
Findings of the Association for Computational Linguistics: ACL 2022, pages 2430 - 2440
May 22-27, 2022 c©2022 Association for Computational Linguistics

Syntax-guided Contrastive Learning for Pre-trained Language Model

Shuai Zhang, Lijie Wang, Xinyan Xiao, Hua Wu
Baidu Inc, Beijing, China

{zhangshuai28, wanglijie, xiaoxinyan, wu_hua}@baidu.com

Abstract

Syntactic information has been proved to be
useful for transformer-based pre-trained lan-
guage models. Previous studies often rely on
additional syntax-guided attention components
to enhance the transformer, which require more
parameters and additional syntactic parsing in
downstream tasks. This increase in complex-
ity severely limits the application of syntax-
enhanced language model in a wide range of
scenarios. In order to inject syntactic knowl-
edge effectively and efficiently into pre-trained
language models, we propose a novel syntax-
guided contrastive learning method which does
not change the transformer architecture. Based
on constituency and dependency structures of
syntax trees, we design phrase-guided and tree-
guided contrastive objectives, and optimize
them in the pre-training stage, so as to help the
pre-trained language model to capture rich syn-
tactic knowledge in its representations. Experi-
mental results show that our contrastive method
achieves consistent improvements in a variety
of tasks, including grammatical error detection,
entity tasks, structural probing and GLUE. De-
tailed analysis further verifies that the improve-
ments come from the utilization of syntactic
information, and the learned attention weights
are more explainable in terms of linguistics.

1 Introduction

Pre-trained transformer-based neural language
models (LMs), such as BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019), have achieved re-
markable results in a variety of NLP tasks (Wang
et al., 2018). However, many studies have found
that these LMs do not encode enough syntactic
knowledge in their learned representations (Wang
et al., 2019; Min et al., 2020; Wang et al., 2020). As
it is widely acknowledged that structural informa-
tion is very important for NLP (Strubell et al., 2018;
Nguyen et al., 2019; Zhang et al., 2020), there is an
increasing interest in improving pre-trained LMs
by using syntactic information.

Most of these works enhance pre-trained LMs
by adding syntax-driven attention components to
the transformer (Li et al., 2020b; Xu et al., 2020;
Bai et al., 2021). They use the added components
to produce a syntax-aware representation, and in-
ject this additional representation into the original
one from the vanilla transformer, so as to get a
final syntax-enhanced representation. Although
these works did bring improvements, the additional
syntax-aware layers obviously increase application
inconvenience and computation complexity, as they
need to parse the input text during testing and re-
quire more neural parameters. Moreover, the per-
formance of such explicit method depends on the
parsing quality of test data (Sachan et al., 2020).
There are also some efforts on incorporating syntax-
related objectives into the pre-training stage, such
as syntax head prediction (Wang et al., 2020) and
dependency distance prediction (Xu et al., 2020).
However, these predictive pre-training tasks often
fail to improve performance alone and need to work
together with the additional attention components
(Xu et al., 2020). Overall, it is still an open chal-
lenge to effectively and efficiently incorporate syn-
tactic information into pre-trained LMs.

In order to address the above problems, we pro-
pose Syntax-guided Contrastive Language Model
(SynCLM). Based on contrastive learning, Syn-
CLM uses syntactic information to create con-
trastive positive and negative examples, and uses
them to help the pre-trained LM to learn rich syntac-
tic knowledge through contrastive learning method.
SynCLM only adds contrastive objectives in the
pre-training stage, ensuring an effective and effi-
cient utilization of syntax.

Specifically, based on constituent and depen-
dency structures of syntax trees, we propose phrase-
guided and tree-guided contrastive objectives for
pre-training, as shown in Figure 1. The constituent
structure represents the grouping of words into
phrases within an input according to constituency

2430

Figure 1: Overview of our pre-training framework. P and Ni represent the positive sample and the i-th negative
sample, respectively. The phrase-guided contrastive objective is based on the constituent structure of inputs, focusing
on using local syntactic information to guide the learning of attention distributions. The tree-guided objective is
based on the dependency structure, using global syntactic information to enhance the hidden representations.

grammar (Ford and Fox, 2002). Inspired by recent
studies (Mareček and Rosa, 2019; Kim et al., 2020)
which prove that LM’s attention heads exhibit syn-
tactic structure akin to constituency grammar, in
order to better recognize phrases from attentions,
we propose the phrase-guided contrastive objective
to enhance attention learning by maximizing the
similarity of attention distributions between words
in the same phrase. The dependency structure fur-
ther encodes the binary head-dependent relations
between words, and the root node aggregates the
semantic information of the whole structure from
all its descendant words. To make the root node
attend to its descendant nodes, we propose the tree-
guided contrastive objective to enhance word rep-
resentations by maximizing the similarity between
the representation obtained from all tokens and that
obtained from syntactically related tokens. The two
contrastive objectives are jointly optimized during
pre-training, so as to inject syntactic knowledge
into pre-trained LMs. In summary, our contribu-
tions are as following:

• We are the first to leverage the contrastive learn-
ing method to incorporate syntactic information
into the pre-training stage. Our models can be di-
rectly applied to downstream tasks without intro-
ducing additional parameters and syntax parsing
of inputs. In addition, our method is applicable to
any arbitrary transformer-based pre-trained LM.

Our code1 will be released.

• Based on the constituency and dependency struc-
ture, we design two novel syntax-guided learning
objectives to enhance the learning of attention
weight distributions and hidden representations
in the transformer.

• Extensive experiments show that our SynCLM
achieves consistent improvements on tasks that
are often used in related works, including gram-
matical error detection, entity-related tasks, struc-
tural probing task, and general evaluation tasks
(GLUE). Detailed analysis verifies that the per-
formance improvements come from the use of
syntactic information, and the learned attention
weights are more explainable in terms of linguis-
tics.

2 Related Work

We first review studies on analyzing the linguistic
knowledge learned by pre-trained LMs, and then
we will introduce recent researches on incorporat-
ing linguistic knowledge into pre-trained LMs.

Linguistic Studies on Pre-trained LMs As pre-
trained LMs (Devlin et al., 2019; Liu et al., 2019)
continue to provide gains on NLP benchmarks,
understanding what they have learned is very im-
portant, which can help us understand the reason

1https://github.com/PaddlePaddle/
Research/tree/master/NLP/ACL2022-SynCLM

2431

https://github.com/PaddlePaddle/Research/tree/master/NLP/ACL2022-SynCLM
https://github.com/PaddlePaddle/Research/tree/master/NLP/ACL2022-SynCLM

behind their success and their limitations. Many
studies aim to unveil linguistic structures from the
representations learned by pre-trained LMs (Jawa-
har et al., 2019; Wang et al., 2019). Some works
demonstrate that pre-trained LMs have learned syn-
tactic information. Hewitt and Manning (2019)
indicate that syntax information is implicitly em-
bedded in BERT by learning a linear transformation
to predict the syntactic depth of each word based on
its representation. Jawahar et al. (2019) and Tenney
et al. (2019) show that BERT captures syntactic fea-
tures at lower layers and loses some of learned syn-
tactic information at higher layers. However, some
works show that pre-trained LMs do not capture
adequate syntactic knowledge. Wang et al. (2019)
find that certain syntactic structures may not be
embedded in BERT, as the dependency weights cal-
culated by BERT seem to be inconsistent with hu-
man intuitions of hierarchical structures. Min et al.
(2020) prove that BERT need to recruit syntactic
representations from the generated syntactically in-
formative examples to improve model performance
on syntax-aware examples.

Based on these studies, we can find that pre-
trained LMs often fail to encode enough syntactic
information in their representations and get poor
performance on syntax-aware data.

Syntax Enhanced Pre-trained LMs On the
other hand, many works try to use syntax infor-
mation to further improve models (Strubell et al.,
2018; Nguyen et al., 2019; Zhang et al., 2020; Li
et al., 2020b; Xu et al., 2020).

Task oriented works attempt to inject syn-
tactic knowledge into the transformer (Strubell
et al., 2018; Nguyen et al., 2019; Bugliarello and
Okazaki, 2020; Zhang et al., 2020). In the semantic
role labeling task, Strubell et al. (2018) restrict each
token to attend to its syntactic parent in an atten-
tion head and improve the model performance. In
the machine translation task, Nguyen et al. (2019)
incorporate a tree-structured attention into the trans-
former for helping encode syntactic information.
Bugliarello and Okazaki (2020) propose a syntax-
aware self-attention mechanism to incorporate syn-
tactic knowledge into the model. In the machine
reading comprehension task, Zhang et al. (2020)
use syntactic information to guide the self-attention
to pay no attention to the dispensable words. These
works mainly inject syntactic information into at-
tention mechanisms, and obtain performance gains.
However, they confine to a certain task.

Pre-training oriented works try to integrate syn-
tactic information in a general way that can be
applied to various NLP tasks. Inspired by the
above researches, some studies (Xu et al., 2020;
Li et al., 2020b; Bai et al., 2021) design various
syntax-aware attention mechanisms. Despite differ-
ent in detail, all of them use syntactic dependency
relations to restrict the attention to important local
regions. The syntax-aware attention can capture
the information of important local regions accord-
ing to syntactic structures, so as to obtain more
benefits. Meanwhile, some works inject syntactic
knowledge into pre-trained LMs via introducing
new learning objectives, such as syntax head predic-
tion (Wang et al., 2020) and dependency distance
prediction (Xu et al., 2020). However, they need
to work with additional syntax-guided attention
methods (Xu et al., 2020).

Notably, most of these works incorporate an ex-
plicit syntax-guided component into models during
testing. This increases the computational complex-
ity and application difficulty of the model, which
may limit the application of model in broader NLP
tasks. In order to address these problems, we pro-
pose a novel contrastive pre-training framework to
incorporate syntactic knowledge into pre-trained
LMs, without introducing computational complex-
ity in downstream tasks.

3 Methodology

In this section, we first describe the two new con-
trastive learning objectives in our SynCLM. Then
we introduce our pre-training framework and im-
plementation details.

3.1 Syntax-guide Contrastive Learning
In order to facilitate the learning of syntax-aware
representations, we propose two learning tasks
which use syntactic structures to guide the learning
of attention distributions and hidden representa-
tions in the transformer. Here, we will first in-
troduce the transformer architecture and the con-
trastive learning method as background. Then we
will introduce our two contrastive learning objec-
tives, and the construction of positive and negative
samples, which is the main challenge of contrastive
learning.

Transformer A Transformer (Vaswani et al.,
2017) is a stack of self-attention layers where each
layer (consisting of H heads) transforms the in-
put unit into a continuous representation. Given

2432

the input sentence S with n tokens, denoted as
{t1, t2, ..., tn}, we use a(l,h)i to represent the at-
tention distribution of the i-th token by the h-th
attention head on the l-th layer, where 1 ≤ h ≤ H
and 1 ≤ l ≤ L. We take the average of all heads’
attention distributions on the l-th layer as the fi-
nal distribution of the l-th layer, denoted as a(l,h̄)i .
Finally, we use zli to represent the intermediate
hidden representation of token i on the l-th layer.

Contrastive Learning Method Contrastive self-
supervised learning (CSSL) (Wu et al., 2018; He
et al., 2020) is a learning paradigm which aims
to capture the intrinsic patterns and properties of
input data without using human-provided labels.
The basic idea of CSSL is to construct auxiliary
tasks solely based on the input data, which is the
key to CSSL, and force the network to learn mean-
ingful representations by performing the auxiliary
tasks well. The auxiliary tasks are learned by the
contrastive learning loss. In this paper, we use
InfoNCE function which is a variant of Noise Con-
trastive Estimation (NCE) (Gutmann and Hyväri-
nen, 2010) function for contrastive learning, as
shown in Equation 1.

Lcl = −log
exp(sim(q,q+)

τ
)

exp(sim(q,q+)
τ

) +
∑K

i=0 exp(
sim(q,q−i)

τ
)

(1)

where q is the original sample; q+ and q−i are the
positive and the i-th negative samples, respectively;
K is the number of negative samples. The sim()
function can be any similarity function, such as
cosine, Jensen-Shannon Divergence (Endres and
Schindelin, 2003) and Hellinger distance (Beran,
1977). τ called temperature coefficient is a hyper-
parameter used in recent methods (Khosla et al.,
2020; Yu et al., 2021).

Phrase-guided Contrastive Learning Objective
Some phrases can be recognized by using the
similarity of attention distributions over words
(Mareček and Rosa, 2019; Kim et al., 2020). To
further improve the recognition, we propose to use
prior phrase structure information to further guide
the learning of attention distributions by maximiz-
ing the similarity of attention distributions between
words in the same phrase.

Given a sampled token ti, we randomly select a
token in the same phrase2 as its positive example,

2In our experiments, the sampled phrase has no more than
two hierarchical layers, that is to say, the height of its corre-
sponding subtree is no more than 2.

and select K tokens outside the phrase as the con-
trastive negative examples. As shown in the sam-
pled phrases of Figure 1, for the token “build”, the
token marked as P is the positive example, and to-
kens marked as N are negative examples. Then we
use the contrastive learning loss (defined in Equa-
tion 1) for this learning task, and the corresponding
sim() function is defined as follows:

simphrase = −JSD(a(l,h̄)
i ∥ a(l,h̄)

s)

= −(DKL(a(l,h̄)
i ∥ m) +DKL(a(l,h̄)

s ∥ m))/2

where m = (a(l,h̄)
i + a(l,h̄)

s)/2
(2)

where JSD is short for Jensen-Shannon Diver-
gence (Endres and Schindelin, 2003), and DKL

for Kullback-Leibler Divergence (KLD) (Kullback
and Leibler, 1951). The index s indicates a sam-
pled example of token ti, which may be positive
or negative. Please note that there are many cal-
culation choices for the sim() function, such as
cosine, JSD and KLD. In our early-stage prelimi-
nary experiments, we have experimented with JSD
and KLD, and the former performs slightly better
and thus is adopted in our framework.

Tree-guided Contrastive Learning Objective
The idea that the root of a syntax tree should pay
more attention to its descendant nodes has been
proved to be effective in attention-based models by
existing syntax-aware attention mechanisms (Xu
et al., 2020; Li et al., 2020b; Bai et al., 2021).
Therefore, we propose a tree-guided contrastive
learning objective to maximize the similarity be-
tween the global representation based on all input
tokens and the syntax-aware representation based
on syntactically related tokens.

Given a sampled token ti, we derive its subtree
from the entire dependency tree. As described by
the sampled subtrees in Figure 1, the subtree of
token “build” consists of all tokens dominated by
token “build”, and “build” is the root of the subtree.
We use it as the positive tree, denoted as T+. Then
we randomly replace no more than three tokens in
T+ with adjacent tokens to get the negative tree
T−, and ensure that there is at least one same token
in T+ and T−, as shown by the other two subtrees
in Figure 1. According to the above conclusion, the
representation based on the tokens in the positive
subtree should be closer to the original representa-
tion given by the pre-trained LM. We also use the
contrastive learning loss in Equation 1 to optimize
this learning objective, and the sim() function is

2433

defined as follows:

simtree = cosine(zli,
∑

tj∈Ts

eijzlj)

where eij =
exp(zli · zlj)∑

tk∈Ts
exp(zli · zlk)

(3)

where Ts represents a sampled subtree of token ti,
which may be positive or negative. And zli rep-
resents the intermediate hidden representation of
token i on the l-th layer.

3.2 Syntax-guided Pre-training Framework

We then add the two contrastive learning objec-
tives into traditional pre-training, so as to enhance
vanilla pre-trained LM. The final loss for the pre-
training is the summation of the training loss for
masked language model (MLM) (Devlin et al.,
2019) and two new proposed tasks, as shown below.

L = LMLM + Lphrase + Ltree

Data for Pre-training We use BERT’s pre-
training data (Devlin et al., 2019) as our model’s
pre-training data, including documents from En-
glish Wikipedia and BookCorpus (Zhu et al., 2015).
Then we use the pre-processing and BPE (Byte-Pair
Encoding) tokenization from RoBERTa (Liu et al.,
2019) to process the training data. The maximum
length of input sequence is set to 512.

To obtain syntactic structures for each sentence,
we adopt a well-trained parsing model - Stanza3

to automatically generate a syntax tree for each
sentence. Because the pre-trained LM takes sub-
words as the input unit, for the word u, we take its
first subword as the root, and add edges connect-
ing non-first subwords to the first subword. Since
syntactic information is pre-processed in advance,
syntax parsing only needs to be performed once
in the entire process. In our work, it takes about
one day to parse the pre-training data with 20 P40
GPUs. Then, syntactic information is used as the
additional input in the pre-training stage.

Implementation Details To accelerate the train-
ing process, we initialize parameters from
RoBERTa models4 released by Liu et al. (2019).
We use RoBERTa-base and RoBERTa-large to
initialize our base and large models respectively.
RoBERTa-base contains 12 layers, each of which

3https://github.com/stanfordnlp/stanza
4https://github.com/pytorch/fairseq/

tree/master/examples/roberta

Dataset Train Test Class Metric
CoLA 8,551 1,063 2 MCC
BLiMP 0 40,000 * Acc
FCE 28,731 2,720 2/* Acc/F0.5

CoNLL-2003 14,041 3,453 * F1
OpenEntity 1,988 1,988 9 F1
SST-2 63,749 1,821 2 Acc
MRPC 3,668 1,725 2 Acc/F1
QQP 363,871 390,695 2 Acc/F1
STS-B 5,749 1,379 * Pea./Spr.
MNLI 392,702 9,796 3 Acc
QNLI 104,743 5,463 2 Acc
RTE 2,490 3,000 2 Acc

Table 1: Statistics of datasets used in our work. “*”
represents for the non-classification tasks. “Acc” is short
for “accuracy”. “Pea.” and “Spr.” are abbreviations for
“Pearson” and “Spearman correlation” respectively.

has 12 heads and 768 hidden states. And RoBERTa-
large contains 24 layers, each of which has 16
heads and 1024 hidden states. We set l as the last
hidden layer in Equation 2 and Equation 3. And
the number of negative examples is set to 3. As
our pre-trained LMs do not introduce additional
parameters, the parameter sizes of our base and
large models are the same as those of RoBERTa
models.

We pre-train our models with 16 32G NVIDIA
V100 GPUs. The base model takes about four days
and the large model takes about seven days. During
the training process, in order to choose a well pre-
trained model, we evaluate the intermediate model
per 10K steps, and terminate the training when the
performance alteration (i.e., Perplexity of LMs) is
below a certain threshold for five sequential eval-
uations. In the base setting, the batch size is 512,
and the total steps are 300,000, 24,000 of which is
the warm up steps. For the large model, the batch
size is 256, and the total steps are 350,000, 30,000
of which is for warming up.

4 Experiments

First, we verify the effectiveness of SynCLM on
several syntax-aware tasks, including grammati-
cal error detection task (Section 4.1) and entity
tasks (Section 4.2), which are often used for test-
ing syntax pre-training models. Then, we test the
effectiveness of SynCLM on more general tasks
by using GLUE benchmark (Section 4.3). At last,
detailed analysis is conducted to show the impact
of incorporating syntactic knowledge (Section 4.4).

Please note that ↑ in our reported results means
statistically significant improvement over the base-
line with p-value < 0.05. Besides, for fair
comparison, we report continue training results

2434

https://github.com/stanfordnlp/stanza
https://github.com/pytorch/fairseq/tree/master/examples/roberta
https://github.com/pytorch/fairseq/tree/master/examples/roberta

Models BLiMP CoLA FCE
1P/2P Acc MCC Acc/F0.5

BERT-large (Devlin) -/- 63.9⋆ -/57.3⋆

BiLSTM-Joint (Rei) -/- - 80.1/52.1
SLA-large (Li20) -/- 64.5 -/58.0
GPT-2 large (Rad19) 78.0/81.6 - -/-
RoBERTa-base (Liu) 74.9/78.5 63.6 83.3/68.6

+ continuous 75.0/79.6 63.8 83.5/68.6
+ PHRASE 75.5/81.2 64.5 83.9/69.0
+ TREE 76.4/80.6 64.9 84.2/68.9

SynCLM-base 77.3↑/81.0↑ 65.3↑ 84.3↑69.2↑

RoBERTa-base + SLA -/- 64.2 83.2/68.3
+ PHRASE -/- 65.1 83.7/67.3
+ TREE -/- 65.8 84.3/68.4

SynCLM-base + SLA -/- 66.3↑ 83.6/68.7
RoBERTa-large (Liu) 77.3/79.4 68.0 85.3/72.2
SynCLMg 79.5↑/81.1↑ 69.3↑ 86.1↑/72.4

Table 2: Results on GED datasets. Results with “⋆” are
taken from Li et al. (2020b). Reported results of CoLA
are a median over 5 runs, and those of FCE are the
average over 5 runs. For BLiMP, we report accuracies
for “one prefix” (1P) (Linzen et al., 2016) and “two
prefix” (2P) (Wilcox et al., 2019).

(continuous) of RoBERTa5.
The statistics of datasets adopted in this paper

are summarized in Table 1. For datasets of GLUE,
we use metrics reported in Devlin et al. (2019). For
other datasets, we use popular metrics provided by
dataset authors and other researchers.

4.1 Grammatical Error Detection (GED)

GED task aims to evaluate the grammatical ac-
ceptability of a given sentence. We use three pop-
ular public datasets, i.e., CoLA (Warstadt et al.,
2019), BLiMP (Warstadt et al., 2020), and FCE
(Yannakoudakis et al., 2011), to evaluate our mod-
els. For CoLA, we use Matthews Correlation Co-
efficient (MCC) (Matthews, 1975) as the evalua-
tion metric. For BLiMP, we evaluate models using
the overall accuracy on all input pairs, namely the
proportion of pairs whose acceptable sentence is
assigned a higher probability. On FCE, following
Rei and Søgaard (2019), we take it as a binary clas-
sification task and a sequence labeling task, and use
accuracy and F0.5 to evaluate them respectively.

Baselines Rei and Søgaard (2019) combine ob-
jectives at different granularities (i.e., sentence and
token) to learn better representations. Li et al.
(2020b) use dependency distance matrix to obtain
a syntax-aware local attention (SLA) and achieve
SOTA results on FCE. We also report the results
of BERT, RoBERTa and GPT-2 (Radford et al.),

5Due to the limitation of space and computing resources,
we only give continue training results of base models.

where GPT-2 reports SOTA results on BLiMP.

Main Results From Table 2, it can be seen that
SynCLM achieves consistent gains over RoBERTa
on all three datasets: 2.0% higher average accu-
racy on BLiMP, 1.3% higher MCC on CoLA, and
0.8% higher accuracy on FCE. The results show
that syntactic prior information helps SynCLM to
perform much better on GED task. We believe this
is because the grammatical acceptability of a sen-
tence strongly rely on its syntactic structure. As
illustrated by the first example in Figure 2, which
checks the morphological number agreement of the
sentence, the morphological number of the word
“eat” should be consistent with that of its subject
“John”. And the dependency syntax illustrates the
subject-verb relation between them.

The tree-guided method performs better than
the phrase-guided method on most metrics, as the
tree structure gives the head-dependent relations
between words more directly and more explicitly.
Moreover, combining the two methods can achieve
more gains.

Merging SLA We also test whether SynCLM
can be further improved with previous syntax-
enhanced attention mechanisms for fine-tuning. We
implement SLA (Li et al., 2020b) in the fine-tuning
stage, and show the results in the third part of Table
2. It can be seen that merging SLA and SynCLM
can achieve more gains on CoLA and FCE, which
means that SynCLM can be further improved by
using syntax information during fine-tuning.

4.2 Entity Tasks

We evaluate SynCLM on two entity related tasks:
named entity recognition (NER) and entity typing
(ENT), which aim to recognize entities and predict
entity types respectively. We use CoNLL-2003
(Sang and De Meulder, 2003) for NER task and
OpenEntity (Choi et al., 2018) for ENT task.

Baselines BERT-MRC (Li et al., 2020a) formu-
lates NER task as a machine reading comprehen-
sion task to handle both flat and nested NER tasks.
KEPLER (Wang et al., 2021) infuses knowledge
into pre-trained models and jointly learns knowl-
edge embeddings and language representations.
SEPREM (Xu et al., 2020) injects syntax infor-
mation into pre-trained LMs by introducing two
learning tasks and a syntax-aware attention layer.
LUKE (Yamada et al., 2020) uses a large amount
of entity-annotated corpus and an entity-aware self-

2435

Models QQP MRPC STS SST CoLA RTE MNLI-m QNLI
BERT-large (Devlin et al., 2019) 91.3/- 88.0/- 90.0/- 93.2 60.6 70.4 86.6 92.3
XLNet-large (Yang et al., 2019) 92.3/- 90.8/- 92.5/- 97.0 69.0 85.9 90.8 94.9
SLA-large (Li et al., 2020b) -/- -/- -/- 94.3 64.5 - - -
RoBERTa-base (Liu et al., 2019) 91.6/88.9⋆ 90.1/92.7⋆ 90.9/90.7⋆ 94.8 63.6 78.7 87.6 92.8

+ continuous 91.6/88.8 90.2/92.8 90.2/90.1 94.9 63.8 79.1 87.2 92.8
+ PHRASE 91.7/88.9 90.5/93.0 90.3/90.2 95.2 64.5 79.8 87.0 92.9
+ TREE 91.7/88.9 91.2/93.6 90.6/90.4 95.1 64.9 80.1 87.4 93.0

SynCLM-base 91.7/88.9 91.4↑/93.7↑ 90.8/90.6 95.1↑ 65.3↑ 80.1↑ 87.2 93.0
RoBERTa-large (Liu et al., 2019) 92.1/89.5⋆ 90.7/93.2⋆ 92.2/92.1⋆ 96.4 68.0 86.3⋆ 90.2 94.7
SynCLM-large 92.3/89.7 91.2↑/93.6↑ 92.0/91.8 96.7↑ 69.3↑ 87.4↑ 90.5 94.8

Table 3: Performance on dev sets of GLUE tasks. The results of BERT and RoBERTa are from Liu et al. (2019).
Results with ⋆ are from our re-implementations, as some metrics are not given by Liu et al. (2019). For each task,
we run model for 5 times with different random initialization seeds, and report the median result.

Figure 2: Case study. The third column shows the simplified syntax tree of each example. Pbase represents the
label predicted by RoBERTa-base model, and Psyntax represents the label predicted by SynCLM-base.

Models CoNLL-2003 OpenEntity
P / R / F1 P / R / F1

BERT-MRC (Li) 92.3 / 94.6 / 93.0 - / - / -
SLA-large (Li20) 92.3 / 93.4 / 92.9 - / - / -
KEPLER (Wang) - / - / - 77.2 / 74.2 / 75.7
SEPREM (Xu20) - / - / - 80.1 / 77.1 / 79.1
LUKE (Yamada) - / - / 94.3 79.9 / 76.6 / 78.2
SEPREM-base 84.0 / 92.9 /88.2 76.7 / 73.5 / 75.1
RoBERTa-base 92.4 / 92.9 / 92.6 75.7 / 74.6 / 75.1

+ PHRASE 92.9 / 93.0 / 93.0 75.9 / 74.9 / 75.4
+ TREE 92.7 / 92.9 / 92.8 75.6 / 75.2 / 75.4

SynCLM-base 93.0↑ / 93.0↑ / 93.0↑ 76.6 / 74.6 / 75.6↑

+ SLA 92.1 / 94.1 / 93.1↑ 76.7 / 74.6 / 75.7↑

RoBERTa-large 93.0 / 93.5 / 93.2 76.3 / 76.1 / 76.2
SynCLM-large 93.4↑ / 93.8↑ / 93.6↑ 76.8 / 76.1 / 76.4

Table 4: Results (average of 5 runs) on entity tasks. We
report continue training results for RoBERTa-base.

attention mechanism to learn pre-trained contextu-
alized representations for words and entities, and
obtains SOTA results on five entity-related datasets,
including CoNLL-2003 and OpenEntity.

Main Results Table 4 shows the performances of
SOTA models and our models on CoNLL-2003 and
OpenEntity. On the NER task, SynCLM-large im-
proves F1 score by 0.4% compared with RoBERTa-
large. Meanwhile, phrase-guided method consis-
tently outperforms tree-guided method both in the
base and large model. We think this is because the
goal of phrase-guided method matches pretty well

with the goal of NER. On the ENT task, SynCLM
obtains 0.9% and 0.5% precision improvements
under the settings of base-size and large-size, re-
spectively.

Comparison with SEPREM and SLA Com-
pared with SEPREM on ENT, SynCLM achieves
a smaller improvement. We suspect the reason is
two-fold. First, in SynCLM, syntactic informa-
tion is incorporated only in the pre-training stage.
Second, the pre-training data used in SEPREM
is about ten times larger than ours. In order to
verify the above hypotheses, based on RoBERTa-
base, we implement the two pre-training tasks of
SEPREM, namely dependency head prediction and
dependency distance prediction, and train them
on the pre-training data used in our work, result-
ing in SEPREM-base in Table 4. We observe that
SEPREM trained on small-scale data does not per-
form well. Meanwhile, we merge SLA in the fine-
tuning stage, resulting in SynCLM-base + SLA.
The result verifies that SynCLM can be further
improved by using syntactic information during
fine-tuning stage.

4.3 GLUE Benchmark

Besides, we evaluate SynCLM on the GLUE bench-
mark (Wang et al., 2018), a collection of diverse

2436

datasets for evaluating natural language understand-
ing models. It contains single-sentence classifi-
cation tasks (CoLA and SST-2), similarity and
paraphrase tasks (MRPC, QQP, and STS-B), as
well as pairwise inference tasks (MNLI, RTE, and
QNLI). We use the default train/dev/test split. For
each dataset, we fine-tune the pre-trained model
separately, using only the corresponding single-
task training data (i.e., without multi-task train-
ing). Our fine-tuning procedure follows the orig-
inal RoBERTa paper. We consider a limited hy-
perparameter sweep for each task, with batch sizes
∈ {16, 32} and learning rates ∈ {1e − 5, 2e −
5, 3e−5}, with a linear warm up for the first 6% of
steps followed by a linear decay to 0. We fine-tune
for 10 epochs. The rest of the hyperparameters
remain the same as during pre-training.

Experimental Results As shown in Table 3, our
models outperform baseline models in most tasks,
and achieve more significant gains in tasks with
small training datasets, such as CoLA, RTE, MRPC.
The performance on CoLA is discussed in Sec-
tion 4.1. On RTE, compared with baseline mod-
els, SynCLM obtains significant gains of 1.4% and
1.1% in base size and large size, respectively. Simi-
larly, it brings accuracy improvement of 1.3% for
base model and 0.5% for large model on MRPC.
Moreover, incorporating syntactic knowledge into
base models brings greater improvements in some
datasets. From the results of all downstream tasks,
it can be seen that syntactic information is more
useful when task’s training data is small or the
computation power is limited. We think that more
training data in the fine-tuning stage will lead to
greater loss of syntactic knowledge encoded in the
last layer’s hidden representations, as last two lay-
ers encode task-specific features and undergo the
largest changes (Kovaleva et al., 2019).

Besides, SynCLM achieves larger improvements
on single-sentence tasks, but does not always per-
form well on sentence-pair tasks. We think this is
because the cross-sentence interactions are more
important for sentence-pair tasks. How to use syn-
tactic information effectively in the sentence-pair
tasks is a problem we plan to explore in the future.

Finally, we can conclude that SynCLM is still
effective in general tasks, especially in tasks with
small training data.

Models UUAS Spr.
BERT-large (Devlin) 82.5 0.86
Syntax-BERT-large (Bai21) 83.4 0.90
Syntax-RoBERTa-large (Bai21) 84.6 0.93
RoBERTa-base (Liu) 81.2 0.85
SynCLM-base 84.9↑ 0.87

Table 5: The results of structural probing task.

Figure 3: Visualization of attention weight scores. This
case is from CoLA and has grammatical error. The red
rectangle indicates higher scores in our model but lower
scores in the baseline model.

4.4 Analysis

Structural Probing Tasks To check whether the
representation learned by SynCLM captures syn-
tactic knowledge effectively, following Hewitt and
Manning (2019), we construct a syntax tree of a
sentence with linear transformation learned for the
embedding space. If the syntax tree is better con-
structed, the model is considered having learned
more syntactic information. We use the pre-trained
LM based on phrase-guided method to capture the
Stanford Dependencies formalism (De Marneffe
et al., 2006). Similarly, we use the undirected at-
tachment score (UUAS) denoting the percentage
of correctly placed undirected edges as the main
metric. We also report spearman correlation (Spr.)
between predicted and the actual distance between
each token pair in a sentence. The results are shown
in Table 5. It can be seen that our base model ob-
tains SOTA results on UUAS, indicating that our
method can enhance the model capability of cap-
turing syntactic structures.

Case Study Figure 2 gives three examples to il-
lustrate the effectiveness of incorporating syntactic
information. These examples show that SynCLM
can capture syntactic information and make correct
predictions based on the obtained information. To
give further insight into how syntactic knowledge
affects prediction, we highlight the main syntax
structures that affect prediction. Here, we take the
third case for detailed analysis. The core tokens in

2437

the syntax trees of the two sentences are the same,
so the model predicts they have the same semantics.
Through more data analysis, we find that SynCLM
enhances the attention weight between syntacti-
cally related words, thus increasing the importance
of non-leaf tokens in model prediction. Please note
that this feature also leads to wrong predictions. In
the future we will attend to the problem of how
to integrate syntactic and semantic information in
model prediction.

Attention Visualization In order to verify the
impact of syntactic information in the attention
mechanisms of the pre-trained LM, we plot atten-
tion weights of baseline models and our models in
Figure 3. We mainly focus on the interactions of
tokens, except for [CLS] and [SEP]. Then the atten-
tion weights are averaged over all heads and layers.
This visualization demonstrates the effectiveness of
injecting syntactic information into self-attention.
From Figure 3, we can see that higher attention
weight between directly syntactically related to-
kens in our model. For example, our model assigns
strong attentions from the token “John” to “go” and
“abroad”, while the baseline model assigns lower
attentions for these correlated tokens.

5 Conclusion

To the best of our knowledge, this is the first work
of leveraging contrasting learning to inject syntax
knowledge into pre-trained LMs. Motivated by the
properties of constituent and dependency structures
of syntax, we design phrase-guided and tree-guided
learning objectives to guide the learning of atten-
tion distributions and hidden representations in the
transformer. Through extensive experiments, we
show that SynCLM consistently improves a wide
range of tasks, from GED, entity tasks to GLEU,
which confirms the advantage of our syntax-guided
contrastive learning. Detailed analysis also shows
that SynCLM does incorporate rich syntax knowl-
edge and learn explainable attention weights.

Acknowledgements

We are very grateful to our anonymous reviewers
for their helpful feedback on this work. We would
like to thank Ying Chen for examination and re-
vision in paper writing; Can Gao for the help on
model training. This work was supported in part
by the National Key R&D Program of China under
Grant 2020YFB1406701.

References
Jiangang Bai, Yujing Wang, Yiren Chen, Yaming Yang,

Jing Bai, Jing Yu, and Yunhai Tong. 2021. Syntax-
bert: Improving pre-trained transformers with syntax
trees. arXiv preprint arXiv:2103.04350.

Rudolf Beran. 1977. Minimum hellinger distance
estimates for parametric models. The annals of
Statistics, pages 445–463.

Emanuele Bugliarello and Naoaki Okazaki. 2020. En-
hancing machine translation with dependency-aware
self-attention. In Proceedings of the 58th Annual
Meeting of the Association for Computational
Linguistics, pages 1618–1627.

Eunsol Choi, Omer Levy, Yejin Choi, and Luke
Zettlemoyer. 2018. Ultra-fine entity typing. In
Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 87–96.

Marie-Catherine De Marneffe, Bill MacCartney,
Christopher D Manning, et al. 2006. Generat-
ing typed dependency parses from phrase structure
parses. In Lrec, volume 6, pages 449–454.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186.

Dominik Maria Endres and Johannes E Schindelin.
2003. A new metric for probability distribu-
tions. IEEE Transactions on Information theory,
49(7):1858–1860.

Cecilia E Ford and Barbara A Fox. 2002. Con-
stituency and the grammar. The language of turn
and sequence, page 14.

Michael Gutmann and Aapo Hyvärinen. 2010. Noise-
contrastive estimation: A new estimation principle
for unnormalized statistical models. In Proceedings
of the thirteenth international conference on artificial
intelligence and statistics, pages 297–304. JMLR
Workshop and Conference Proceedings.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie,
and Ross Girshick. 2020. Momentum contrast for
unsupervised visual representation learning. In
2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 9726–9735.
IEEE Computer Society.

John Hewitt and Christopher D Manning. 2019. A
structural probe for finding syntax in word repre-
sentations. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4129–4138.

2438

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah.
2019. What does bert learn about the structure of
language? In ACL 2019-57th Annual Meeting of
the Association for Computational Linguistics.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron
Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. 2020. Su-
pervised contrastive learning. Advances in Neural
Information Processing Systems, 33.

Taeuk Kim, Jihun Choi, Daniel Edmiston, and Sang-goo
Lee. 2020. Are pre-trained language models aware
of phrases? simple but strong baselines for grammar
induction. arXiv preprint arXiv:2002.00737.

Olga Kovaleva, Alexey Romanov, Anna Rogers, and
Anna Rumshisky. 2019. Revealing the dark secrets
of bert. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP),
pages 4365–4374.

Solomon Kullback and Richard A Leibler. 1951.
On information and sufficiency. The annals of
mathematical statistics, 22(1):79–86.

Xiaoya Li, Jingrong Feng, Yuxian Meng, Qinghong
Han, Fei Wu, and Jiwei Li. 2020a. A unified
mrc framework for named entity recognition. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
5849–5859.

Zhongli Li, Qingyu Zhou, Chao Li, Ke Xu, and Yunbo
Cao. 2020b. Improving bert with syntax-aware local
attention. arXiv preprint arXiv:2012.15150.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of lstms to learn
syntax-sensitive dependencies. Transactions of the
Association for Computational Linguistics, 4:521–
535.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

David Mareček and Rudolf Rosa. 2019. From
balustrades to pierre vinken: Looking for syntax in
transformer self-attentions. In Proceedings of the
2019 ACL Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP, pages 263–
275.

Brian W Matthews. 1975. Comparison of the pre-
dicted and observed secondary structure of t4
phage lysozyme. Biochimica et Biophysica Acta
(BBA)-Protein Structure, 405(2):442–451.

Junghyun Min, R Thomas McCoy, Dipanjan Das, Emily
Pitler, and Tal Linzen. 2020. Syntactic data augmen-
tation increases robustness to inference heuristics.

In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
2339–2352.

Xuan-Phi Nguyen, Shafiq Joty, Steven Hoi, and Richard
Socher. 2019. Tree-structured attention with hierar-
chical accumulation. In International Conference on
Learning Representations.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. Language mod-
els are unsupervised multitask learners.

Marek Rei and Anders Søgaard. 2019. Jointly learn-
ing to label sentences and tokens. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 33, pages 6916–6923.

Devendra Singh Sachan, Yuhao Zhang, Peng Qi, and
William Hamilton. 2020. Do syntax trees help pre-
trained transformers extract information? arXiv
preprint arXiv:2008.09084.

Erik Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the conll-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natural
Language Learning at HLT-NAACL 2003, pages
142–147.

Emma Strubell, Patrick Verga, Daniel Andor, David
Weiss, and Andrew McCallum. 2018. Linguistically-
informed self-attention for semantic role labeling. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
5027–5038.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019. Bert
rediscovers the classical nlp pipeline. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4593–4601.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is
all you need. In Advances in neural information
processing systems, pages 5998–6008.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. Glue:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353–355.

Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei,
Xuanjing Huang, Cuihong Cao, Daxin Jiang, Ming
Zhou, et al. 2020. K-adapter: Infusing knowledge
into pre-trained models with adapters. arXiv preprint
arXiv:2002.01808.

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan
Zhang, Zhiyuan Liu, Juanzi Li, and Jian Tang.
2021. Kepler: A unified model for knowledge
embedding and pre-trained language representation.

2439

Transactions of the Association for Computational
Linguistics, 9:176–194.

Yaushian Wang, Hung-Yi Lee, and Yun-Nung Chen.
2019. Tree transformer: Integrating tree struc-
tures into self-attention. In Proceedings of the
2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 1060–1070.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-
hananey, Wei Peng, Sheng-Fu Wang, and Samuel R
Bowman. 2020. Blimp: The benchmark of linguis-
tic minimal pairs for english. Transactions of the
Association for Computational Linguistics, 8:377–
392.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

Ethan Wilcox, Peng Qian, Richard Futrell, Miguel
Ballesteros, and Roger Levy. 2019. Structural su-
pervision improves learning of non-local grammat-
ical dependencies. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 3302–3312.

Zhirong Wu, Yuanjun Xiong, X Yu Stella, and Dahua
Lin. 2018. Unsupervised feature learning via
non-parametric instance discrimination. In 2018
IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 3733–3742. IEEE.

Zenan Xu, Daya Guo, Duyu Tang, Qinliang Su,
Linjun Shou, Ming Gong, Wanjun Zhong, Xi-
aojun Quan, Nan Duan, and Daxin Jiang. 2020.
Syntax-enhanced pre-trained model. arXiv preprint
arXiv:2012.14116.

Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki
Takeda, and Yuji Matsumoto. 2020. Luke: Deep
contextualized entity representations with entity-
aware self-attention. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6442–6454.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le.
2019. Xlnet: Generalized autoregressive pretrain-
ing for language understanding. Advances in neural
information processing systems, 32.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A new dataset and method for automati-
cally grading esol texts. In Proceedings of the 49th
annual meeting of the association for computational
linguistics: human language technologies, pages
180–189.

Yue Yu, Simiao Zuo, Haoming Jiang, Wendi Ren,
Tuo Zhao, and Chao Zhang. 2021. Fine-tuning
pre-trained language model with weak supervi-
sion: A contrastive-regularized self-training ap-
proach. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 1063–1077.

Zhuosheng Zhang, Yuwei Wu, Junru Zhou, Sufeng
Duan, Hai Zhao, and Rui Wang. 2020. Sg-net:
Syntax-guided machine reading comprehension. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 9636–9643.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In Proceedings of the IEEE
international conference on computer vision, pages
19–27.

2440

