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Abstract

Recently pre-trained multimodal models, such
as CLIP (Radford et al., 2021), have shown ex-
ceptional capabilities towards connecting im-
ages and natural language. The textual repre-
sentations in English can be desirably trans-
ferred to multilingualism and support down-
stream multimodal tasks for different lan-
guages. Nevertheless, the principle of multi-
lingual fairness is rarely scrutinized: do mul-
tilingual multimodal models treat languages
equally? Are their performances biased to-
wards particular languages? To answer these
questions, we view language as the fairness
recipient and introduce two new fairness no-
tions, multilingual individual fairness and mul-
tilingual group fairness, for pre-trained mul-
timodal models. Multilingual individual fair-
ness requires that text snippets expressing sim-
ilar semantics in different languages connect
similarly to images, while multilingual group
fairness requires equalized predictive perfor-
mance across languages. We characterize the
extent to which pre-trained multilingual vision-
and-language representations are individually
fair across languages. However, extensive ex-
periments demonstrate that multilingual repre-
sentations do not satisfy group fairness: (1)
there is a severe multilingual accuracy dispar-
ity issue; (2) the errors exhibit biases across
languages conditioning the group of people in
the images, including race, gender and age.

1 Introduction

Recently pre-trained vision-and-language represen-
tations (Lu et al., 2019; Tan and Bansal, 2019; Su
et al., 2020; Li et al., 2020a; Chen et al., 2020;
Li et al., 2020b; Gan et al., 2020; Yu et al., 2021;
Desai and Johnson, 2021; Radford et al., 2021;
Cho et al., 2021) have received a surge of atten-
tion. Such pre-trained multimodal representations
have shown great capabilities of bridging images
and natural language on the downstream tasks, in-
cluding image captioning (Laina et al., 2019), im-

age retrieval (Vo et al., 2019), visual QA (Zhou
et al., 2020), text-to-image generation (Ramesh
et al., 2021), etc. While it is commonly recognized
that the multimodal representations trained on En-
glish corpora can be generalized to multilingualism
by cross-lingual alignment (Lample and Conneau,
2019; Conneau et al., 2020), recent studies criti-
cize that the multilingual textual representations
do not learn equally high-quality representations
for all the languages (Wu and Dredze, 2020), espe-
cially for low-resource languages. Hu et al. (2020)
emphasize the need for general-purpose represen-
tations to seek equal performance across all lan-
guages. However, there is still a lack of a nuanced
understanding of how multilingual representations
fare on vision-and-language benchmarks.

This paper provides a novel perspective for an-
alyzing the principles of multilingual fairness in
multimodal representations from two aspects. First,
existing frameworks for measuring multilingual
biases usually emulate text sources in different lan-
guages, which may have ambiguous meanings in
varied contexts (González et al., 2020). In con-
trast, we leverage visual grounding as the anchor
to bridge text in different languages—text snip-
pets in different languages but with similar seman-
tics should be equitably relevant to the same im-
ages. Second, we equate a language as an aggre-
gated group of individuals (e.g., French as a group
of French sentences) in the terminology of fair-
ness. As Choudhury and Deshpande (2021) has
pointed out, “each language has a distinct identity,
defined by its vocabulary, syntactic structure, its ty-
pological features, amount of available resources,
and so on.” The notions of fairness, such as in-
dividual fairness (Dwork et al., 2012) and group
fairness (Zemel et al., 2013; Chouldechova, 2017;
Hardt et al., 2016; Zhu et al., 2022), can be natu-
rally adapted by comparing the multimodal model’s
treatment across languages.

Therefore, we introduce two fairness notions:
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multilingual individual fairness presumes similar
outcomes between similar language expressions
grounding on the same images; multilingual group
fairness postulates that multimodal models should
induce similar predictive performance across differ-
ent languages. These fairness notions are formal-
ized to compare the multimodal model’s treatment
of one language versus another for either the indi-
vidual target or the aggregated group.

Our contributions are as follows:

• We formally define the individual fairness and
group fairness notions in the multilingual and
multimodal setting (see Section 3 and Section 4).

• We theoretically investigate the extent to which
pre-trained multilingual vision-and-language
representations are individually fair. However,
our negative result demonstrates that individual
fairness does not suffice to prevent accuracy dis-
parity at the group level (see Section 5.1).

• Extensive experimental results reveal the accu-
racy disparity across different languages. Our
results also imply that the choice of visual repre-
sentations affects the group fairness metrics (see
Section 5.2).

• We further demonstrate the prevalence of group
rate disparity when language is coupled with
multi-dimensional groups associated with im-
ages, such as race, gender, and age (see Sec-
tion 5.3). Our empirical exploration provides
new directions for mitigating biases under the
multilingual setting.

2 Background

Notation. Throughout the paper, we use the up-
percase letter I to denote images and T to denote
text. We use the superscript (L) in T (L) to rep-
resent the text is in language L. When we are
jointly using T (L) and T (L′) for two languages L
and L′, we often assume that they share the same
semantic meanings. Lowercase letters v and t are
used to denote the visual and textual representation
vectors encoded by model M , respectively. To sim-
plify the presentation, we use S(·, ·) to generally
represent the similarity between images and text.
Specifically, S(I, T ) refers to the similarity scores
predicted by the modelM between the image I and
text T , while S(v, t) refers to the cosine similarity
between vectors v and t.

2.1 Multilingual CLIP

Our work is established on the multimodal setting.
The universal framework for matching images and
text (Mogadala et al., 2021) is to encode them into
representation vectors in a shared representation
space, such that the distance between visual and
textual vectors can measure the similarity between
images and text. Throughout this paper, our analy-
sis mainly focuses on CLIP (Contrastive Language-
Image Pre-training Radford et al., 2021), a rep-
resentative pre-trained multimodal representation
model that achieves state-of-the-art performances
on zero-shot transfer tasks.

CLIP is a multimodal model trained on large-
scale images with natural language supervision col-
lected from the internet. It comprises an image
encoder and a text encoder that can embed images
and text into visual and textual representation vec-
tors. One desirable property is that the CLIP model
takes the cosine similarity between image and text
features to measure the log-odds of the correspond-
ing image-text pairs, and is trained to maximize
their similarity by a contrastive learning objective.
In light of this capability, CLIP can predict the
similarity, denoted by S(I, T ), between arbitrary
images I and natural language text snippets T .

In order to adapt the flexible CLIP model to
multilingualism, Multilingual CLIP (Carlsson and
Ekgren, 2021) uses a pre-trained multilingual lan-
guage model, such as M-BERT (Devlin et al.,
2019), to take over the original text encoder in
English, and fine-tune the textual representation
vectors by cross-lingual alignment (Lample and
Conneau, 2019; Conneau et al., 2020). In this
setting, we use S(I, T (L)) to represent the simi-
larity between image I and text T (L) in language
L. Though the empirical evaluations in this pa-
per mainly focus on Multilingual CLIP, the exper-
imental approaches we adopt to arrive at the ob-
servations can be generalized to other pre-trained
multilingual vision-and-language representations.

2.2 Fairness Notions

The multilingual fairness notions developed in
this work is inspired by multiple fairness defini-
tions (Narayanan, 2018; Dwork et al., 2012) in the
algorithmic fairness literature. We will briefly intro-
duce these fairness notions in fair decision making
and instantiate them in the domain of multilingual
vision-and-language learning later.

Individual fairness, initiated by Dwork et al.
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(2012), requires that individuals who are similar
with respect to a task-specific similarity metric have
similar decision outcomes.

Group fairness definitions seek to provide fair-
ness guarantees based on group-level statistical
constraints, in the sense that they are evaluated
and enforced without reference to similarity mea-
sures. In the fairness literature, group fairness is
commonly framed in terms of protected groups G,
such as race, gender, and age. For instance, de-
mographic parity (Zafar et al., 2017) requires that
the outcomes are independent of the group mem-
bership, and equalized odds (Hardt et al., 2016)
essentially requires equal true positive and false
positive rates between different groups.

Principally, these fairness criteria are formulated
by comparing the treatment of one individual or
one group versus another. Our work will instantiate
the standard fairness notions by viewing language
as the recipient — we compare how the treatment
of one language differs from another.

2.3 Fairness in NLP

Many recent works (Choudhury and Deshpande,
2021; Hu et al., 2020; Pires et al., 2019; González
et al., 2020; Ross et al., 2021) scrutinize the ethical
issues raised in multilingual settings, albeit with
varying degrees of success. For instance, Zhao et al.
(2020) quantifies the presence of representational
biases in multilingual word embeddings by calcu-
lating the distance between targets corresponding
to different sensitive attributes. Huang et al. (2020)
evaluate group fairness violations among demo-
graphic groups on the task of hate speech detection,
but do not explicitly regard language as unique
group membership. Burns et al. (2020) studies the
performance degradation when multimodal models
are trained to support additional languages, and
tries to address the multilingual accuracy disparity
on the task of image-sentence retrieval. Our work
complements the fairness discourse in multilingual
NLP to the extent that we provide a novel perspec-
tive of studying multilingual fairness by viewing
language as the recipient of fairness notions.

Our work is also closely relevant to prior studies
on biases in vision-and-language tasks, including
visual semantic role labeling (Zhao et al., 2017),
image captioning (Burns et al., 2018; Tang et al.,
2021), and image search (Wang et al., 2021). No-
tably, Srinivasan and Bisk (2021) investigates the
gender bias associated with entities for pre-trained

representations. Compared to these works, we fo-
cus on generic fairness measures for multimodal
models and use visual grounding to bridge different
languages.

3 Multilingual Individual Fairness

For an ideal multilingual vision-and-language
model, text descriptions in different languages re-
ferring to similar semantic meanings should be
equally similar or dissimilar to the same grounding
images. We note that there are no language expres-
sions that are perfectly identical to each other in
real-world scenarios due to linguistic features. Nev-
ertheless, at least in a normal vision-and-language
task, multilingual models are desired to impose
equal treatment to different languages. For in-
stance, “this is a cat” (in English) and “das ist
eine Katze” (in German) should be similarly re-
lated to an image of a cat in image-text retrieval.
This intuition aligns with individual fairness in a
multilingual manner. In this section, we investi-
gate to what degree multilingual representations
are individually fair.

Individual fairness requires that similar people
should be treated similarly (Dwork et al., 2012). In
our multilingual setting, we require that the text
snippets expressing similar semantics in different
languages should be similarly related to the same
images. Taking the Euclidean distance function to
measure the distance between text features, we can
define α-multilingual individual fairness by:

Definition 1 (Multilingual Individual Fairness).
Given a set of image-text pairs {(I, T )}, a multi-
modal model M satisfies α-multilingual individual
fairness if for all (I, T ), for languages L and L′:

|S(I, T (L))− S(I, T (L′))| ≤ α‖t(L) − t(L
′)‖

where t(L) is the textual representation vector
yielded by M in language L.

Here, α is a parameter to control the ratio of
similarity gap to the text feature vectors’ distance,
and smaller α indicates the model is individually
fairer. Note that the similarity gap is at most 2,
because the range of cosine similarity is [0, 1]. In
general settings, S(I, T ) is measured by the cosine
similarity between the encoded visual vector v and
textual vector t.

Lemma 1. DenoteOρ(t) = {x | ‖x− t‖ ≤ ρ} to
be a closed ball of radius ρ > 0 and center t. Then
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for any visual representation vector v,

sup
t(L

′)∈Oρ(t(L))

0≤ρ<‖t(L)‖

|S(v, t(L′))− S(v, t(L))|

≤
√
2(1−

√
1− (

ρ

‖t(L)‖
)2) (1)

where S(·, ·) denotes the cosine similarity, t(L)

and t(L
′) are textual representation vectors for lan-

guages L and L′, respectively.
We defer the proof to Appendix A.1. Lemma 1

implies that when the distance between multilin-
gual textual representation vectors is bounded, the
similarity with images can be bounded in terms of
their distance. It is worth noting that the bounds
are independent of the visual representation vec-
tors. Nevertheless, the form of upper bound in The-
orem 1 is a bit sophisticated, and can be simplified
when ρ� ‖t(L)‖.
Theorem 2. When ‖t(L′) − t(L)‖ � ‖t(L)‖,

|S(v, t(L′))− S(v, t(L))| / ‖t
(L′) − t(L)‖
‖t(L)‖

.

Theorem 2 is a direct application of Lemma 1
when the distance between multilingual vectors is
small enough, and extends in many natural cases
to approximate the multilingual individual fairness
with α ≈ 1

‖t(L)‖ . The proof can be found in Ap-
pendix A.2. Theorem 2 implicates to what degree
the multimodal model satisfies individual fairness
when text snippets are well aligned between differ-
ent languages.

4 Multilingual Group Fairness

Distinct from individual fairness, multilingual
group fairness appeals to the idea that multimodal
models should achieve equivalent predictive per-
formance across different languages. From the per-
spective of representations, it is hard to carry out
this demand without well-defined tasks and met-
rics. Hence it is natural to ask how to define group
fairness in this scenario properly? In this section,
we shall answer this question by equating language
as a unique dimension of group membership relat-
ing to the text modality. We formulate the criteria
by equalizing the accuracy rates over different lan-
guages. We also observe that images are often
connected to people in protected or unprotected
groups. Given the image-text pairs, we consider
the accuracy disparity across different languages
conditioning the subgroup of images.

4.1 Equality of Accuracy across Languages

Given a datasetD consisting of ground-truth image-
text pairs {(Ii, Ti)} and each text can be in different
languages. The goal of a multimodal modelM is to
predict the similarity S(Ii, Tj) for any image Ii and
text Tj . Then the model matches T̂i for images Ii
by selecting the text with highest similarity scores,
i.e., T̂i = argmaxj S(Ii, Tj).

Acc(M) =
1

|D|
∑
D
1[T̂i = Ti] (2)

We use the superscript (L) to indicate the accuracy
Acc(L) is evaluated in language L. Next, we take
language as group membership and define multilin-
gual accuracy parity by equalizing accuracy across
languages.

Definition 2 (multilingual accuracy parity). A mul-
timodal model M satisfies multilingual accuracy
parity if Acc(L)(M) = Acc(L

′)(M) for all lan-
guages L, L′.

In practice, it is impossible to achieve accuracy
parity for all languages. Following (Hu et al.,
2020), we use

GapM (L,L′) = |Acc(L)(M)− Acc(L
′)(M)| (3)

to represent the cross-lingual gap for model M .

4.2 When Language Meets Groups in Images

The above discussion on group fairness considers
language as the sole group membership. In the
real-world image and text applications, the peo-
ple portrayed in the images are often associated
with protected groups. For instance, the face at-
tribute dataset (Liu et al., 2015) contains sensitive
attributes, such as race, age and gender. Let G
denote the group membership of images and Da
denote the subset of data examples D given G = a.
The accuracy of a multimodal model evaluated on
the images of subgroup a is defined as

Acca(M) =
1

|Da|
∑
Da

1[T̂i = Ti] (4)

When language is connected to images of differ-
ent groups, we can define accuracy disparity be-
tween group a and group b with respect to model
M within language L as

Disp
(L)
M (a, b) = |Acc(L)a (M)− Acc

(L)
b (M)| (5)
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Disp represents the group rate gap in a single lan-
guage. Mirroring multilingual accuracy parity, we
can define the multilingual group rate parity as
below.

Definition 3 (multilingual group rate parity). A
multi-modal model M satisfies multilingual group
rate parity if Disp(L)M (a, b) = Disp

(L′)
M (a, b) with

respect to groups a, b associated with images for
all languages.

Definition 2 and Definition 3 evaluate the fair-
ness of multilingual representations from diverse
aspects. More broadly, we may be interested in the
accuracy gap between different combinations of
languages and groups. A common case is that there
are only two protected groups (e.g. female and
male, young and old). Let pa =

|Da|
|D| and pb =

|Db|
|D|

represent the population proportions of group a and
group b respectively, satisfying pa + pb = 1. Then
we can decompose the cross-lingual cross-group
accuracy disparity as below:

Proposition 3. When there are only two protected
groups a and b, the following inequality holds for
any two languages L and L′

|Acc(L)a − Acc
(L′)
b | ≤ Gap(L,L′)

+ pb · Disp(L)(a, b) + pa · Disp(L
′)(a, b) (6)

The proof can be found in Appendix A.3. Propo-
sition 3 guarantees that the accuracy disparity be-
tween any combinations of languages and protected
groups can be upper bounded by a variety of fac-
tors, and implicates that we only need to focus on
cross-lingual gap and group rate gap measures to
assess multilingual group fairness. In what follows,
we will take a closer look at how the multilingual
CLIP model performs with compositions of lan-
guages and protected groups under these fairness
criteria.

5 Evaluations

In this section, we work with the pre-trained multi-
lingual CLIP (Carlsson and Ekgren, 2021) model
to study multilingual fairness. We validate the ex-
tent to which the model is individually fair across
different languages in Section 5.1. We characterize
the prevalence of multilingual group unfairness on
human faces in Section 5.2 and Section 5.3. These
empirical evaluations shed light on potential di-
rections for mitigating unfairness in multilingual
multimodal representations.

5.1 Multilingual Individual Fairness

The theoretical analysis on multilingual individual
fairness posed in Section 3 implies that the ratio of
similarity difference to their text feature distance
can be bounded by the reciprocal of the length of
text feature vectors. To verify the implication, we
conduct experiments on the Multi30K dataset (El-
liott et al., 2016).

Dataset. The Multi30K dataset (Elliott et al.,
2016) contains 31,014 Flickr30K (Young et al.,
2014) images and composes the translation and
the independent portions of English-German cap-
tion pairs. The German translations were collected
from professional English-German translators by
translating the English captions without seeing the
images, one per image. The independent portion
was independently annotated by German crowd-
workers after seeing the images instead of English
captions, five per image. Hence, the translated cap-
tions are strongly aligned in both languages, while
the independent descriptions may have distinct con-
text. We use 1,000 test images for our evaluation.
For the independent portion, we select the first En-
glish caption and the first German caption of the
five to pair with the image for a fair comparison.

Results. We embed each English-German cap-
tion pair into textual representation vectors and the
corresponding image into visual representation vec-
tors. We compute the Euclidean distance between
English-German text features, as well as the cosine
similarity with respect to the image features. We
plot their cross-lingual gap on the translation and
the independent portions in Fig. 1a and Fig. 1b, re-
spectively. For both portions, the blue dashed lines
represent the empirical upper bounds of the ratio
between similarity gap and text feature distance.

Unsurprisingly, we find out that the English-
German captions are more closely aligned on the
translation portion (the average textual feature dis-
tance is 1.86) than the independent portion (average
distance is 5.69). The similarity gaps regarding the
translation portion are below 0.06 in general, and
those regarding the independent portion are above
0.10 for many instances. The reason is apparent:
translated captions have more similar semantics
owning to the professional text-to-text translations,
while independent captions have more diverse ex-
pressions of the same images, even if they might
refer to the same content.

On the other hand, we observe that the slopes
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Figure 1: We empirically examine how does the multilingual CLIP fare on the translation and the indepen-
dent portions. Fig. (a) and (b): the x-axis represents the distance between English and German captions, the y-axis
represents the gap between their corresponding similarity scores, and the slope of blue dashed lines represents the
empirical α for multilingual individual fairness. Fig. (c): we evaluate the accuracy for image-text matching, and
find out that the independent portion incurs huge accuracy disparity compared with the translation portion.

of blue dashed lines in Fig. 1a and Fig. 1b are ap-
proximate to each other, i.e., the empirical α for
both portions are similar. This fact implies that the
multilingual CLIP model evaluated on two differ-
ent text corpora share a similar level of individual
fairness, even though the cross-lingual similarity
gaps are quite different. We also note that the em-
pirical upper bound of α are much smaller than the
theoretical upper bound 1

‖t(L)‖ in Theorem 2.

Although we have verified that multilingual mul-
timodal representations satisfy similar individual
fairness, we demonstrate that they violate group
fairness by evaluating their image-text matching
accuracy. As shown in Fig. 1c, English captions
dominate the Top-1 image-text matching accuracy
over German captions, with 4.8% higher on the
translation portion and 22.9% higher on the inde-
pendent portion. This observation delivers an im-
portant message for researchers who are interested
in learning fair representations (Ruoss et al., 2020):
individual fairness does not flatly prevent accuracy
disparity among different languages (Binns, 2020).

5.2 Multilingual Accuracy Disparity

Dataset. FairFace (Karkkainen and Joo, 2021) is
a face attribute dataset for the balanced race, gen-
der, and age groups. It categorizes gender into
two groups, including female and male, and race
into seven groups, including White, Black, Indian,
East Asian, Southeast Asian, Middle Eastern, and
Latino. For ages, we categorize the raw labels into
five groups: infants (0–2), children and adolescents
(2–19), adults (20–49), middle age adults (50–69),
and seniors (more than 70). We follow their origi-
nal data split and select the validation set consisting
of 10,940 face images for evaluation.

Languages. We analyze the multilingual group
fairness for 8 languages: Chinese (zh), English
(en), French (fr), German (de), Japanese (ja), Rus-
sian (ru), Spanish (es), and Turkish (tr). We select
English as the pivot language and write natural lan-
guage prompts in English. Then we translate them
into other languages: we first use Google Translate
and then recruit native speakers to rate the prompts
and fix any potential errors on Amazon Mechani-
cal Turk (see Appendix D for more details). The
rationale for only using English as the pivot lan-
guage is that the multilingual CLIP (Carlsson and
Ekgren, 2021) selects English as the pivot language
for aligning multilingual text embeddings.

Text Prompts. Following Radford et al. (2021),
we construct the text prompt by the template “A
photo of a {label} person”. Concretely, for gen-
der classification, we construct the text prompt “A
photo of a woman” when the gender attribute is
female, and construct “A photo of a man” other-
wise. For race classification, we construct the text
prompt by “A photo of a(n) {race} person”. Note
that Indian actually refers to South Asian ethnic
groups in the Fairface race taxonomy (Karkkainen
and Joo, 2021) but it can refer to Native Americans
as well. To avoid ambiguity, we replace “Indian”
by “South Eastern” to construct the prompts. For
age classification, we notice that the age attributes
in Fairface dataset are numeric values and use the
template “A photo of a person aged {age} years”
to construct text prompts.

Results. We probe the multilingual accuracy dis-
parity for race classification, gender classification,
and age classification, as shown in Fig. 2. We
use two different pre-trained image encoders for
extracting visual representation vectors, including
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(b) Gender classification
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(c) Age classification

Figure 2: Race, gender, and age classification accuracy across different languages. The languages are in
alphabetical order. Two different vision encoders for encoding image features are evaluated, including Vision
Transformer (ViT) (Dosovitskiy et al., 2021) and ResNet-50 (ResNet) (He et al., 2016).

Vision Transformer (Dosovitskiy et al., 2021) and
ResNet-50 (He et al., 2016). We observe that:

• Cross-lingual gap varies across different pro-
tected groups. The predictive accuracy for gen-
der classification is consistently higher than 90%
across all the languages. In contrast, the mul-
timodal model has relatively poor performance
and more considerable variance for race and age
classification. Furthermore, race classification
yields 24.66% accuracy disparity and age clas-
sification yields 34.47% accuracy disparity for
Vision Transformer. This implies that the huge
disparity may result from the poor predictive
performance of the model.

• Visual representations affect accuracy dis-
parity. For race classification, Vision Trans-
former features generally achieve higher ac-
curacy across all languages than ResNet-50
(34.82% vs. 26.83% on average) except for Rus-
sian. The standard deviation of Vision Trans-
former is higher than ResNet-50 (8.18% vs.
7.34%). The maximal accuracy gap for Vi-
sion Transformer is 30.40% between German
and Spanish, while the maximal accuracy gap
for ResNet-50 is 23.12% between German and
French. For gender classification, Vision Trans-
former dominantly achieves higher accuracy and
incurs less accuracy gap. For age classification,
the accuracy is moderately low for all languages.
However, Vision Transformer has 63.1% accu-
racy in Chinese while only 25.8% accuracy in
German, exaggerating the accuracy gap between
languages.

In Table 1, we present the complete results of Fig. 3
by compositions of gender and race groups across
different languages.
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Figure 3: Gender accuracy gap across different lan-
guages and racial groups. Black and Southeast Asian
people face significant larger gender gaps than other
racial groups in most languages.

5.3 Multilingual Group Rate Disparity

We evaluate multilingual group rate disparity for
gender classification on Fairface dataset. We follow
the same setup as described in Section 5.2 and
measure the gender gap given by Eq. (5), where a
is the composition of male and various race groups,
b is the composition of female and various race
groups. We defer the complete results to Table 1
in Appendix B. We try to answer the following
research questions:
• How do gender gaps differ across protected

groups? We plot the gender accuracy gap across
different languages and racial groups in Fig. 3. It
is clearly shown that Black and Southeast Asian
groups dominantly exhibit larger gender gaps
than other groups. We also observe that French
has a similar performance with English. We con-
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Table 1: Gender classification accuracy of FairFace images by race groups across different languages. We
note the maximal gender gap across races with underline and the maximal gender gap across languages in bold.
Taking English as the pivot language, we also highlight any amplified gap compared to English in red and any
mitigated gap in green.

East Southeast Middle
Language Gender White Black Indian Asian Asian Eastern Latino Average

English Female 95.1 90.9 94.5 95.2 96.0 96.0 94.2 94.6
Male 95.2 83.5 90.4 92.7 89.0 96.7 93.2 91.5
Disp 0.1 7.4 4.1 2.5 7.0 0.7 1.0 3.0

German Female 93.8 90.1 94.0 94.2 95.0 95.5 93.9 93.8
Male 95.6 85.4 92.0 93.6 89.8 97.2 93.9 92.5
Disp 1.9 4.7 1.9 0.6 5.2 1.7 0.1 1.3

French Female 95.0 90.4 94.6 95.0 96.3 95.7 94.2 94.5
Male 95.0 84.0 90.0 92.1 87.8 96.3 93.3 91.2
Disp 0.0 6.4 4.6 2.8 8.6 0.6 0.9 3.2

Japanese Female 94.5 90.6 94.4 94.7 95.7 95.7 94.1 94.2
Male 95.3 84.0 91.5 93.4 89.1 96.6 93.4 91.9
Disp 0.8 6.6 2.9 1.3 6.6 0.8 0.7 2.3

Turkish Female 93.9 90.0 93.8 94.6 95.3 95.5 94.1 93.9
Male 95.6 85.2 92.0 93.8 89.5 96.9 93.9 92.4
Disp 1.8 4.7 1.8 0.7 5.8 1.5 0.1 1.4

Russian Female 93.0 88.4 93.1 93.4 94.6 95.2 93.4 93.0
Male 96.4 87.6 93.2 94.5 92.0 97.5 95.0 93.7
Disp 3.4 0.8 0.2 1.1 2.6 2.3 1.6 0.7

Spainish Female 94.1 90.5 94.4 95.1 95.6 95.5 94.2 94.2
Male 95.5 84.4 91.2 93.2 89.4 96.8 93.7 92.0
Disp 1.5 6.1 3.1 1.9 6.2 1.3 0.5 2.2

Chinese Female 93.9 90.1 94.1 94.8 95.4 95.5 94.2 94.0
Male 95.5 84.9 91.8 93.7 89.5 96.9 93.9 92.3
Disp 1.7 5.2 2.3 1.1 5.9 1.5 0.3 1.7

jecture this is because English and French share
the same alphabet and similar syntactic struc-
tures. Besides, as shown in Table 1, English and
French have the largest race inequality regarding
gender gap—nearly zero gender gaps for White
but near the maximal gaps for Black.

• Are gender gaps amplified for different lan-
guages when compared with English? We re-
port the accuracy gap on gender classification
of FairFace images by race groups across dif-
ferent languages in Table 1. We take English
as the pivot language and examine whether the
accuracy gaps by race groups are amplified for
other languages. Compared with English, accu-
racy gaps for White and Middle Eastern groups
are generally amplified for other languages. On
the other hand, accuracy gaps are generally mit-
igated for groups including Black, Indian, East
Asian, Southeast Asian, and Latino groups. The
averaged cross-lingual gaps are mitigated for all

the languages except for French.

We also evaluate multilingual group rate disparity
for age classification. We composite gender and
age as the group membership. We plot the age
classification accuracy by female and male groups
across different languages in Fig. 4. The blue bars
indicate that the male group has higher accuracy
than the female group, while the orange bars indi-
cate that the female group has higher accuracy than
the male group. The heights of bars represent the
accuracy gaps between male and female groups. In
general, the male group has higher accuracy than
the female group. Especially, adults (20–49 years
old) consistently suffer huge gender gaps across
all the languages, with the largest gap 52.2% for
Japanese. It is worth noting that the numerals to
express ages are identical in text prompts for differ-
ent languages, e.g., “a person aged 20 to 49 years”
in English versus “eine Person im Alter von 20 bis
49 Jahren” in German. This controlled experiment
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Figure 4: Age classification accuracy across female and male groups for different languages. The blue bars
indicate that the male group has higher accuracy than the female group, while orange bars indicate that the female
group has higher accuracy. The heights of bars represent the accuracy gaps between male and female groups.

helps us better understand whether the identical nu-
meric digits have distinct meanings in multilingual
contexts. As shown in Fig. 4, although text prompts
in different languages share the same numerals of
ages, the yielding accuracy exhibits significant dis-
parity across languages. One prominent example is
that the predictive accuracy for infants (0–2 years
old) is 5.8% for English and 2.6% for French, but
89.4% for German and 91.6% for Japanese, imply-
ing the presence of significant cross-lingual accu-
racy gaps.

6 Conclusion and Limitation

Our work extends a growing body of fairness dis-
course in multilingual and multimodal learning to
explore how the multilingual fairness notions, char-
acterized by individual fairness and group fairness,
are formulated on the multimodal representations.
We stress that multimodal representations are indi-
vidually fair, but do not prevent accuracy disparity
across groups. Our extensive experimental results
reveal the negative impacts caused by carelessly ap-
plying pre-trained general-purpose multimodal rep-
resentations. Just one example of this, as discussed
in Section 5.3, is the significant disparities between
cross-lingual gender gaps occurred in age classifi-
cation. We believe the findings and insights gained
through this work can encourage future work to in-
vestigate how to mitigate multidimensional biases
in representation learning and prevent disparities
in the downstream decision-making process.

Our work also has limitations. This work does

not provide a thorough explanation on whether the
biases and disparities result from the multilingual
model itself, or from the datasets it is pre-trained
on. However, to give a convincing explanation, it
requires either access to large amounts of training
data with privacy concerns (the complete datasets
for training CLIP are not released yet), or ample
computational resources for reproducing the train-
ing process. This research question itself is impor-
tant and worth investigating further.

Broader Impact

This work provides insights into fairness in the con-
text of multilingual and multimodal representations.
We recognize potential ethical concerns that may
arise in the evaluation and address them below.

Firstly, the empirical evaluation for multilin-
gual group fairness adopts the categories of
protected groups introduced in the FairFace
dataset (Karkkainen and Joo, 2021). We are aware
that gender can be non-binary, and individuals can
be self-identified outside male and female. Some
terms of race attributes in the dataset, such as
Latino and Hispanic, are rooted in culture and
ethnicity and should not be treated as racial cate-
gories. In addition, facial images of low population
groups, including Hawaiian and Pacific Islanders
and Native Americans, are discarded during data
collection. The sensitive attributes in the original
FairFace datasets are identified and annotated by
human crowd workers. It is possible that the labels
of gender, race, and age contain implicit biases and
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noises. However, these ethical concerns arise from
the data collection of the FairFace dataset per se.
We anticipate that the methodology we adopted
to study multilingual fairness can still be general-
ized to other data source when more inclusive data
collections are available.

Secondly, image classification on the FairFace
dataset relies on human-crafted text prompts. The
fashion of prompt engineering can be dated from
pre-training image and text representations with
natural language supervision (Li et al., 2017; Rad-
ford et al., 2021). To avoid offensive and harmful
speech towards certain protected groups, we con-
struct the text prompts in a descriptive intent and a
neutral tone.

Finally, the intention for performing classifica-
tion with sensitive attributes is to validate the pres-
ence of biases in pre-trained representations rather
than to acquire the personal information of peo-
ple in the images. Both the evaluated pre-trained
models and the benchmark datasets are publicly
accessible, and we carefully follow their licenses
and agreements for usage. In this sense, we do not
foresee any data privacy or information security
issues.
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A Omitted Proofs

A.1 Proof of Lemma 1
Proof. Given by the definition of cosine similarity,
we have

|S(v, t(L))− S(v, t(L′))|

= | v · t(L)

‖v‖‖t(L)‖
− v · t(L′)

‖v‖‖t(L′)‖
|

=
|v · (‖t(L′)‖t(L) − ‖t(L)‖t(L′))|

‖v‖‖t(L)‖‖t(L′)‖

(7)

From the definition of dot product,

|v · (‖t(L′)‖t(L) − ‖t(L)‖t(L′))| ≤

‖v‖ · ‖(‖t(L′)‖t(L) − ‖t(L)‖t(L′))‖ (8)

We plug Eq. (8) into Eq. (7) and eliminate the vari-
able v

|S(v, t(L))− S(v, t(L′))| ≤
‖(‖t(L′)‖t(L) − ‖t(L)‖t(L′))‖

‖t(L)‖‖t(L′)‖
(9)

Let θ denote the angle between t(L) and t(L
′), i.e.,

cos θ =
t(L) · t(L′)

‖t(L)‖‖t(L′)‖
,

the square of numerator in Eq. (9) expands as

(‖t(L′)‖t(L) − ‖t(L)‖t(L′))2

= 2‖t(L)‖2‖t(L′)‖2(1− cos θ) (10)

Substituting the square root of Eq. (10) into Eq. (9),
we eliminate the denominator and obtain

|S(v, t(L))−S(v, t(L′))| ≤
√
2(1− cos θ) (11)

Recall that t(L
′) ∈ Oρ(t(L)), we can bound θ by

the law of sines

sup
θ
| sin θ| = sup

t(L
′)

‖t(L′) − t(L)‖
‖t(L)‖

=
ρ

‖t(L)‖
(12)

Taking supremums on both sides of Eq. (11) and
combining Eq. (12), we complete the proof

sup
t(L

′)∈Oρ(t(L))

0≤ρ<‖t(L)‖

|S(v, t(L′))− S(v, t(L))|

≤ sup
θ

√
2(1−

√
1− sin2θ)

=

√
2(1−

√
1− (

ρ

‖t(L)‖
)2)

A.2 Proof of Theorem 2
Proof. Due to Half-Angle Identities, Eq. (11) de-
rives as

|S(v, t(L′))− S(v, t(L))| ≤ 2| sin θ
2
| (13)

For sufficiently small θ, i.e., ‖t(L′) − t(L)‖ �
‖t(L)‖, we take the first-order Taylor approxima-
tion

2| sin θ
2
| ≈ |θ| ≈ | sin θ| = ‖t

(L′) − t(L)‖
‖t(L)‖

(14)

Combining Eq. (13) and Eq. (14) we complete the
proof.

A.3 Proof of Theorem 3
Proof. Expanding |Acc(L)a − Acc

(L′)
b | by triangle

inequality we have

|Acc(L)a − Acc
(L′)
b |

= |Acc(L)a − Acc(L) + Acc(L)

− Acc(L
′) + Acc(L

′) − Acc
(L′)
b |

≤ |Acc(L)a − Acc(L)|+ |Acc(L) − Acc(L
′)|

+ |Acc(L′) − Acc
(L′)
b |

(15)

Noticing that Acc(L) = pa ·Acc(L)a +pb ·Acc
(L)
b

and pa + pb = 1, we have

|Acc(L)a − Acc(L)|

= pb · |Acc(L)a − Acc
(L)
b |

= pb · Disp(L)(a, b)

(16)

Similarly,

|Acc(L′) − Acc
(L′)
b |

= pa · |Acc(L
′)

a − Acc
(L′)
b |

= pa · Disp(L)(a, b)

(17)

Substituting Eq. (3), Eq. (16), and Eq. (17) into
Eq. (15) we complete the proof.

B Additional Experimental Results

B.1 Empirical Evaluation with Dissimilar
Images and Text

We note that the theoretical analysis posed in Theo-
rem 2 does not presume how the images are similar
to the text. However, the evaluation in Section 5.1
only focuses on similar images and text. To com-
plement for evaluation on dissimilar images and
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text, we measured to what extent the pre-trained
model satisfies multilingual individual fairness for
dissimilar images and captions in the Appendix
B.1. Specifically, we randomly shuffle the images
in the data set such that each image is paired with a
random pair of English and German captions. Then
we compare the similarity gaps between English
and German captions with the images in terms of
the encoded textual vector distance between En-
glish and German. We observe the same trends for
dissimilar images and text: (1) The translation por-
tion generally induces a smaller similarity gap than
the independent portion. (2) The CLIP model eval-
uated on both text corpora has similar empirical α
values.

C Computation Infrastructure

We use a GPU server with 4 NVIDIA RTX 2080
Ti GPUs for evaluation.

D Human Evaluation of the Quality of
Machine Translated Text Promts

We recruited crowd workers at Amazon Mechan-
ical Turk (AMT)1 to evaluated the quality of text
prompts generated in Section 5.2. The crowd work-
ers were supposed to speak both the original lan-
guage and the translated language to be qualified
for completing the tasks. Each task contained one
pair of text prompts in the original language (En-
glish) and the translated language and was assigned
to at least five crowd workers. Each crowd worker
was asked to rate the quality of translation from
adequacy and fluency on a scale of 1–5. Specifi-
cally, we asked the crowd workers the following
questions:

• Adequacy: does the translated text ade-
quately expresses the meaning in the original
text in English?

• Fluency: how good the translated language
is?

We also asked the workers to point out and fix any
potential problems in the prompts. We collected
and visualized the crowdsourced ratings in Fig. 6.
For Chinese, French, German, and Japanese, the
crowd workers considered the translated text can
adequately express all the meanings retained in the
English prompts and is flawless. For Japanese, Rus-
sian, and Turkish, the crowd workers considered

1https://www.mturk.com/

the translations can convey most of the message in
the English prompts and are good in fluency.
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(a) Translation
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(b) Independent

Figure 5: We empirically examine how does the multilingual CLIP fare on the translation and the inde-
pendent portions. Fig. (a) and (b): the x-axis represents the distance between English and German captions,
the y-axis represents the gap between their corresponding dissimilarity scores, and the slope of blue dashed lines
represents the empirical α for multilingual individual fairness.

Chin
ese

Fre
nch

Germ
an

Jap
an

ese

Russ
ian

Sp
an

ish
Tu

rki
sh

Language

0

1

2

3

4

5

Ad
eq

ua
cy

Chin
ese

Fre
nch

Germ
an

Jap
an

ese

Russ
ian

Sp
an

ish
Tu

rki
sh

Language

0

1

2

3

4

5

Fl
ue

nc
y

Figure 6: We recruited crowd workers at AMT to rate the adequacy and fluency of the machine translated text
prompts on a scale of 1–5.
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