in Figure 4. It can be observed that the
OOD accuracy increases as the size of the dataset
increases, and is greater for SS than DF. To un-
derstand how an increase in OOD accuracy affects
robustness, we also compute the robustness values
at each size of training data, and compute the Pear-
son correlation coefficient for each attack method
– positive correlation implies that as OOD accu-
racy increases, robustness also increases. Figure 5
shows clear evidence in favor of positive correla-
tion; interestingly, SS has higher correlation for `2
attacks, while DF is higher for `∞ attacks. The evi-
dence is clear: OOD generalization increases with
the size of the dataset and adversarial robustness is
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positively correlated with OOD generalization.
Our experiments show that the size of the train-

ing set directly affects both robustness and general-
ization. While removing 90% data increased OOD
accuracy in NLI, the effect was the exact opposite
for QA and MNIST. The key idea in domain gener-
alization is that the test distributions are unknown
and little information about them is available apart
from the fact that there is no task shift. Without this
prior knowledge, deciding whether (or how much)
to filter a dataset is a challenging task.

6 Related Work

In Section 2 we have provided relevant work that
falls into one of our five modeling categories. Here,
we discuss additional literature on robustness and
generalization and new efforts towards dataset cre-
ation, benchmarks, and evaluation.

Generalization Benchmarks. Hendrycks et al.
(2020b) have constructed a robustness benchmark
for multiple language understanding tasks by split-
ting training sets from existing benchmarks accord-
ing to topics, styles, and vocabulary; this has been
subsequently used to study robustness of model
rankings (Mishra and Arunkumar, 2021). Bench-
marks have also been constructed to study dataset
artifacts and generalization capabilities of mod-
els (Mishra et al., 2020a,b; Mishra and Sachdeva,
2020). MRQA (Fisch et al., 2019) is a bench-
mark for evaluating domain generalization of ques-
tion answering (reading comprehensive) models.
MRQA contains 6 datasets each for training, devel-
opment, and evaluation. For image classification,
many benchmarks have been proposed to evalu-
ate domain generalization, such as PACS (Li et al.,
2017), OfficeHome (Venkateswara et al., 2017),
Digits (Volpi et al., 2018), and WILDS (Koh et al.,
2021) which is a compendium of domain general-
ization bechmarks for tasks such as image classifi-
cation, text sentiment and toxicity prediction.

Corruption Robustness. Hendrycks and Diet-
terich (2019) introduced ImageNet-C and CIFAR-
C to test robustness along corruptions such as
weather, noise, blur, and digital artifacts, and
ImageNet-P which tests robustness against small
tilts and changes in brightness. MNIST-C was in-
troduced by Mu and Gilmer (2019) for similar cor-
ruptions of handwritten digit images.

Adversarial and Contrastive Sets. Generation
of adversarial examples (Jia and Liang, 2017;

Ribeiro et al., 2018; Iyyer et al., 2018; Alzantot
et al., 2018b) and approaches to defend against
word substitution (Jia et al., 2019) have been ex-
plored. Contrastive examples have been introduced
as a means for evaluation, for example, manually
crafted contrast sets for textual entailment (Gard-
ner et al., 2020) or template-based (McCoy et al.,
2019b; Glockner et al., 2018; Naik et al., 2018b).
Model-in-the-loop dataset creation methods have
also been proposed for various NLP tasks (Nie
et al., 2020; Arunkumar et al., 2020; Kiela et al.,
2021) and visual question answering (Sheng et al.,
2021; Li et al., 2021b).

7 Discussion

Recently, Miller et al. (2021) have empirically
shown linear trends between in-distribution and
out-of-distribution performance on multiple image
classification tasks, across various model architec-
tures, hyper-parameters, training set size, and du-
ration of training. They also show that there are
certain settings of domain shift under which the
linear trend does not hold. Our work empirically
shows that while data filtering may benefit OOD
generalization on the NLI benchmark, this does not
hold for other tasks such as image classification
and question answering. This suggests that data
filtering may benefit generalization in certain types
of domain shift, but not on others. Concurrently,
Yi et al. (2021) have theoretically shown that mod-
els robust to input perturbations generalize well
on OOD distribution within a Wasserstein radius
around the training distribution. Our empirical ob-
servations in this paper in both vision and language
domains, agree with the theory of Yi et al. (2021).

In this work, we conduct a comprehensive study
of methods which are designed for OOD generaliza-
tion on three tasks: NLI, QA, and IC. We evaluate
each method on in-domain, OOD, and adversarial
robustness. 4 Our findings suggest that more data
typically benefits both OOD and robustness. Data
filtering hurts OOD accuracy on two out of three
tasks, and also hurts robustness on all three tasks.
In context of our findings and work by Miller et al.
(2021); Yi et al. (2021), we recommend that meth-
ods designed either for robustness or generalization
should be evaluated on multiple aspects and not on
the single metric that they are optimized for.

4Code for our experiments will be released at https:
//github.com/tejas-gokhale/gen-vs-rob.
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Broader Impact

One underlying assumption behind using large
datasets for training (or pre-training) vision and
language models is that larger datasets increase the
likelihood of obtaining a diverse set of samples to
reduce overfitting. However, recent studies (Ben-
der et al., 2021; Stanovsky et al., 2019) serve as
cautionary tales when employing uncurated inter-
net data to train large language models, and discuss
how large data does not necessarily imply that mod-
els will learn the dievrse distribution. At the same
time, the inverse (small data aids diversity) is also
not true (as shown by this paper) and comes with its
own problems – for instance, Figure 2 shows that
dataset filtering can lead to much larger changes
in the data distribution beyond notions of propor-
tionality and fairness. As such, the decision on
how many and what samples to remove can also
introduce its own set of biases. Data curation is a
challenging problem and needs further task-specific
study since the concepts of bias and fairness often
depend on the task definition and specifications of
ideal outcomes. Insights from this paper could help
researchers and practitioners in choosing appropri-
ate approaches for improving generalization and
robustness.
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