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Abstract

Several studies have investigated the reasons
behind the effectiveness of fine-tuning, usually
through the lens of probing. However, these
studies often neglect the role of the size of the
dataset on which the model is fine-tuned. In
this paper, we highlight the importance of this
factor and its undeniable role in probing per-
formance. We show that the extent of encoded
linguistic knowledge depends on the number
of fine-tuning samples. The analysis also re-
veals that larger training data mainly affects
higher layers, and that the extent of this change
is a factor of the number of iterations updat-
ing the model during fine-tuning rather than
the diversity of the training samples. Finally,
we show through a set of experiments that fine-
tuning data size affects the recoverability of the
changes made to the model’s linguistic knowl-
edge.!

1 Introduction

The outstanding performance of pre-trained lan-
guage models (LMs) on many NLP benchmarks
has provoked curiosity about the reasons behind
their effectiveness. To this end, several probes have
been proposed to explore their capacity (Tenney
et al., 2019b; Hewitt and Manning, 2019; Wu et al.,
2020). The investigations have clearly highlighted
the ability of LMs in capturing various types of
linguistic knowledge (Liu et al., 2019; Clark et al.,
2019; Michael et al., 2020; Klafka and Ettinger,
2020; Tenney et al., 2019a).

However, to take full advantage of the encoded
knowledge of pre-trained models in specific target
tasks, it is usually required to perform a further
fine-tuning (Devlin et al., 2019). The broad appli-
cation of fine-tuning has garnered the attention of

*The authors contributed equally to this work.
'We have released our code and models’ check-
points at: https://github.com/hmehrafarin/
data-size-analysis

many researchers to explore its peculiarities. Try-
ing to understand the fine-tuning procedure, recent
analyses have shown that most of the pre-trained
linguistic knowledge is preserved after fine-tuning
(Tenney et al., 2019b). Furthermore, by encod-
ing the essential linguistic knowledge in the lower
layers, this procedure makes the higher layers task-
specific (Durrani et al., 2021). However, Mosbach
et al. (2020) argued that the changes in the probing
performance can not be attributed entirely to the
modifications a model undergoes with respect to
its linguistic knowledge after fine-tuning.

While the previous studies focused on the role
of the target task as a factor that affects the prob-
ing performance of fine-tuned models, we present
another important factor in interpreting probing re-
sults for such models. Our investigations reveal
that the conclusions drawn by previous probing
studies that investigate the impact of fine-tuning
on acquiring or forgetting knowledge might not be
entirely reliable unless the size of the fine-tuning
dataset is also taken into account. Through several
experiments, we show that the encoded linguistic
knowledge can highly depend on the size of tar-
get tasks’ datasets. Specifically, the larger the task
data, the more the probing performance deviates
from the pre-trained model, irrespective of the fine-
tuning tasks.

To address the overlooked role of data size, we
run several experiments by limiting training sam-
ples and probing the fine-tuned models. Our results
indicate that models fine-tuned on large training
datasets witness more change in their encoded lin-
guistic knowledge compared to pre-trained BERT.
However, by reducing fine-tuning training data size
(e.g., from 393k in MNLI to 7k), the gap between
probing scores becomes smaller. Moreover, we ex-
pand our analysis and evaluate the extent to which
large training datasets affect the captured knowl-
edge across layers. The layer-wise results show that
the effect of data size is more notable on higher
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layers, particularly for models trained on larger
datasets. We take our analysis a step further and
show that the difference in probing performance
among different data sizes is due to the total num-
ber of optimization steps rather than the diversity
of training samples. Finally, through a set of ex-
periments, we show that the changes made to the
probing performance by a fine-tuning task can be
recovered if the model is re-fine-tuned on a task
with comparable data size.

The findings of this paper can be summarized as
follows:

* Data size is a factor that highly impacts a fine-
tuned model’s probing performance.

* The size of the dataset mainly affects the prob-
ing performance of the higher layers.

* The number of training steps is what makes
larger datasets have higher impacts on the
model’s linguistic knowledge (rather than the
diversity in training samples).

* Fine-tuning data size affects the extent to
which the modifications made to a model’s
linguistic knowledge are recoverable.

2 Related Work

Recently, many studies have shown that pre-trained
language models, such as BERT (Devlin et al.,
2019), encode certain linguistic knowledge in their
internal representations (Tenney et al., 2019b).
For instance, Hewitt and Manning (2019) found
that syntactic dependencies can be obtained from
BERT’s token embeddings, suggesting that BERT
encodes syntactic knowledge in its representations.
Nevertheless, not all layers behave similarly in cap-
turing linguistic features: lower layers tend to en-
code surface-level knowledge, middle layers seem
to be responsible for syntactic information, and
higher layers capture semantic knowledge in their
representations (Jawahar et al., 2019).

While models such as BERT capture consider-
able amounts of linguistic features, one still re-
quires to fine-tune them to take full advantage of
their potential in specific downstream tasks (Wang
et al., 2018). Fine-tuning affects BERT in various
ways; for instance, Hao et al. (2020) found that
fine-tuning mainly affects the attention mode of the
higher layers and alters the feature extraction mode
of the middle and last layers. In addition, fine-
tuning BERT on a negation scope task improves

the model’s attention sensitivity to negation (Zhao
and Bethard, 2020).

Apart from the changes made to BERT’s atten-
tion, recent work has studied how fine-tuning af-
fects BERT’s representations and, as a result, its
linguistic knowledge. Merchant et al. (2020) found
that fine-tuning primarily affects the representa-
tions in higher layers, and depending on the down-
stream task, the changes made to lower layers could
be either deep or shallow. Moreover, on only a
small number of downstream tasks, fine-tuning
seems to have a positive impact on the probing ac-
curacy (Mosbach et al., 2020). Given the fact that
fine-tuning mostly affects higher layers, Durrani
et al. (2021) showed that after fine-tuning, most of
the model’s linguistic knowledge is transferred to
lower layers to reserve the capacity in the higher
layers for task-specific knowledge.

Studies so far have relied on probing accuracy to
explain how fine-tuning affects a model’s linguistic
knowledge (Mosbach et al., 2020; Durrani et al.,
2021; Merchant et al., 2020). However, given the
fact that fine-tuning tasks do not share the same
number of samples, concluding to what extent tar-
get tasks contribute to the model’s linguistic knowl-
edge is not fully reliable. To the best of our knowl-
edge, none of the previous studies have considered
the role of data size in fine-tuned models’ linguistic
knowledge. In this work, we show that the size of
the dataset plays a crucial role in the amount of
knowledge captured during fine-tuning. By design-
ing different experiments, we analyze the effect of
the size of the dataset in-depth.

3 Experimental Setup

We have carried out over 600 experiments to study
the linguistic features captured during fine-tuning.
This allows us to examine how much different fac-
tors impact performance on various probing tasks.
Moreover, varying the sample size lets us under-
stand its importance in analyzing fine-tuned models.
In this section, we provide more details on setups,
downstream tasks, and probing tasks.

3.1 Fine-tuning

For our analyses, we concentrate on the BERT-base
model, which is arguably the most popular pre-
trained model. We fine-tuned the 12-layer BERT
on a set of tasks from the GLUE Benchmark (Wang
et al., 2018) for five epochs and saved the best
checkpoint based on performance on the validation
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Full 7k 2.5k 1k
CoLA 57.55 56.87 46.68 42.72
SST-2 92.78 91.28 89.79 86.81
MNLI 83.19 73.73 68.63 60.16
QQP 90.63 82.37 79.93 76.93
MRPC 86.43 - 81.78 77.82

Table 1: The performance of fine-tuned BERT on five
tasks from GLUE (dev set) after fine-tuning on training
data of varying size. The numbers are reported based on
accuracy for SST, MNLI, QQP, MRPC, and Matthew’s
correlation for CoLA.

set. We used the [CLS] token for classification and
set the learning rate as 5e~. We have chosen the
following target tasks:

CoLA. The Corpus of Linguistic Acceptability is
a binary classification task in which 8.5k training
samples are labeled based on their grammatical
correctness (Warstadt et al., 2019).

MRPC. The Microsoft Research Paraphrase Cor-
pus includes 3.6k training sentence pairs in which
the semantic equivalence of two sentences is deter-
mined (Dolan and Brockett, 2005).

SST-2. The Stanford Sentiment Treebank is a sen-
timent classification task containing 67k training
sentences (Socher et al., 2013).

QQP. With 364k question pairs, the goal of
the Quora Question Pairs dataset is to determine
whether two questions in a pair are semantically
similar.

MNLI. The Multi-Genre Natural Language In-
ference is a Natural Language Inference (NLI)
task with about 393k records in its training set
(Williams et al., 2018).

3.2 Fine-tuning performance

The performance of the fine-tuned models on these
tasks is presented in Table 1. We report the re-
sults on different training data sizes® to highlight
the extent to which reducing training data affects
a model’s performance on the corresponding tasks.
It is worth mentioning that even though the perfor-
mance of target tasks decreases by reducing their
training data, it is still far better than the pre-trained
version. Therefore, the models have learned the
corresponding target tasks to some extent.

2Since MRPC only has 3.6k training samples, we do not
report any 7k results for this dataset.

3.3 Probing tasks

We probe the pre-trained and fine-tuned BERT
models by training a linear classifier on top while
the weights of the encoders are frozen. Keeping
the probing classifier simple allows us to scrutinize
the linguistic knowledge by eliminating the pos-
sibility of the classifier learning such knowledge.
All probes are trained with a batch size of 32, a
learning rate of 3¢, a linear scheduler for adjust-
ing the learning rate with 10% warm-up steps, and
for ten epochs. We also used Adam as the opti-
mizer. Due to limited computational resources, we
were not able to run all the experiments multiple
times with different random seeds. However, to
ensure the reliability of our results, we repeated
several randomly chosen experiments three times
(with different random seeds). The probing accu-
racy remained stable, ranging within +1.0. Finally,
we report the evaluation scores on test sets for the
models with the highest validation accuracy on the
validation set.

We opted for four syntactic and semantic prob-
ing tasks from the SentEval benchmark (Conneau
and Kiela, 2018) to study the linguistic knowledge
encoded in the models®. The binary classification
tasks are as follows:

Bigram Shift is a task that aims to test the
model’s ability to predict whether two successive
random tokens in the same sentence have been in-
verted.

Object Number focuses on the model’s ability
to determine the singularity or plurality of the main
clause’s direct object.

Coordination Inversion examines the model’s
ability to distinguish between original sentences
and sentences where the order of two coordinated
clausal conjoints have been inverted.

Semantic Odd Man Out is a task that tests the
model’s ability to predict if a sentence is original
or whether a random word has been replaced with
another word from the same part of speech.

3We also repeat our experiments on the structural probe
of Hewitt and Manning (2019). This probe investigates how
well syntactic dependency trees are encoded within a model’s
representations. We report the UUAS score for the distance
between word pairs in the parse tree. The results are reported
in Appendix A. We choose this probe because it is different
from SentEval’s probes in terms of training objective to show
our statement still stands.
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Figure 1: Probing accuracy on all the layers of fine-tuned models on (a) Bigram Shift (b) Object Number (c)
Coordination Inversion (d) Semantic Odd Man Out. As shown, there is a large accuracy gap between models
fine-tuned on larger data sizes (e.g., MNLI and QQP) and the baseline.

4 Data Size Analysis

In this section, we first provide insight on the role
of target tasks in capturing or forgetting different
types of knowledge (e.g., syntactic and semantic)
during fine-tuning. Then, we investigate the role of
datasets’ size on linguistic knowledge.

4.1 Probing Linguistic Knowledge

We empirically evaluate the linguistic knowledge
captured by several fine-tuned models through the
lens of probing performance. Figure 1 illustrates
the layer-wise probing performance of fine-tuned
models, considering pre-trained BERT as our base-
line. As can be observed, different models carry
similar linguistic knowledge up to the middle lay-
ers, and the difference gradually increases as we
move up to the higher layers. This observation is
consistent with the reported results by Merchant
et al. (2020). Their experimental analysis indicates
that fine-tuning mostly changes the higher layers
while having a smaller impact on the lower lay-
ers. Durrani et al. (2021) also reported a similar

behavior in other LMs through different probing
tasks.

The results illustrated in Figure 1 clearly high-
light the impact of data size on probing accuracy.
We can observe that the probing performance of the
baseline and models fine-tuned on smaller datasets
(e.g., MRPC, SST-2, and CoLLA) are comparable,
whereas fine-tuning on larger data sizes (e.g., QQP
and MNLI) seems to have impacted probing per-
formance by a significant margin. In what follows,
we carry out experiments to better understand the
reasons behind this observation.

4.2 The Impact of Data Size

One of the popular studies in probing is investigat-
ing the changes made to a model’s linguistic knowl-
edge after fine-tuning. The changes brought about
in the model upon fine-tuning are taken as a means
to explain the nature of the corresponding task on
which fine-tuning has been carried out (Durrani
et al., 2021). Existing studies usually consider sev-
eral tasks, many of which do not have datasets of
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Figure 2: An illustration of the probing performance of models fine-tuned on fixed-size training sets of five different
tasks. The pre-trained BERT’s performance on each of the four probing tasks has been shown by the dashed red
line. The figures suggest that different fine-tuned models, irrespective of the fine-tuning task, almost encode similar

linguistic knowledge when trained on equal-sized data.

comparable size. For instance, in the GLUE bench-
mark, MNLI is 46 times larger than CoLA. These
studies usually focus on the type of downstream
tasks only, overlooking the size of their datasets.
Based on our observations in Section 4.1, we hy-
pothesize that, in addition to the type of the down-
stream task, the size of its corresponding dataset
can play an important role in improving or impair-
ing the linguistic knowledge encoded in the model.
We examined our hypothesis by fine-tuning pre-
trained BERT on the selected downstream tasks
with different sets of samples. Specifically, taking
the pre-trained BERT as the baseline, we analyze
the effect of the training set size on the encoded lin-
guistic knowledge by limiting the number of sam-
ples to 7k, 2.5k, and 1k. Figure 2 shows the results
of this experiment. In general, the results confirm
our hypothesis that data size plays a significant role
in probing accuracy. In what follows, we further
discuss our observations from this experiment.

4.3 Discussion

The effect of data size on both syntactic and seman-
tic probing tasks is notable, denoted by the large
gaps between the probing results of the models
fine-tuned on larger data sizes and the baseline (see
Figure 1). We observe that as the number of sam-
ples increases, the gap between fine-tuned models
and the pre-trained BERT (baseline) becomes more
apparent. For instance, probing the model fine-
tuned on QQP’s full training set demonstrates that
it has far less linguistic knowledge than the base-
line. However, after fine-tuning the model on QQP
with fewer training samples (7k, 2.5, and 1k), not
much change is observed across the results. This
shows that fine-tuning data size indeed affects the
linguistic knowledge encoded by the model.

Overall, we can conclude that the amount of
linguistic knowledge through fine-tuning is highly
affected by data size. This suggests that data size
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Bigram Shift Semantic Odd Man Out
Full 7k 2.5k 1k baseline Full Tk 2.5k 1k baseline
Layer 2 -0.49 0.16 -0.63 -0.82 53.60 -0.65 -0.25 -0.06 -0.23 53.92
5 Layer 7 1.78 1.36 1.57 2.03 75.93 -3.40 -2.31 -0.80 -1.43 59.41
S Layer 11 6.78 7.09 6.29 5.10 82.39 2.08 1.78 1.83 0.98 61.32
Layer 12 6.22 6.09 5.56 4.85 83.23 1.84 -0.44 -0.58 -1.23 62.40
Layer 2 -0.74 -0.82 -0.30 -0.94 53.60 -0.55 -0.55 -0.52 -0.10 53.92
S Layer 7 -2.26 -1.94 -1.94 -0.24 75.93 -1.81 -1.56 -1.29 -1.22 59.41
3 Layer 11 -3.81 -2.48 -1.89 -1.33 82.39 -1.33 -0.87 -0.88 -0.55 61.32
Layer 12 -5.77 -4.87 -3.40 -3.20 83.23 -2.24 -1.83 -1.37 -1.89 62.40
. Layer 2 -2.01 -0.78 -0.32 0.51 53.60 -1.69 -0.38 -0.62 -0.13 53.92
E‘ Layer 7 -7.94 -1.68 -0.85 -0.83 75.93 -2.55 -0.54 -0.74 -2.61 59.41
= Layer 11 -17.31 -6.54 -4.49 -1.52 82.39 -5.25 -0.32 -1.30 -0.45 61.32
Layer 12 -19.52 -8.84 -6.44 -3.14 83.23 -7.12 -1.65 -1.76 -1.55 62.40
Layer 2 1.93 0.68 0.35 -0.26 53.60 -0.46 -0.12 -0.27 -0.21 53.92
6" Layer 7 -12.63 -1.55 -0.05 0.60 75.93 -4.82 -0.01 0.30 -0.53 59.41
o Layer 11 -26.97 -3.78 -1.05 -2.46 82.39 -9.22 0.89 0.90 0.65 61.32
Layer 12 -29.12 -5.70 -1.81 -3.00 83.23 -10.45 -0.65 0.13 -0.22 62.40
o Layer 2 -1.08 — -0.82 -0.96 53.60 -0.37 — -0.56 -0.53 53.92
& Layer 7 -0.53 — -1.04 -0.09 75.93 -0.36 — 0.29 -0.34 59.41
s Layer 11 -1.94 — -1.90 -1.41 82.39 -1.05 — 1.35 61.32
Layer 12 -3.87 — -3.45 -2.31 83.23 -2.13 — -1.70 -1.86 62.40

Table 2: Layer-wise performance of models on the probing tasks. Each cell represents the difference (delta) in
performance between the corresponding fine-tuned model and the baseline. The pre-trained BERT performance

(baseline) is shown in the right columns.

should be taken into account when analyzing fine-
tuned models.

5 Layer-wise Analysis

Given our observations on the role of data size,
we were curious to see how it affects the encoded
knowledge in specific layers. As noted by Jawahar
et al. (2019), BERT’s layers can be divided into
three classes in terms of the linguistic knowledge
they capture. To this end, we carry out experiments
by probing layers 2, 7, and 11-12 to cover all the
three categories.

Table 2 shows our results obtained from this
experiment, which are compared with BERT-base.
Due to our limited resources and the excessive num-
ber of experiments, we omitted probing tasks that
did not show any distinguishable patterns (Figures
1 and 2), i.e., Coordination Inversion and Object
Number. The results follow a similar trend to the
ones depicted in Figure 2. As we decrease the num-
ber of training samples, the probing performance
on the fine-tuned models gets closer to the baseline
across all layers. MNLI and QQP’s behaviors are
compelling evidence of the effectiveness of data
size across layers. Such models fine-tuned on larger
datasets undergo more considerable changes than
those with smaller data sizes.

Regardless of data size, we can also observe
that fine-tuning mainly affects higher layers. Our

finding is aligned with Merchant et al. (2020) that
fine-tuning has a more significant impact on higher
layers and negligible effects on lower layers. There
is also an interesting pattern concerning CoLA’s
performance. Despite a drop in performance of
around 15% from the full to 1k version (Table 1),
the linguistic knowledge has been marginally af-
fected by data size. We leave further investigations
on this to future work.

6 Fixed Iteration Analysis

Given the observations from Section 5, we have re-
alized that by training BERT on larger datasets, the
model’s performance deviates substantially from
the baseline. However, by reducing the size of
training data, the gap between the fine-tuned mod-
els and the baseline decreases. This behavior can
be either attributed to the diversity of training sam-
ples or to the larger number of iterations through
which the model is updated.

To address this, we repeated the same experi-
ments carried out in Section 5 but with fixing the
number of iterations on all data sizes. This allows
the model to be fine-tuned for an equal number
of iterations across different data sizes of a spe-
cific task. Note that we fine-tuned the full models
for just one epoch to avoid a large number of iter-
ations for the 7k and 2.5k models. Since SST-2,
CoLA, and MRPC have much smaller datasets, and
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Full 7k 2.5k

Bigram Shift
Layer 2 52.87 0.07 -0.03
5 Layer 7 71.88 -2.08 -1.12
o4 Layer 11 74.08 0.49 2.90
Layer 12 73.25 -0.10 1.81
. Layer 2 51.9 -0.24 -1.16
E Layer 7 71.03 0.88 -0.02
= Layer 11 67.69 1.93 2.47
Layer 12 65.82 1.48 1.57

Semantic Odd Man Out

Layer 2 53.73 0.73 0.49
8 Layer 7 56.12 0.95 1.61
o4 Layer 11 58.11 1.23 1.16
Layer 12 58.03 1.34 0.31
_ Layer 2 53.23 0.24 0.76
E Layer 7 57.00 1.54 1.60
> Layer 11 57.27 2.10 1.17
Layer 12 56.77 2.43 1.22

Table 3: The performance of models trained with fixed
and equal number of iterations across different sizes
on each downstream task. Every cell demonstrates the
difference (delta) between the full and the fixed-sized
models. With an equal number of iterations, in each
layer, fine-tuned models have a similar performance.

the number of iterations does not substantially dif-
fer across the full, 7k, and 2.5k models, we have
dropped them from this scenario.

Table 3 summarizes our results. The first inter-
esting pattern is that fine-tuning for more epochs
significantly impairs the captured linguistic knowl-
edge. For instance, we can observe the impact
of longer training by comparing Bigram Shift per-
formance on QQP across Tables 2 (54.11) and 3
(73.25)*. As Table 3 suggests, fixing the number
of iterations reduces the gap across different data
sizes, making the 7k and 2.5k models behave al-
most similarly to the full models. For instance, in
Table 2, there is a gap of 24% in the last layer’s
performance between the full and the 7k QQP on
Bigram Shift, which has been reduced to approxi-
mately —0.1 with equal training steps (Table 2).

This finding is interesting because, firstly, it indi-
cates that the high variance between baselines and
full models is mainly due to the number of times
their weights are updated during fine-tuning rather
than the diversity of the training samples. Secondly,
with equal data sizes, the role of target tasks be-
comes less influential in the linguistic knowledge

* As mentioned in Section 3.1, the models in Table 2 were
fine-tuned for five epochs.

introduced into the model by fine-tuning, reinforc-
ing the conclusions from Section 5.

7 Linguistic Knowledge Recoverability

Fine-tuning procedure modifies the encoded lin-
guistic knowledge in the pre-trained model. In this
section, we aim at verifying the extent to which
these modifications are recoverable. To this end,
taking a fine-tuned model on a specific task as our
baseline, we further fine-tune the model on another
task. We then compare the probing performance
of the resulting models with their corresponding
baselines. High similarity in probing performance
indicates the recoverability of the modifications.

We opt for CoLA and SST-2 as a pair of tasks
with different linguistic objectives but with compa-
rable data sizes. Also, we experiment with MRPC
and QQP, which are similar tasks but with signif-
icantly different data sizes (the former’s data size
is a hundred times larger than the latter’s). For
instance, considering CoLLA and SST-2 as our fine-
tuning task pair, SS7-2 — CoLA — SST-2 stands for
a setting where we have consecutively fine-tuned
the model on SST-2, CoL A, and SST-2. Following
our previous experiments, we report the probing
results for the Bigram Shift and Semantic Odd Man
Out tasks.’

The results are presented in Figure 3. The three-
quarters of a circle in the figures represent the max-
imum value in the corresponding probing task. As
shown in the figures, the linguistic knowledge is
recoverable through re-fine-tuning on a set of pairs
with comparable data sizes. In the previous sec-
tions, we observed that CoLA and SST-2 have no-
tably different performances on Bigram Shift and
Semantic Odd Man Out. Nevertheless, after re-fine-
tuning, both target tasks can recover the knowledge
modified by the previous fine-tuning step.

On the other hand, for the QQP and MRPC pair,
we observe a different behavior in which the data
size of QQP highly limits the extent of knowledge
recoverability. Considering Bigram Shift, we ob-
serve that the final MRPC fine-tuning in the QQP
— MRPC and MRPC — QQP — MRPC settings
can not recover the modification introduced by
QQP (the probing results remain similar to QQP’s).
In the reverse setting (MRPC — QQP and QQP
— MRPC — QQP), the probing performance is
negligently affected by MRPC data size, leading to

>More results for the Object Number and Coordination
Inversion tasks can be found in Appendix B.
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Figure 3: The performance of the models after being sequentially fine-tuned on different tasks. Three-quarters of a
circle represents the maximum value and the outer circle is the baseline. The figures demonstrate that the modified
knowledge recoverability depends on the fine-tuning data size.

a performance fairly similar to QQP’s.

Our results suggest that the extent of knowledge
recoverability is bound to the fine-tuning data size.
More specifically, further fine-tuning a fine-tuned
model with a comparable data size (e.g., SS7-2
— CoLA and CoLA — SST-2 — CoLA introduces
the same modifications as fine-tuning a pre-trained
model (e.g., CoLA). However, increasing the data
size in one of these tasks decreases the extent of
recoverability by the other task.

8 Conclusion

In this paper, we carried out a set of experiments
to determine the effect of training data size on the
probing performance of fine-tuned models. To be-
gin with, by individually probing all layers, we
found out that models fine-tuned on larger datasets
deviate more from the base model in terms of their
encoded linguistic knowledge. Therefore, we ar-
gue that comparing the linguistic knowledge of
fine-tuned models is valid only if they are trained
on datasets of comparable sizes. Through layer-
wise probing analysis, we realized that the number
of training samples mainly affects the probing re-
sults for the higher layers, while the results remain
similar in the lower layers across different target
tasks. Furthermore, we investigated why data size

®We have also carried out the exact experiments with QQP
7k to make sure the results are related to the size of the tasks.

affects the probing performance of fine-tuned mod-
els through training the models with limited train-
ing data for the same number of iterations as we
trained the full models. We showed that the gap in
probing performance between models fine-tuned
on different data sizes is due to the number of it-
erations for which the model is updated during
fine-tuning rather than the diversity of the training
set. Finally, in our last experiment, we showed that
the size of a target task’s dataset affects the extent
to which it can recover the linguistic knowledge
previously changed by a different task.

We argue that probing accuracy cannot fully rep-
resent the linguistic knowledge captured by fine-
tuned models, given that factors, such as the size
of the dataset, can highly affect probing accuracy
and should be ruled out in any such study. As fu-
ture work, we plan to evaluate the reliability of
existing accuracy and loss-based probes and design
more robust metrics for investigating the encoded
knowledge in the existing language models.

References

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does BERT
look at? an analysis of BERT’s attention. In Pro-
ceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP,

235


https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828

pages 276-286, Florence, Italy. Association for Com-
putational Linguistics.

Alexis Conneau and Douwe Kiela. 2018. SentEval: An
evaluation toolkit for universal sentence representa-
tions. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC 2018), Miyazaki, Japan. European Language
Resources Association (ELRA).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
41714186, Minneapolis, Minnesota. Association for
Computational Linguistics.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Nadir Durrani, Hassan Sajjad, and Fahim Dalvi. 2021.
How transfer learning impacts linguistic knowledge
in deep NLP models? In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 4947—4957, Online. Association for Computa-
tional Linguistics.

Yaru Hao, Li Dong, Furu Wei, and Ke Xu. 2020. In-
vestigating learning dynamics of BERT fine-tuning.
In Proceedings of the Ist Conference of the Asia-
Pacific Chapter of the Association for Computational
Linguistics and the 10th International Joint Confer-
ence on Natural Language Processing, pages 87-92,
Suzhou, China. Association for Computational Lin-
guistics.

John Hewitt and Christopher D. Manning. 2019. A
structural probe for finding syntax in word represen-
tations. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
41294138, Minneapolis, Minnesota. Association for
Computational Linguistics.

Ganesh Jawahar, Benoit Sagot, and Djamé Seddah.
2019. What does BERT learn about the structure of
language? In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3651-3657, Florence, Italy. Association for
Computational Linguistics.

Josef Klafka and Allyson Ettinger. 2020. Spying on
your neighbors: Fine-grained probing of contex-
tual embeddings for information about surrounding
words. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
4801-4811, Online. Association for Computational
Linguistics.

Nelson F. Liu, Matt Gardner, Yonatan Belinkov,
Matthew E. Peters, and Noah A. Smith. 2019. Lin-
guistic knowledge and transferability of contextual
representations. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 1073—1094, Minneapolis, Minnesota.
Association for Computational Linguistics.

Amil Merchant, Elahe Rahimtoroghi, Ellie Pavlick, and
Ian Tenney. 2020. What happens to BERT embed-
dings during fine-tuning? In Proceedings of the
Third BlackboxNLP Workshop on Analyzing and In-
terpreting Neural Networks for NLP, pages 33—44,
Online. Association for Computational Linguistics.

Julian Michael, Jan A. Botha, and Ian Tenney. 2020.
Asking without telling: Exploring latent ontologies
in contextual representations. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6792-6812,
Online. Association for Computational Linguistics.

Marius Mosbach, Anna Khokhlova, Michael A. Hed-
derich, and Dietrich Klakow. 2020. On the Interplay
Between Fine-tuning and Sentence-level Probing for
Linguistic Knowledge in Pre-trained Transformers.
In Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 2502-2516, Online.
Association for Computational Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631-1642, Seattle, Washington, USA. Association
for Computational Linguistics.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019a.
BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4593—
4601, Florence, Italy. Association for Computational
Linguistics.

Tan Tenney, Patrick Xia, Berlin Chen, Alex Wang,
Adam Poliak, R. Thomas McCoy, Najoung Kim, Ben-
jamin Van Durme, Samuel R. Bowman, Dipanjan
Das, and Ellie Pavlick. 2019b. What do you learn
from context? probing for sentence structure in con-
textualized word representations. In International
Conference on Learning Representations.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353-355, Brussels, Belgium. Association for Com-
putational Linguistics.

236


https://aclanthology.org/L18-1269
https://aclanthology.org/L18-1269
https://aclanthology.org/L18-1269
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/I05-5002
https://aclanthology.org/I05-5002
https://doi.org/10.18653/v1/2021.findings-acl.438
https://doi.org/10.18653/v1/2021.findings-acl.438
https://aclanthology.org/2020.aacl-main.11
https://aclanthology.org/2020.aacl-main.11
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/2020.acl-main.434
https://doi.org/10.18653/v1/2020.acl-main.434
https://doi.org/10.18653/v1/2020.acl-main.434
https://doi.org/10.18653/v1/2020.acl-main.434
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/2020.blackboxnlp-1.4
https://doi.org/10.18653/v1/2020.blackboxnlp-1.4
https://doi.org/10.18653/v1/2020.emnlp-main.552
https://doi.org/10.18653/v1/2020.emnlp-main.552
https://doi.org/10.18653/v1/2020.findings-emnlp.227
https://doi.org/10.18653/v1/2020.findings-emnlp.227
https://doi.org/10.18653/v1/2020.findings-emnlp.227
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://doi.org/10.18653/v1/P19-1452
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2019. Neural Network Acceptability Judg-
ments. Transactions of the Association for Com-
putational Linguistics, 7:625-641.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112-1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Zhiyong Wu, Yun Chen, Ben Kao, and Qun Liu. 2020.
Perturbed masking: Parameter-free probing for ana-
lyzing and interpreting BERT. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4166-4176, Online. Asso-
ciation for Computational Linguistics.

Yiyun Zhao and Steven Bethard. 2020. How does
BERT’s attention change when you fine-tune? an
analysis methodology and a case study in negation
scope. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
4729-4747, Online. Association for Computational
Linguistics.

A Structural Probe Analysis

We have also repeated our data size analysis ex-
periment on the structural probe to show that our
findings stand for different probes. Figure 4 con-
firms our conclusions drawn from Section 4, which
denotes that data size affects the probing perfor-
mance of fine-tuned models.
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Figure 4: (a) UUAS score of the structural probe on all layers of fine-tuned models. (b) The visualization of models’
performance fine-tuned on the fixed-size training sets on the structural probe. The pre-trained BERT’s performance
is shown by the dashed red line.

ColA
SST-2—ColA
CoLA—SST-2—ColA

ColA
SST-2—ColA
CoLA—SST-2—ColA

SST-2
CoLA—SST-2
SST-2—CoLA—SST-2

SST-2
CoLA—SST-2
SST-2—CoLA—>SST-2

Coordination
Inversion

Coordination
Inversion

Object
Number

Object
Number

MRPC
QQP—MRPC
MRPC—QQP—MRPC

MRPC
QQP—MRPC
MRPC—QQP—MRPC

QQp
MRPC—QQP

QQP—MRPC—QQP QQP—MRPC—QQP

Object
Number

Coordination
Inversion

Coordination

Inversion Number

Figure 5: The performance of the models after being sequentially fine-tuned on different tasks. Three-quarters of a
circle represents the maximum value and the outer circle is the baseline.
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