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Abstract

The biaffine parser of Dozat and Manning
(2017) was successfully extended to semantic
dependency parsing (SDP) (Dozat and Man-
ning, 2018). Its performance on graphs is sur-
prisingly high given that, without the constraint
of producing a tree, all arcs for a given sen-
tence are predicted independently from each
other (modulo a shared representation of to-
kens). To circumvent such an independence of
decision, while retaining the O(n2) complex-
ity and highly parallelizable architecture, we
propose to use simple auxiliary tasks that intro-
duce some form of interdependence between
arcs. Experiments on the three English acyclic
datasets of SemEval 2015 task 18 (Oepen et al.,
2015), and on French deep syntactic cyclic
graphs (Ribeyre et al., 2014) show modest but
systematic performance gains on a near state-of-
the-art baseline using transformer-based con-
textualized representations. This provides a
simple and robust method to boost SDP perfor-
mance.

1 Introduction and related work

Semantic dependency parsing is the task of pro-
ducing a dependency graph for a sentence. De-
pending on the datasets, these dependencies may
correspond to predicate-argument relations, with
labels numbering semantic arguments (as in Fig-
ure 1-top) or dependencies with intermediate status
between syntax and semantics, with labels being
canonical grammatical functions that normalize
syntactic alternations (e.g. in Figure 1-bottom, the
clitic l’ (him) is the canonical object of the passive
verb form sollicité (solicited)).

If one views each dependency as a decision to
make, both dependency parsing (DP, outputing a
syntactic tree) and semantic dependency parsing
(SDP) are known to exhibit high interdependence
of decisions. For instance in DP, when parsing a
question answering machine, choosing machine
as root is linguistically coherent with the machine

She went back and spoke to the desk clerk.
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Cela l’ a habitué à être très sollicité.
This him has accustomed to be very solicited.

suj
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Figure 1: Top: English Semantic graph in the DM for-
mat, as part of the SemEval2015-Task18 dataset (Oepen
et al., 2015). Bottom: French Deep syntactic graph as
defined by Candito et al. (2014).

→ answering → question analysis only, whereas
(wrongly) choosing question as root is syntacti-
cally coherent with the question → answering →
machine analysis.

In DP though, the interdependence between arcs
is partially solved by the tree constraint: choosing
one head for a given token amounts to ruling out
all other heads. This structural interdependence
is absent in SDP. Complex structural, lexical and
semantic factors control whether a given dependent
should be attached to zero, one or several heads.

Several approaches exist in the literature to cap-
ture interdependence of arcs in SDP, which often
derive from proposals made for DP. One is to use a
higher-order graph-based parser. Wang et al. (2019)
achieve state-of-the-art results (without pretrained
LM) on the English part of the SemEval2015-
Task18 data, by using second-order factors to score
the graphs, yet at the cost of a O(n3) complexity.

Another main approach is to use sequential
decisions, and hence take advantage of previ-
ous decisions by encoding the previously pre-
dicted arcs. This is the case in the transition-
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based parser of Fernández-González and Gómez-
Rodríguez (2020), or in the system of Kurita and
Søgaard (2019), which selects a new head for cer-
tain tokens at each iteration, using reinforcement
learning to order this selection of heads. Both mod-
els have a O(n2) complexity (when used without
cycle detection), and in both cases, sequential de-
cisions benefit from the encoding of previously
predicted arcs, yet at the cost of error propagation.
For that reason, Bernard (2021) propose a system
close to that of Kurita and Søgaard (2019), yet al-
lowing the system to overwrite previous decisions
and hopefully correct itself.

On the contrary, the biaffine system of Dozat and
Manning (2018) (hereafter DM18) performs a si-
multaneous scoring of all candidate arcs, decides to
predict an arc independently of the other ones. This
results in a highly parallelizable O(n2) inference,
with surprisingly high performance albeit below
second-order parsing.

As for most NLP tasks, SDP performance in-
creases when integrating transformer-based contex-
tual representations when encoding input tokens.
On the English dataset from the SemEval 2015
Task 18 (Oepen et al., 2015), Fernández-González
and Gómez-Rodríguez (2020) (hereafter FG20) re-
port a +0.7 and +2.0 increase for the in-domain (ID)
and out-of-domain (OOD) test sets respectively.1

In this work, we retain the simple O(n2) biaffine
architecture of DM18, and we investigate how sim-
ple auxiliary tasks can introduce some interdepen-
dence between arc decisions, in a multi-task learn-
ing setting (Caruana, 1997). We show modest but
statistically significant improvements on the three
English datasets of the widely used SemEval2015-
Task18 data (Oepen et al., 2015). We also test
another appealing property of the biaffine architec-
ture, which is the absence of formal constraints on
the output graphs. Experiments on French deep
syntactic graphs (Ribeyre et al., 2014), which are
highly cyclic, also demonstrate the effectiveness of
our auxiliary tasks for SDP.

1Using the biaffine DM18 architecture, He and Choi (2020)
report a +2 and +3 point increase in ID and OOD. Yet, these
results are not comparable: the authors have used a different
pre-processing, which adds orphan dependencies from the
root to orphan tokens, resulting in an easier task (p.c. with the
authors and
https://github.com/emorynlp/bert-2019/is
sues/1).

2 The baseline biafine graph parser

We reuse the computation of the arc and label
scores of the DM18 model, which we modern-
ized by using contextual representations: input se-
quence w1:n is passed into a pretrained language
model. We represent a word-token wi by concaten-
ing the contextual vector of its first subword2 h

(bert)
i

and a word embedding e
(word)
i .

vi = h
(bert)
i ⊕ e

(word)
i

(1)

For some of the experiments, we also concate-
nate a lemma and a POS embedding.

vi = h
(bert)
i ⊕ e

(word)
i ⊕ e

(lemma)
i ⊕ e

(POS)
i

(2)

The sequence of word-tokens representations
is passed into several biLSTM layers: r1:n =
biLSTM(v1:n).

The recurrent representation ri is then special-
ized according to two binary features: head versus
dependent, and arc versus label score:

h
(arc-head)
i = MLP(arc-head) (ri)

h
(lab-head)
i = MLP(lab-head) (ri)

h
(arc-dep)
i = MLP(arc-dep) (ri)

h
(lab-dep)
i = MLP(lab-dep) (ri)

(3)

We use a simplified biaffine transformation for
arc scores, and a per-label one for label scores:

s
(arc)
i→j = h

(arc-dep)
j U(arc)h

(arc-head)⊤
i + b(arc)

s
(l)
i→j = h

(lab-dep)
j U(l)h

(lab-head)⊤
i + b(l)

(4)
For each position pair i, j, a binary cross-entropy

loss is used for the existence of arc i → j, and a
cross-entropy loss is used for the labels of gold arcs.
At inference time, any candidate arc with positive
score s(arc)

i→j is predicted, and receives the label with
maximum score for this arc.

3 Auxiliary tasks targeting sets of arcs

Preliminary experiments on English semantic de-
pendency graphs (Oepen et al., 2015) and on
French deep syntactic graphs (Candito et al., 2014)
have shown us that the biaffine graph parser gives
good results, but with inconsistencies that are
clearly related to the locality of decisions. In partic-
ular, a quick error analysis revealed incompatible

2He and Choi (2020) report very slight improvements in
OOD when using the average of all subwords, but an opposite
trend in ID.
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Here is a good rule of thumb : ...

LOC

BV
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mwe

mwe
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Figure 2: Example of competition for the sequence rule
of thumb. Above arcs: correct MWE analysis (rule and
of attached to the last MWE component thumb, and
thumb being the head of the sequence). Below arcs:
incorrect compositional analysis, in which rule is the
head, e.g. attached wrongly as ARG1 of good (in red).

arc combinations. More precisely, we noticed im-
possible sets of labels for the set of heads of a
given dependent. For example in the DM part of
the SemEval2015-Task18 dataset, tokens are some-
times attached with a mwe label (for a component
of a multi-word expression) and attached to another
head with a non-mwe label, as shown for the rule
token in Figure 2. This incorrect situation actually
never happens in the training set, but this impossi-
bility is not captured by the model. In the predicted
French deep syntactic graphs, we noticed punctua-
tion tokens wrongly attached to two different heads
with the specific punct dependency label.

A second observation is a tendency in some of
the datasets to predict disconnected tokens (i.e.
with no incoming nor outgoing arcs) too frequently.
More generally, when counting the number of pre-
dicted heads for each token in the predicted graphs,
the accuracy is about 95% in the English datasets,
and below 92% for the French one.

3.1 Auxiliary tasks
Hence the idea of using auxiliary tasks taking into
account all the heads (resp. dependents) of a given
token. More precisely, we experiment multi-task
learning on the two target tasks (tasks A and L
for arc and label prediction), plus the following
auxiliary tasks, which predict for each token wj :

• tasks H and D: the number of governors and
number of dependents. For instance in top
Figure 1, spoke has two governors (went and
to) and one dependent (She);

• the labels of the incoming arcs, either as:

– task S: the concatenated string of
the incoming arcs labels, in alpha-

betic order (e.g. for the spoke token,
AND_C+ARG1)

– task B: or the "bag of labels" (BOL)
sparse vector, whose components are the
numbers of incoming arcs to wj bear-
ing each label. For the spoke token, this
would give a 1 for the AND_C label com-
ponent and 1 for the ARG1 label, and
zeros for all other labels.

Technically, for each auxiliary task, a specific
MLP is used to specialize the recurrent represen-
tation rj of each word-token wj . Tasks H and D
are regression tasks, which use MLPs with a single
output neuron and a squared error loss.3

nbhj = MLP(H)(rj)

nbdj = MLP(D)(rj)

The S task is a classification task into categories
corresponding to multi-sets of labels encountered
in the training set.4 For wj , the vector of scores
of all the label multi-sets is sj = MLP(S)(rj), and
cross-entropy loss is used at training.

For the B task, we use a MLP with final layer of
size |L|: BOLj = MLP(B)(rj). The component
for label l, BOLjl, is interpreted as 1+ log of the
number of l-labeled incoming arcs to wj . The
loss we use is the L2 distance between gold and
predicted BOL vectors.

The two example inconsistencies cited above are
indirectly captured by these auxiliary tasks. Firstly,
in case of a token wj that is a component of a
multi-word expression, the recurrent representation
rj for this token will be optimized to lead to a sin-
gle mwe incoming label for the S or B tasks, and
a value 1 for the H task (cf. a single governor for
wj). Hopefully, when used for the A and L tasks,
rj will favor incoming arcs from close next tokens
(cf. e.g. for the DM format, mwe components are
attached to the right, and quite locally). The other
mentioned problem of predicting disconnected to-
kens too frequently is captured by the H and D
tasks. Predicting no incoming nor outgoing arc for
a given token will only be coherent with H=0 and
D=0 for this token. Hence, hopefully, predicting

3nbhj is interpreted as 1+ the log of the number of heads
of wj , and same for nbdj , so as to penalize less errors in bigger
numbers: e.g penalize more predicting one head instead of 0
than predicting 2 heads instead of 3.

4The categories are label multi-sets because we neutralize
the order of the heads when considering the incoming arcs.
This limits the number of categories.
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more than 0 for the H task for a token wj , will lead
to higher scores for arcs pointing to wj .

3.2 Combining sublosses
At training time, for each batch, we seek to mini-
mize a weighted sum of the losses for all the tasks,
whether main or auxiliary. Manually tuning these
weights is cumbersome and suboptimal. We use the
notion of task uncertainty and the approximation
proposed by Kendall et al. (2018), who introduce a
parameter σt for each subtask t, to be interpreted
as its “uncertainty”. Noting T as the set of tasks,
the overall loss for a batch is

∑
t∈T

1
σ2
t
Lt + ln(σt).

The parameters σt are initialized to 1 and modi-
fied during the learning process. The first term of
the sum ensures that the more uncertain the task,
the less its loss will count, while the second term
prevents arbitrarily augmenting the σt values, thus
reducing the loss weights.

3.3 Stack propagation
We test two multi-task learning configurations: first,
simple parameter sharing up to the biLSTM layers
(all specialization MLPs applied on the recurrent
token representations). Second, we test the tech-
nique of “stack propagation”, which Zhang and
Weiss (2016) experimented for the POS tagging
and parsing tasks. In our case, it amounts to us-
ing the dense layers of the auxiliary tasks MLPs to
score the arcs and their labels.

For example, to use the H task in stack prop-
agation mode, let hidden(H)

j be the hidden layer
of MLP(H) for the dependent j, and c(H) a coef-
ficient hyperparameter. The computation of s(arc)

i→j

(cf. equation 4) is modified as follows:

sp
(arc-dep)
j = h

(arc-dep)
j ⊕ c(H)hidden(H)

j

s
(arc)
i→j = sp

(arc-dep)
j U(arc)h

(arc-head)⊤
i + b(arc)

Similarly, to use task B in stack propagation
mode, we modify the score of each label:

sp
(lab-dep)
j = h

(lab-dep)
j ⊕ c(B)hidden(B)j

s
(l)
i→j = sp

(lab-dep)
j U(l)h

(lab-head)⊤
i + b(l)

Note that it forces to perform the auxiliary tasks
during inference, instead of at training time only.

4 Experiments and discussion

4.1 Datasets
We experiment on the three widely used English
datasets of SemEval2015-Task18 (Oepen et al.,
2015) (DM, PAS and PSD), which are acyclic

graphs mainly representing predicate-argument re-
lations. We also experiment on French deep syn-
tactic graphs (Ribeyre et al., 2014) (Appendix D).
These capture most of argument sharings (e.g. rais-
ing, obligatory and arbitrary control, subject shar-
ing in VP coordination) but are closer to surface
syntax in the sense that labels remain syntactic,
even though syntactic alternations are neutralized
(e.g. passive by-phrases are labeled as subjects).
Cycles may appear e.g. in relative clauses.5

4.2 Experimental protocol

We chose to investigate the impact of the auxiliary
tasks on a high baseline, using pretrained contex-
tual representations. We use our own implementa-
tion6 of the biaffine parser, the BERTbase-uncased
model for English, and FlauBERTbase-cased for
French.7 We used two settings (see Appendix A
for details):

• BERTtuned: the first setting is intended to use
the contextual representations as only source
of pre-trained parameters, and defines the vi

vectors as in equation (1) (no lemma nor POS
embeddings), with the word embeddings be-
ing randomly initialized, and the BERT em-
beddings being fine-tuned for the SDP task.

• BERTfroz+POS+lem: the second one is used
to compare our results to previous work on the
English SemEval2015-Task18 datasets: the
BERT embeddings are frozen, additional POS
and lemma embeddings are used (cf. vi defini-
tion as in equation (2)). The same pre-trained
word and lemma embeddings as FG20 are
used. Note this setting uses gold POS and
lemmas and is not a realistic scenario.

For the BERTtuned mode, we tuned the hyperpa-
rameters on the French data, and applied the same
configuration to the English datasets. After a few
tests, we set a configuration (see Appendix A), and
searched for the best combination of auxiliary tasks.
For each experiment, we report the labeled Fscore
(LF), including root arcs, averaged over 9 runs.

5In these deep graphs, the root tokens (usually unique)
are attached to a dummy root token in practise. Thus for this
dataset, in all the above formulations, the sequence w1:n corre-
sponds to a sentence of n−1 word-tokens, with a dummy root
w1. For its contextual representation, we use the contextual
vector of the beginning of sequence token.

6https://github.com/mcandito/aux-task
s-biaffine-graph-parser-FindingsACL22

7We used the HuggingFace library (Wolf et al., 2020).
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4.3 Results on French deep syntactic graphs

Table 1 shows the results with and without vari-
ous combinations of auxiliary tasks.8 While no
auxiliary task provide a significative increase9, the
combinations B+H and B+D+H+S bring a statis-
tically significant +0.53 and +0.56 increase on
average (see Appendix C for significance test).

Auxiliary Stack On 9 runs
tasks propagation meanLF stdev
∅ NA 86.79 0.19
B+H no 87.32∗∗∗ 0.18
D+H no 86.61 0.71
H+S no 87.04 0.17
B+D+H+S no 87.35∗∗∗ 0.26
B+H c(B)=1 c(H)=1 87.49 0.06
B+H c(B)=1 c(H)=10 87.66+++ 0.18

Table 1: Results on French dev set, for various tasks
combinations, with and without stack propagation (H:
nb of heads, D: nb of dependents, B: bag of labels,
S: label multi-set). Col3-4: average LF, and standard
deviation. ∗∗∗: significative diff. wrt first line. +++:
significative diff. wrt second line (p <0.001).

We tested the impact of stack propagation using
auxiliary tasks B+H. We observe a modest but sta-
tistically significant +.34 increment with weights
c(B)=1 and c(H)=10. Considering that this makes
the inference task more complex, we did not use it
in later experiments on English.

4.4 Results on English semantic graphs

Tasks DM PAS PSD Avg

ID
∅ 93.7 93.9 80.7 89.4
B+H 94.2 94.3 81.2 89.9

OOD
∅ 90.3 92.0 79.8 87.4
B+H 91.0 92.8 80.2 88.0

Table 2: Average LF (on 9 runs), in BERTtuned setting,
on English in-domain (ID) and out-of-domain (OOD)
test sets, using either no auxiliary task (∅) or tasks B and
H (B+H), without stack propagation. B+H results are
statistically higher than ∅ for DM ID, DM OOD, PAS
ID, PAS OOD (p <0.001) and PSD ID (p <0.01).

8Previous state-of-the art on this data is a non-neural sys-
tem: Ribeyre et al. (2016) obtained LF=80.86, and went up
to LF=84.91 thanks to features from constituency parses from
the rich FrMG parser (Villemonte De La Clergerie, 2010). The
biaffine architecture with contextual vectors, without auxiliary
tasks, obtains a mean LF=86.79.

9See Appendix D for results with each auxiliary task.

We then tested the B+H configuration on the
English test sets. In Table 2, we observe that per-
formance gains using B and H auxiliary tasks are
systematic across datasets (DM, PAS, PSD) and
across in- or out-of-domain test sets, which tends
to show the robustness of our method.10

We can also measure the impact of the auxil-
iary tasks by evaluating how accurate the predicted
graphs are, concerning the number of heads of to-
kens: on average on the English dev sets, the pro-
portion of tokens receiving the right number of
heads in the predicted graphs increases from 94.9
without auxiliary tasks to 95.5 with tasks B+H.

Finally, we provide in Table 3 a comparison to
FG20 results (thus using the BERTfroz+POS+lem
setting), which are the state-of-the-art for systems
using a single source of contextual embeddings.
While our results remain below, note that our auxil-
iary tasks can be used with their system, as well as
with e.g. that of Wang et al. (2021), which achieve
significant improvements with an automated con-
catenation of various contextual embedding mod-
els, reaching 91.7 for ID et 90.2 for OOD.

ID OOD
FG20 BERTfroz+POS+lem 90.7 88.8
Ours BERTfroz+POS+lem, B+H 90.2 87.9
Ours BERTtuned, B+H 89.9 88.0

Table 3: Comparison to the state-of-the-art SDP parser
using BERT, on English ID and OOD test sets, in
BERTfroz+POS+lem setting. FG20: (Fernández-
González and Gómez-Rodríguez, 2020).

5 Conclusion

When using a biaffine graph-based architecture for
semantic dependency parsing (SDP), arcs are pre-
dicted independently from each other. Our con-
tribution is a set of simple yet original auxiliary
tasks that introduce some form of interdependence
of arc decisions. We showed that training recur-
rent word-token representations both for the SDP
task and for predicting the number of heads and
the incoming labels of each word is systematically
beneficial, when tested either on English or French,
on semantic or on deep syntactic graphs, and on in-
or out-of-domain data.

10The improvement tends to be higher for OOD, and for DM
and PAS. One reason could be that the PSD graphs show less
reentrancies, hence the number of heads is more predictable,
and using a specific auxiliary task for it is less beneficial.
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A Training details

All experiments are run on a Nvidia GTX 1080 Ti
GPU.

For all settings:

• lexical embedding size (e(word)
i ) : 100

• lexical dropout : 0.4. At learning, the lexical
embedding of a token is replaced with proba-
bility 0.4 by a special token *DROP*, whose
embedding is learned.

• biLSTM : 3 layers of size 2 ∗ 600, with 0.33
dropout

• MLPs for aux. tasks: 1 hidden layer (300),
output layer (300), dropout 0.25

• Batch size = 8

• Optimizer = Adam, β1 = β2 = 0.9

• Learning is stopped when all labeled Fscores
decrease on the dev set. Note that beside the
main FL score, tasks H and B give rise to their
labeled Fscore, computed using the number
of heads as predicted by task H (resp. B).

BERTtuned setting

• BERT and FlauBERT models : fine-tuned

• MLPs for arc and label score : 1 hidden layer
(600), output layer (600), dropout 0.33

• Learning rate = 2× 105

• Loss combination : learnt weights (cf. section
3.2)

BERTfroz+POS+lem setting

• BERT model : frozen

• word and lemma embeddings (100), initial-
ized with embeddings by Ma et al. (2018),
fine-tuned

• POS embeddings (100), randomly initialized

• MLP for arc score : 1 hidden layer (500),
output layer (500), dropout 0.33

• MLP for label score : 1 hidden layer (100),
output layer (100), dropout 0.3311

• Learning rate = 5× 104

• loss combination : plain sum of losses for
each task

B Unsuccessful tests

Various tests were abandoned as unsuccessful in
our preliminary tests:

• Using pre-trained lexical embeddings with
tuned contextual embeddings had no impact
on performance on average.

• Freezing BERT’s and FlauBERT’s parameters
without using word and lemma embeddings
significantly decreased performance (by about
2 FL points).

• Increasing the level of parameter sharing be-
tween tasks was not successful: instead of
applying the MLPs of the auxiliary tasks on
the recurrent representations ri, we tested ap-
plying them on the outputs of the specializa-
tion MLPs (i.e. on h

(arc-head)
i for task D, on

h
(arc-dep)
i for task H, on h

(lab-dep)
i for tasks B

and S). While this tends to increase the num-
ber of epochs, it does not improve the perfor-
mance.

C Significance testing

We use a Fisher-Pitman exact permutation test to
estimate the significance of the differences in per-
formance between two configurations (as done for
example by (Bernard, 2021)). More precisely, sup-
pose we consider two samples of Fscores, for nA
runs corresponding to configuration A, and nB
runs for configuration B, with on average configu-
ration B better than A. The null hypothesis is that
the two samples follow the same distribution. The
p-value corresponds to the probability that separat-
ing the set of Fscores into two samples A’ and B’
of size nA and nB gives a difference in mean at

11Sizes of the MLPs for arc and label scores are defined here
to replicate (He and Choi, 2020) settings. We observed very
marginal differences when keeping the sizes used in BERTtuned
setting (600 for both MLPs).
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least as large as the observed difference. With the
exact test, the p-value is calculated exactly, on all
possible splits into A’ and B’ samples.

D French data statistics and full results

Train Dev
Nb of sentences 14,759 1,235

Nb of tokens 457,872 40,055
% of disconnected tokens 12.0 12.2

Nb of edges 424,813 37,110

Table 4: Statistics of the deep French syntactic graphs,
built on the French treebank (Abeillé and Barrier, 2004).

The complete results on dev set for the French
data is provided in Table 5, of which Table 1 is a
truncated version.

Auxiliary Stack On 9 runs
tasks propagation meanLF stdev
∅ NA 86.79 0.19
H no 86.82 0.54
D no 86.83 0.40
S no 86.98 0.30
B no 87.05 0.49
B+H no 87.32∗∗∗ 0.18
D+H no 86.61 0.71
H+S no 87.04 0.17
B+D+H+S no 87.35∗∗∗ 0.26
B+H c(B)=1 c(H)=1 87.49 0.06
B+H c(B)=1 c(H)=10 87.66+++ 0.18

Table 5: Full results on French dev set, for various tasks
combinations, with and without stack propagation (H:
nb of heads, D: nb of dependents, B: bag of labels,
S: label multi-set). Col3-4: average LF, and standard
deviation. ∗∗∗: significative difference wrt first line
(p <0.001). +++: significative difference wrt B+H with-
out stack propagation (p <0.001).
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