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Abstract

Most existing approaches to Visual Question
Answering (VQA) answer questions directly,
however, people usually decompose a complex
question into a sequence of simple sub ques-
tions and finally obtain the answer to the origi-
nal question after answering the sub question
sequence(SQS). By simulating the process, this
paper proposes a conversation-based VQA (Co-
VQA) framework, which consists of three com-
ponents: Questioner, Oracle, and Answerer.
Questioner raises the sub questions using an
extending HRED model, and Oracle answers
them one-by-one. An Adaptive Chain Visual
Reasoning Model (ACVRM) for Answerer
is also proposed, where the question-answer
pair is used to update the visual representation
sequentially. To perform supervised learning
for each model, we introduce a well-designed
method to build a SQS for each question on
VQA 2.0 and VQA-CP v2 datasets. Experi-
mental results show that our method achieves
state-of-the-art on VQA-CP v2. Further anal-
yses show that SQSs help build direct seman-
tic connections between questions and images,
provide question-adaptive variable-length rea-
soning chains, and with explicit interpretability
as well as error traceability.

1 Introduction

Visual Question Answering (Agrawal et al., 2015)
requires to answer questions about images. It has
to process visual and language information simulta-
neously, which is a basic ability of advanced agents.
Therefore, it has attracted more and more attention
(Anderson et al., 2018; Lu et al., 2016; Goyal et al.,
2017b; Agrawal et al., 2018). The conventional ap-
proach (Agrawal et al., 2015) for Visual Question
Answering (VQA) is to encode image and question
separately and incorporate the representation of
each modality into a joint representation. Recently,
with the proposal of Transformer (Vaswani et al.,
∗Xiaojie Wang is the corresponding author.

Questioner Oracle

q1: Is there any snowboard? a1 : yes

q3: Is there a man on the far right?

a2 : yellowq2: What color is the snowboard?

a3 : yes

Answerer
ans : noQ : Is the snowboard the same color as 

the jacket of the man on the far right?

q4: What color is the man’s jacket? a4 : black

Figure 1: An illustrative example. After a se-
quence of four sub questions and their answers
{(q1,a1),(q2,a2),(q3,a3),(q4,a4)}, its easier to answer
the original question.

2017), based on previous dense co-attention mod-
els (Kim et al., 2018; Nguyen and Okatani, 2018),
some methods (Yu et al., 2019; Gao et al., 2019) fur-
ther adopt self-attention mechanism to exploit the
fine-grained information in both visual and textual
modalities. Meanwhile, to enrich indicative infor-
mation about the image contained in the visual rep-
resentation, some researchers (Cadène et al., 2019;
Li et al., 2019) have explored different methods
of relational reasoning to capture the relationship
between objects.

Though above methods have achieved signif-
icantly improved performances on real datasets
(Agrawal et al., 2015; Goyal et al., 2017b), there
are still some issues unsolvable. Most existing ap-
proaches answer questions directly, however, it is
often difficult, especially to answer complex ques-
tions. On the one hand, achieving holistic scene
understanding in one round is pretty challenging.
On the other hand, performing the whole Q&A pro-
cess in one round lacks interpretability, and it is
difficult to locate the errors when the model runs
into wrong answers. To address the above difficul-
ties, motivated by theory of mind (Leslie, 1987), as
shown in Figure 1, we imagine an internal conver-
sation for answering the original question, where a
sub question sequence (SQS, which includes sev-
eral simple sub questions, we use SQ to refer to sub
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question later) is raised and answered one-by-one
progressively. Finally, the answer to the original
question is obtained by capturing joint information
accumulated in the whole SQS. This way has sev-
eral significant cognitive advantages: 1) SQSs with
different numbers of sub questions will be automat-
ically generated for different questions, resulting in
question-adaptive variable-length reasoning chains,
2) a SQS gives a clear reasoning path, it therefore
provides explicit interpretability and traceability
of errors, 3) different questions are likely to con-
tain the same SQs or SQSs, these common SQs
even SQSs help improve the generalization abil-
ity of models, 4) SQs are usually more simple
and directly related to the images, which help to
strengthen the semantic connections between lin-
guistic and visual information.

To achieve above advantages, we therefore
propose a Conversation-based VQA (Co-VQA)
framework which includes an internal conversation
for VQA. It consists of three components: Ques-
tioner, Oracle and Answerer. As shown in Fig-
ure 1, once a question is raised, Questioner asks
some SQs, and Oracle provides answers one-by-
one. Their conversation brings a SQS and the cor-
responding answer sequence. When there is no
more SQ to be generated, the internal conversation
is finished and Answerer gives the final answer to
the original question.

Questioner employs the hierarchical recurrent
encoder-decoder architecture (Sordoni et al., 2015),
and we adopt a representative VQA model (An-
derson et al., 2018) as Oracle. For Answerer, we
propose an Adaptive Chain Visual Reasoning
Model (ACVRM) to accomplish an explicit pro-
gressive reasoning process based on SQS, where
SQs are used to guide the update of visual features
by an extended graph attention network (Velick-
ovic et al., 2018) gradually. Meanwhile, the an-
swers of SQs are utilized as additional supervi-
sion signals to guide the learning process. Further,
to provide supervision information for the above
three models during training, we propose a well-
designed method to construct a SQS for each ques-
tion which is based on linguistic rules and natural
language processing technology. VQA-SQS and
VQA-CP-SQS datasets are obtained after applying
this method to VQA 2.0 (Goyal et al., 2017b) and
VQA-CP v2 (Agrawal et al., 2018) datasets.

Our contributions can be concluded into three-
fold:

• We introduce a Conversation-based VQA (Co-
VQA) framework, which consists of three
components: Questioner, Oracle and An-
swerer. The frame is different from existing
VQA methods in principle.

• An Adaptive Chain Visual Reasoning Model
(ACVRM) for Answerer is proposed, where
the question-answer pair is used to update vi-
sual representation sequentially.

• Co-VQA achieves the new state-of-the-art
performance on the challanging VQA-CP v2
dataset. Moreover, SQSs help to build di-
rect semantic connections between questions
and images, they provide question-adaptive
variable-length reasoning chains with explicit
interpretability as well as error traceability.

2 Related Work

Visual Question Answering. The current dom-
inant framework for VQA consists of an image
encoder, a question encoder, multimodal fusion,
and an answer predictor (Agrawal et al., 2015). To
avoid the noises caused by global features, meth-
ods(Yang et al., 2016; Malinowski et al., 2018)
introduce various image attention mechanisms into
VQA. Instead of directly using visual features from
CNN-based feature extractors, to improve the per-
formance of model, BUTD(Anderson et al., 2018)
adopts Faster R-CNN (Ren et al., 2015) to ob-
tain candidate regional features while Pythia(Jiang
et al., 2018) integrates the regional feature with
grid-level features. Meanwhile, Lu et al. (2016);
Nam et al. (2017) put more attention on learning
better question representations. To merge informa-
tion from different modalities sufficiently, MFB(Yu
et al., 2017) and MUTAN(Ben-younes et al., 2017)
explored higher-order fusion methods. Further,
BAN(Kim et al., 2018) and DCN(Nguyen and
Okatani, 2018) propose dense co-attention model
which directly establish interaction between differ-
ent modalities with word-level and regional fea-
tures. Moreover, with the proposal of Transformer
(Vaswani et al., 2017), MCAN (Yu et al., 2019)
and DFAF (Gao et al., 2019) adopt self-attention
mechanism to fully excavate the fine-grained infor-
mation contained in text and image. Meanwhile, to
fully cover the holistic scene in an image, MuREL
(Cadène et al., 2019) and ReGAT (Li et al., 2019)
explicitly incorporate relations between regions
into the interaction process.
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Q: Is the man in the red 
shirt wearing sunglasses?

Questioner
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Figure 2: Overall illustration and data flow structure
diagram of Co-VQA framework.

Selvaraju et al. (2020) also proposed sub ques-
tions but with very different motivation and meth-
ods. They found consistency issues in current VQA
models which answer the reasoning questions cor-
rectly but fail on associated low-level perception
questions. They therefore construct independent
perception questions that serve as SQs to answer
the reasoning questions, and proposed SQuINT to
force a VQA model to attend to the same regions
when answering the reasoning questions and their
associated Perception SQ. The dataset proposed in
this paper is different from them because our model
needs a sequence of SQs to form a visual dialogue.

Visual Dialogue. Different from VQA, Visual
dialogue (VD) is a continuous conversation for im-
ages. Several VD tasks (Visual Dialog (Das et al.,
2017), GuessWhich (Chattopadhyay et al., 2017),
GuessWhat?! (de Vries et al., 2017), MMD (Saha
et al., 2018)) have been proposed. GuessWhat?!, as
a goal-directed dialogue task, requires both players
to continuously clarify the reference object through
dialogue. The Oracle provides the Questioner with
relevant information about the target object by con-
stantly answering yes/no questions raised by the
Questioner, and the Guesser generates the final an-
swer based on the historical dialogue. Following
the setting, our Co-VQA framework consists of
three components, in which Questioner raises SQs,
and Oracle answers them one-by-one, finally, An-
swerer obtains the answer to the original question.

3 Approach

Figure 2 shows the overall structure and data flows
of Co-VQA, where the Questioner, the Oracle, and
the Answerer are three major components. Given
an input image I and a question Q, Co-VQA aims
to predict the correct answer from the candidate
answer set A∗. Specifically, the Questioner gener-
ates a new SQ qt for the next round by combining
the information in Q, I and the dialogue history

Q：Is the man in the red shirt
wearing glasses? 

…

Embedder
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Figure 3: Overview of the Questioner model which is
based on extending HRED model. There are three mod-
ules: Image Encoder, Hierarchical Encoder, Decoder.

Ht−1 = {(q1, a1), · · · , (qt−1, at−1)}. Then, Ora-
cle produces appropriate answer at for qt. After ac-
complishing the last round of sub question-answer
pair, Answerer utilizes the historical information
accumulated throughout the process to obtain the
final answer. In this section, we will introduce the
three components in Section 3.1-3.3.

3.1 Questioner

At round t, given an image I , a ques-
tion Q and the dialogue history Ht−1 =
{(q1, a1), · · · , (qt−1, at−1)}, Questioner aims to
generate a new SQ qt, which could be denoted
as:

qt ∼ PθQ(q|Q, I,Ht−1), (1)

where θQ denotes the parameters of Questioner.
Generally, we build Questioner based on an extend-
ing hierarchical recurrent encoder decoder (HRED)
architecture (Sordoni et al., 2015). The overall
structure of Questioner is depicted in Figure 3.

Image Encoder. Following common prac-
tice(Anderson et al., 2018), we extract regional
visual features from I in a bottom-up manner by
using Faster R-CNN model(Ren et al., 2015). Each
image will be encoded as a series of M regional
visual features R ∈ RM×2048 with their bounding
box b = [x, y, w, h] ∈ RM×4 (M ∈ [10, 100] in
our experiments).
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Q: Is the man in the red shirt
wearing sunglasses?

q1: Is there a man?

qT: Are there sunglasses?

q2: Is there a man wearing red shirt?
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Figure 4: Model architecture of the proposed ACVRM for Answerer. There are four functional modules: Image
Encoder, Question Encoder, Sequential Progressive Reasoning and Multimodal Fusion.

Hierarchical Encoder. Embedding matrix Em-
bedder is adopted to map Q and each pair (qi, ai)
in Ht−1 to Qemb and (qemb

i , aemb
i ) respectively.

Then, two question-level encoder GRU, GRUQ

and GRUq, are deployed to obtain corresponding
question feature Qfea and qfeai for Q and qi.
Qfea is utilized as the first step input of session-

level encoder GRU, GRUs to grasp global infor-
mation of original question. qfeai and aemb

i are
concatenated as qafeai , which is regarded as repre-
sentation for sub question-answer pair. Meanwhile,
it is treated as the i+1-th step input of GRUs to
obtain context feature si+1:

si+1 = GRUs([q
fea
i || aemb

i ], si), (2)

where || represents concatenation. After encoding
Ht−1, we obtain current context representation st.

Decoder. At decoding qt, we employ an extra
one-layer GRU as decoder, which is initialized by
st. Then a question-guided attention is deployed to
regional features R to obtain the weighted visual
feature vt. Further, we fuse vt with Embedder(qit)
as the input of decoder at every time step i.

The negative log-likelihood loss is used for train-
ing, where T is the maximum round of dialogues:

L(θQ) = −
T∑
t=1

logP (qt|Q, I,Ht−1). (3)

3.2 Oracle
The Oracle aims to constantly answer SQs raised
by Questioner. Specifically, at round t, Oracle sup-
plies the answer at for SQ qt, based on the image

I and SQ qt. We regard Oracle as a conventional
VQA task and adopt the BUTD (Anderson et al.,
2018), which is a representative VQA method, as
our Oracle.

3.3 Answerer

Given a question Q, an image I and a complete
dialogue history HT = {q1, a1, ..., qT , aT }, the
assignment of Answerer is to find out the most
accurate â in the candidate answer set A∗, which
could be denoted as:

â = argmax
a∈A∗

Pθ(a|I,Q,HT ), (4)

where θ denotes the parameters of Answerer. To ac-
complish this task, we propose an Adaptive Chain
Visual Reasoning Model (ACVRM), which con-
sists of four components: Image Encoder, Ques-
tion Encoder, Sequential Progressive Reasoning,
and Multimodal Fusion. The overall structure of
ACVRM is illustrated as Figure 4.

3.3.1 Image and Question Encoder
Feature extraction modules are shown in the left
part of Figure 4. Image encoder is the same as
Questioner. For question encoder, we adopt a bidi-
rectional Transformer (Vaswani et al., 2017). Q
and each SQ in HT will be padded to a maximum
length and be encoded by bidirectional Transformer
with random initialization, at last the corresponding
question features E ∈ Rdq , {SEi}Ti=1 ∈ RT×dq

are obtained after mean pooling. To align the fea-
ture dimensions, we linearly map image feature R
to V0 ∈ RM×dv . We set dq = dv = 768.
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Figure 5: Flowchart of the GVR, including two parts:
multimodal fusion based on concatenation and relation
reasonsing based graph attention network.

3.3.2 Sequential Progressive Reasoning (SPR)

Overall. To realize progressive visual reasoning
under the guidance of SQS, we utilize Graph Vi-
sual Reasoning (GVR) module, which will be
introduced later, to gradually guide the update of
visual features. Specifically, for Q containing T
SQs, the t-th step of SPR can be expressed as:

V R
t = GV R(Vt−1, SEt; θG), (5)

where V R
t represents the t-th step visual feature,

and θG denotes parameters for GVR. Then, the
residual connection is deployed in each round to
preserve historical information and avoid vanishing
gradients. Therefore, the updated visual feature for
the t-th round can further be depicted as:

Vt = Vt−1 + V R
t . (6)

Furthermore, each qt has a corresponding answer
at, which supplies an additional supervision signal
for training. For each step t, we adopt a shared
two-layer MLP as the sub classifier and then utilize
average V R

t as input. A cross-entropy loss is used
for classification, which is denoted as Losssubt .

Graph Visual Reasoning. Inspired by ReGAT
(Li et al., 2019), we utilize an extended Graph At-
tention Network (Velickovic et al., 2018) to learn
relations between objects. An overall illustration
of GVR is shown in Figure 5. The whole reason-
ing process is abbreviated as V R = GV R(V, q),
which consists of two parts: feature fusion and
relational reasoning.

At first, the question representation q is concate-
nated with each of the M visual features vi, which
we write as [vi || q], then we compute a joint em-
bedding as:

v
′
i = W ([vi || q]) for i = 1, ...,M, (7)

where W ∈ Rdq×(dq+dv), and v
′
i ∈ Rdq is con-

ducted as the initial value of node in the graph

G(V,E), where eij denotes edges between nodes.
Then, to reduce the interference caused by irrele-
vant information, we design a masked multi-head
attention for relational reasoning. Specially, for
each head, inspired by Hu et al. (2018), the at-
tention weight not only depends on visual-feature
weight αh,v

ij , but also bounding-box weight αh,b
ij ,

we formulate non-normalized attention weight eij
as:

ehij = αh,v
ij + log(αh,b

ij ), (8)

αh,v
ij =

(W h
q v

′
i)
T ·W h

k v
′
j√

dh
, (9)

αh,b
ij = max {0, w · fb(bi, bj)} , (10)

where dh =
dq
H , H denotes the number of head and

we set H = 8, W h
q ∈ Rdh×dq , W h

k ∈ Rdh×dq ,
fb(·, ·) first computes relative geometry fea-
ture (log(

|xi−xj |
wi

), log(
|yi−yj |

hi
), log(

wj

wi
), log(

hj

hi
)),

then embeds it into a dh-dimensional feature by
computing cosine and sine functions of different
wavelengths, w ∈ Rdh . Furthermore, accord-
ing to ehij , to learn a sparse neighbourhood Nh

i

for each node i, we adopt a ranking strategy as
Nh

i = topK(ehij), where topK returns the indices
of the K largest values of an input vector, and we
set K=15.

By employing above mechanism, output fea-
tures of each head are concatenated, where W h

v ∈
Rdh×dq :

vRi = ||Hh=1σ(
∑
j∈Nh

i

softmax(ehij) ·W h
v v

′
j). (11)

3.3.3 Fusion Module
SQ-aware visual features VT are obtained after
completing the whole process of SPR. To suffi-
ciently integrate the information of two modalities,
we utilize Q to convert VT into final context-aware
Ṽ through GV R:

Ṽ = GV R(VT , E). (12)

Then, we employ the same multi-modal fusion
strategy as Anderson et al. (2018) to obtain a joint
representation H . For Answer Predictor, we adopt
a two-layer multi-layer perceptron (MLP) as clas-
sifier, with H as the input. Binary cross entropy is
used as the loss function. Thus, final loss can be
formulated as:

Loss = LossBCE +

T∑
t=1

Losssubt . (13)
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Validation Test-std
Model All Y/N Num Other All
Bottom-Up 63.37 80.4 43.02 55.96 65.67
BAN 66.04 - - - -
MuREL 65.14 - - - 68.41
ReGAT∗ 67.18 - - - 70.58†
DFAF 66.66 - - - 70.34†
MCAN 67.2(67.14±0.04‡) 84.82‡ 49.24‡ 58.44‡ 70.9†
MLIN 66.53 - - - 70.28†
Ours 67.26±0.02 84.71 50.38 58.44 70.39

Table 1: Performance on VQA 2.0 validation split and test-standard splits. "∗" means ensembling result. "†" means
training with augmented VQA samples from Visual Genome. "‡" based on our re-implementations.

4 Experiments

4.1 Datasets
We evaluate our approach on two widely used
datasets:

VQA 2.0 (Goyal et al., 2017b) is composed of
real images from MSCOCO (Lin et al., 2014) with
the same train/validation/test splits. For each im-
age, an average of 3 questions are generated. These
questions are divided into 3 categories: Y/N, Num-
ber, and Other. 10 answers are collected for each
image-question pair from human annotators. The
model is trained on the train set, but when testing
on the test set, both train and validation set are
used for training, and the max-probable answer is
selected as the predicted answer.

VQA-CP v2 (Agrawal et al., 2018) is a deriva-
tion of VQA 2.0. In particular, the distribution of
answers concerning to question types is designed
to be different between train and test splits, which
is aimed at overcoming language priors.

Construction of SQS dataset. To provide the
corresponding supervised signal for training Ques-
tioner, Oracle, and Answerer, we propose a well-
designed method, which is chiefly based on linguis-
tic rules and natural language processing technol-
ogy. VQA-SQS and VQA-CP-SQS are obtained
by applying this method on VQA 2.0 and VQA-CP
v2 datasets. The details of the construction process
and the specific statistical information of the two
datasets can be found in Appendix.

4.2 Implementation Details
Training and inference. During training, Ques-
tioner, Oracle, and Answerer are trained indepen-
dently. For inference, given a question Q and an
image I , SQS is firstly generated through the coop-
eration between Questioner and Oracle, then Q, I

and the complete SQS is combined as the input of
Answerer, and obtain the final answer.

Parameters. Each question is tokenized and
padded with 0 to a maximum length of 14. For
Questioner and Oracle, each word is embedded
using 300-dimensional word embeddings. The
dimension of the hidden layer in GRU is set as
1,024(except for GRUQ and GRUs with 1,324).

Our model is implemented based on Py-
Torch(Paszke et al., 2017). In experiments, we use
Adamax optimizer for training, with the mini-batch
size as 256. For choice of the learning rate, we
employ the warm-up strategy(Goyal et al., 2017a).
Specifically, we begin with a learning rate of 5e-4,
linearly increasing it at each epoch till it reaches
2e-3 at epoch 4. After 14 epochs, the learning rate
is decreased by 0.2 for every 2 epochs up to 18
epochs. We also adopt an early stopping strategy.
For the transformer encoder, we fix the learning
rate as 5e-5. Every linear mapping is regularized
by weight normalization and dropout (p = 0.2 ex-
cept for the classifier with 0.5).

4.3 Results

To compare with existing VQA methods, we con-
duct several experiments to evaluate the perfor-
mance of our Co-VQA framework, further, to ver-
ify the generation quality of the SQs and their im-
pact on the performance of the overall model, Ques-
tioner and Oracle are tested additionally.

In Table 1, we compare our method with previ-
ous work on VQA 2.0 validation and test-standard
split. From Table 1, it can be seen that on vali-
dation split, Co-VQA achieves the top-tier perfor-
mance, an accuracy of 67.26, which surpasses that
of MCAN(Yu et al., 2019) by 0.06. Although the
absolute improvement is slight, we report the stan-
dard deviation in Table 1, compared with MCAN,
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Model All Y/N Num Other
MuREL 39.54 42.85 13.17 45.04
ReGAT∗ 40.42 - - -
MCAN‡ 42.35 42.29 14.51 50.02
Ours 42.52 44.42 14.68 49.17

Table 2: State-of-the-art comparison on the VQA-CP
v2 dataset. "∗" means ensembling result. "‡" Results
based on our re-implementations.

BLEU-1 BLEU-2 BLEU-3
67.8 38.4 21.2

Table 3: BLEU evaluation scores of Questioner. We
don’t report BLEU-4 score because the length of some
sub questions is shorter than 4.

the p-value is 0.006, so the improvements are sta-
tistically significant with p < 0.05. Moreover, we
achieve an obvious performance improvement on
the number questions. On VQA 2.0 test-standard
split, without additional augmented samples from
Visual Genome (Krishna et al., 2017), our perfor-
mance is still the third place. We assume the gap
between the two splits is mainly due to the differ-
ence in SQS generation quality.

To demonstrate the generalizability of Co-VQA,
we also conduct experiments on the VQA-CP v2
dataset, where the distributions of the train and test
splits are quite different. Table 2 illustrates the
overall performance, and our model gains a signifi-
cant advantage (+2.1) over ReGAT. Compared with
MCAN, our model also improved by 0.16.

For Questioner and Oracle, we train and evaluate
the train/validation split of the VQA-SQS dataset.

Oracle. The accuracy of Oracle is 93.73 and the
average F-value is 90.13. On the one hand, the
high accuracy is due to SQ itself being simple; On
the other hand, decomposition of question leads
to many same SQs, strengthening image-language
correlation ability at SQ level.

Questioner. For Questioner, the BLEU score is
adopted to measure the quality of the generated
SQs. As is shown in Table 3, we attribute the low
BLEU scores to the diversity of syntax details.

4.4 Ablation Study

We conduct several ablation studies to explore crit-
ical factors affecting the performance of Co-VQA.

Model All Y/N Num Other
Full 67.26 84.71 50.38 58.44
wo-sub-loss 66.94 84.58 48.95 58.29
wo-SQS 66.55 84.43 46.78 58.18

Table 4: Ablation studies on impact of SQS on VQA
2.0 validation set.

Model SQS-0 SQS-1 SQS-2 SQS-3&4 All
(57,411) (119,285) (34,226) (3,432) (214,254)

Full 69.51 66.70 65.78 63.62 67.26
wo-SQS 69.48 65.68 64.85 64.35 66.55

Table 5: Ablation studies of SQS in detail on VQA 2.0
validation set. SQS-n represents the subset of samples
with n SQs in VQA-SQS validation set. We report the
average accuracy on each subset.

The impact of SQS. In general, as we can ob-
serve from Table 4, though there are noises in the
answers for SQs, the weak supervision signal pro-
vided by them shows a gain of +0.32. Furthermore,
the decrease is obvious(-0.71) when we remove
total SQS from the model, indicating that though
the SQS generated from Questioner is not good
enough, it still plays an important role in improv-
ing the performance of the model.

Detail Analysis of SQS. To analyze the impact
of SQS in detail, we divide the validation split of
VQA-SQS into SQS-0 / SQS-1 / SQS-2 / SQS-3&4
subsets, where SQS-n represents samples with n
SQs. Then, the average accuracy of different mod-
els on each subset is reported in Table 5. For SQS-1
and SQS-2, the additional reasoning brought by
SQS achieves an improvement of 1.02 and 0.93
respectively. However, for SQS-3&4, the perfor-
mance decreases compared with wo-SQS.

We perform statistics in two aspects to compre-
hensively explore the causes of this phenomenon.
As shown in Table 6, compared with other sub-
sets, SQS-3&4 has fewer samples, causing insuffi-
cient learning for these samples of a long sequence.
Moreover, SQs in SQS-3&4 occur less frequently,

Subset SQS-0 SQS-1 SQS-2 SQS-3&4 All
Samples-Num 57,411 119,285 34,226 3,432 214,254
Avg(Freq of SQ) - 870 851 693 854

Table 6: Data statistics of SQS in detail on VQA 2.0
validation set. The first row shows the number of origi-
nal questions contained in different SQS sets, and the
second row counts the average number of occurrences
of the sub questions contained in each subset in the
VQA-SQS train split.
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Q : What color is the woman's 
shirt on the left?
A : black

Pred : pink
Status : Failed

Q1 : Is there any woman?
A1 : yes

Q2 : Is there any person wearing 
shirt?
A2 : yes

Pred : black
Status : Success

Q : Does this blue car have 
a front license plate? 
A : no

Pred : yes
Status : Failed

Q1 : Is there any car? 
A1 : yes

Q2 : Is there any blue car? 
A2 : yes

Q3 : Is there any license 
plate on car? 
A3 : no

Pred : no
Status : Success

Q : Is the motorcyclist wearing 
proper foot gear?
A : yes

Pred : no
Status : Failed

Q1 : Is there any motorcyclist?
A1 : no

Q2 : Is this any safety gear?
A2 : no

Pred : no
Status : Failed

Q : How many dogs are in the picture?
A : 2

Pred : 1
Status : Failed

Q1 : Are there dogs?
A1 : yes

Pred : 2
Status : Success

Figure 6: Visualization of attention maps learned by complete Co-VQA with those learned by wo-SQS. The second
and last column corresponds to the prediction of wo-SQS and complete Co-VQA respectively. Red and blue
bounding boxes shown in each image are the top-2 attended regions.

Model All Y/N Num Other
Full 67.26 84.71 50.38 58.44
shuffle 67.15 84.68 49.78 58.42
random 67.08 84.68 49.75 58.28

Table 7: Ablation studies of coherence of SQS on VQA
2.0 validation set.

thus it is inadequate for the model to establish ac-
curate semantic connections between these images
and questions.

Coherence of SQS. We also study the impact
of the coherence of SQS on performance. We run
two different cases: 1) randomly shuffle the SQs
in a sequence; 2) remove some SQs in a sequence
with 50% probability. As we can observe from
Table 7, the declines from the original one are not
significant, partly due to the fact that the coherence
of SQS in the current dataset VQA-SQS is not good
enough.

4.5 Visualization

To better illustrate the effectiveness, explicit in-
terpretability, and traceability of errors of Co-
VQA, we visualize and compare the attention maps
learned by complete Co-VQA with those learned
by model wo-SQS. As shown in Figure 6. Col-
umn 1 is the original question and ground truth,
while Column 2 corresponds to the prediction of
model wo-SQS. The middle columns and last col-
umn correspond to the generated sub q&a, and the
prediction of Co-VQA, respectively. To visualize
the attention maps, we use the in-degree of each
node as the attention value and circle the top-2
attended regions with red and blue boxes.

Line 1 shows model wo-SQS only notices one of
the dogs and gives a wrong answer "1". However,
through SQ "Are there dogs?", Co-VQA focuses
on two dogs and gives the correct answer "2". This
case demonstrates that asking an existence question
firstly is beneficial to number questions. In Line 2,
model wo-SQS focuses on unrelated entities. How-
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ever, Co-VQA attends to the women and the people
wearing short sleeves gradually with SQS, and fi-
nally, concentrates on the related woman’s shirt.
Line 3 shows Co-VQA successively attends to cars,
blue cars, and the license plate under the guidance
of SQS and gets the correct answer. These exam-
ples prove that questions with different complexity
will correspond to SQS of variable length, and SQ
is indeed related to more accurate image attention.
Moreover, generating SQ provides not only the
logic of reasoning but also additional language in-
terpretation. Thus, compared with previous works
that only explain models by attention maps, Co-
VQA has significantly better interpretability.

The last line shows Co-VQA gives a wrong an-
swer after adding SQS. However, we can find some
possible causes, such as the wrong answer of Q1,
Q2 is not related to the question, and the model
doesn’t attend to relevant entities in the light of
Q1. It shows that Oracle and Questioner may give
wrong answers or generate inappropriate questions,
as well as Answerer may establish faulty semantic
connections between questions and images, which
verifies that Co-VQA has sure traceability for er-
rors and provides guidance for future work.

5 Conclusions

We propose a Conversation-based VQA (Co-VQA)
framework which consists of Questioner, Oracle,
and Answerer. Through internal conversation
based on SQS, our model not only has explicit
interpretability and traceability of answer errors
but also can carry out question-adaptive variable-
length reasoning chains. Currently, Questioner is
relatively simple, and the quality still has a lot of
room to improve. Meanwhile, current SQs are
only yes/no questions. For future work, we plan
to explore how to more effectively generate more
diverse and higher quality SQS, and look forward
to better model performance.
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A Appendix

Here we introduce our method for constructing
SQS and the statistical information of datasets.

A.1 Data source
We construct our SQS dataset based on VQA 2.0
and VQA-CP v2 datasets.

A.2 Construction principle
To accomplish the process of SQS construction,
we first determine the order of questions accord-
ing to the templates in Table 8. For order-0 and
order-1 questions, there is no corresponding SQ,
order-2 questions can construct the corresponding
order-1 SQs, while the order-3 questions can con-
struct multiple order-1 SQs and order-2 SQs. Then,
the principle of dataset construction is: high-order
questions can adopt corresponding low-order ques-
tions as their sub questions, for each high-order
question, these sub questions are arranged accord-
ing to the order from low to high to form a sub
question sequence.

A.3 Construction method
The details of the construction method can be illus-
trated as following:
1) For each question, we first adopt Spacy1 and
NLTK toolkit (Loper and Bird, 2002) to identify
all noun blocks in the question and filter out some
noun blocks based on the predefined phrase list.
The phrase list mainly includes meaningless quan-
tifiers, pronouns, and abstract nouns, such as lots,
someone, something, you, they, it, the day, the pic-
ture, a body, emotion, this, type, etc.
2) After finishing the filter process, for questions
that still contain noun blocks, according to the
dependency relation between the extracted noun
blocks, part of these noun blocks may be used as
prepositional phrases. For other remaining noun
blocks, we use Part-of-Speech Tagging of Spacy to
classify them into corresponding nouns, adjectives,
quantifiers, and prepositional phrases. For nouns,
we save them separately, while for adjectives, quan-
tifiers, and prepositional phrases, we save these
modifiers together with the noun blocks in a form
of 2-tuple (noun, modifier), such as (flower, red).
3) After step 1, for questions without noun blocks,
considering there may be omissions in the pro-
cess of extraction, we perform pattern matching
through Spacy based on the pre-defined matching
1https://spacy.io/

order question template
0 no entity
1 single entity
2 entity & attribute
3 comparison between different entities

Table 8: Templates for question of different order.

template to determine the category of these ques-
tions. Table 9 illustrates partial matching patterns
for different type of questions. Especially, for ex-
istence questions, no additional processing is re-
quired, while for other types of questions, we save
the nouns that are existing in the questions.
4) We further filter the nouns and tuples saved in 2)
and 3). This conduction aims to filter out abstract
nouns, non-substantial nouns, and 2-tuple corre-
sponding to these nouns. The following are some
cases to be filtered:
a) Abstract Noun: direction, design, surface, area,
emotion, skill etc.
b) Non Substantive Noun: mode, base, day, love,
name, print, piece etc.
5) For the remaining nouns and their correspond-

ing 2-tuple, we use the pre-defined question tem-
plate to construct the corresponding sub questions.
To facilitate the process of construction, we de-
sign all sub questions as yes / no questions. The
matching pattern for each type of sub question are
revealed in Table 11.
6) The construction process of ground-truth an-
swers for sub questions can be illustrated as fol-
lows:
Existence SQ and Attribute SQ we first extract
the label and attribute information of the entity by
using the detection model and then combine this
information to produce the answer.
Prep SQ and Position SQ the location informa-

tion obtained by the detection model is utilized to
judge the relationship of overlapping and orienta-
tion between entities, we use the obtained relation-
ship to generate the corresponding answer.
Number SQ we first make a rough quantity estima-
tion based on the image, and then make a manual
correction.
6) Considering there may be wrong answers, inco-
herent sequences, and nonstandard question gram-
mar in the process of automatic construction. So,
to increase the diversity of SQs, we invite ten stu-
dents in our laboratory to further manually recor-
rect some samples(about 5K samples).
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Question Type Matching Pattern
Existence (do you see)?[DET | PRON | ADP]* [NOUN | PROPN]* NOUN?
Verb (do you see)? [DET | PRON | ADP]* [NOUN | PROPN]* NOUN?

[VBG | VBN]?
Attribute BE [DET | PRON | ADP]* [NOUN | PROPN]* NOUN? ADJ?
Num BE [DET | PRON | ADP]* NUM NOUN NOUN* ?
Prep BE [DET | PRON | ADP]* [NOUN | PROPN]* NOUN VERB? ADP DET

NOUN NOUN* ?

Table 9: Matching patterns for different type of questions

Dataset Split #Images #Q&A #Non-empty SQS Avg(#SQ)
VQA-SQS Train 82,783 443,757 328,140 0.94
VQA-SQS Val 40,504 214,354 156,943 0.925

VQA-CP-SQS Train 120,932 438,183 322,200 0.93
VQA-CP-SQS Test 98,226 219,928 162,883 0.946

Table 10: Dataset statistics of VQA-SQS and VQA-CP-SQS.
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Figure 7: Dataset distribution of VQA-SQS.
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Q : Are the two men wearing glasses at the closest table?
q1 : Is there a closest table?
a1 : yes
q2 :Are there two men at the closest table?
a2 : yes
q3 : Are the two men wearing glasses?
a3: no
A : yes

Q : Is the green vehicle a sports utility vehicle?
q1 : Is it a vehicle?
a1 : yes
q2 : Is there a green vehicle?
a2 : yes
q3 : Is the green vehicle truck?
a3: yes
A : no

Q : Is the man wearing a plain tie?
q1 : Is there a man?  
a1 : yes
q2 : Is the a man wearing a tie?  
a2 : yes
q3 : Is the tie plain?
a3: no
A : no

Q : Are these two players on the same team?
q1 : Are there players?
a1 : yes
q2 : Are there two players?
a2 : yes
q3 : Are the two players wearing the same color?
a3: yes
A : yes

Figure 9: Some samples of VQA-SQS, including existence SQ, attribute SQ, prep SQ and number SQ.

SQ Type Matching Pattern

Existence
Is there any [entity]?

Is there any [color] [entity]?
Are there [entites]?

Attribute
Is the [entity] [color]?

Is any [entity]?
Are these [entites] in similar size?

Prep
Is there any [entity] on the [entity2]?
Is there any [entity] in the [entity2]?

Number
Are there [number] [entites]?

Is there only one [entity]?

Position
Is the [entity] on the left?

Is the [entity] on the right?
Is the [entity] in the middle?

Table 11: Sub question generation template for different
SQ types.

The SQS datasets obtained by performing the above
operations on VQA 2.0 and VQA-CP v2 datasets
are called VQA-SQS and VQA-CP-SQS respec-
tively.

A.4 Dataset statistics
Table 10 shows general statistical information of
the two SQS datasets, then, Figure 7 and Figure 8
respectively reveal three fine-grained distributions
of two datasets including number distribution of
SQ (7-a / 8-a), type distribution of SQ (7-b / 8-
b) and answer distribution of SQ (7-c / 8-c). To
display more convenient, in (7-a / 8-a) and (7-b /
8-b), the ordinate axis adopts logarithmic scale.

Figure 9 displays four samples with three sub
questions in the VQA-SQS dataset.
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