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Abstract

The recent large-scale vision-language pre-
training (VLP) of dual-stream architectures
(e.g., CLIP) with a tremendous amount of
image-text pair data, has shown its superiority
on various multimodal alignment tasks. De-
spite its success, the resulting models are not
capable of multimodal generative tasks due to
the weak text encoder. To tackle this prob-
lem, we propose to augment the dual-stream
VLP model with a textual pre-trained language
model (PLM) via vision-language knowledge
distillation (VLKD), enabling the capability
for multimodal generation. VLKD is pretty
data- and computation-efficient compared to
the pre-training from scratch. Experimental re-
sults show that the resulting model has strong
zero-shot performance on multimodal genera-
tion tasks, such as open-ended visual question
answering and image captioning. For exam-
ple, it achieves 44.5% zero-shot accuracy on
the VQAV2 dataset, surpassing the previous
state-of-the-art zero-shot model with 7x fewer
parameters. Furthermore, the original textual
language understanding and generation ability
of the PLM is maintained after VLKD, which
makes our model versatile for both multimodal
and unimodal tasks.

1 Introduction

Recent large-scale dual-stream Vision-Language
Pre-training (VLP) models like CLIP (Radford
et al., 2021) and ALIGN (Jia et al., 2021), have
shown remarkable performance on various down-
stream multimodal alignment tasks, e.g., image-
text retrieval and image classification. These mod-
els are pre-trained using cross-modal contrastive
learning on tremendous image-text pairs and learn
strong multimodal representations. Despite their
success, as mentioned by Radford et al. (2021),
their text encoder is relatively weak by only having
a discriminative multimodal pre-training objective,
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Figure 1: Intuition of our proposed approach. After
VLKD, the model can fill in the masked locations with
meaningful words to describe the image without further
finetuning. Moreover, it can answer questions with
proper reasoning over the given images and pre-trained
knowledge inside PLMs, e.g., a napkin is for wiping the
face at meals.

which makes them incompetent on generative mul-
timodal tasks such as image captioning and open-
ended visual question answering (VQA).
Meanwhile, the Transformer-based (Vaswani
et al., 2017) auto-regressive large-scale pre-trained
language models (PLMs), such as GPT (Radford
and Narasimhan, 2018; Brown et al., 2020), have
been dominating in the natural language genera-
tion (NLG) tasks. These models are usually trained
with causal self-attention, which only allows the
model to attend to past outputs (unidirectional)
to satisfy their generative nature. More recently,
BART (Lewis et al., 2020) and T5 (Raffel et al.,
2020) propose to augment the auto-regressive de-
coder with a bidirectional Transformer encoder to
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further capture bidirectional information of the in-
put. These encoder-decoder architectures excel on
not only NLG but also understanding (NLU) tasks.

To tackle the aforementioned limitations of dual-
stream VLP models and fully utilize PLMs, in this
paper, we present Vision-Language Knowledge
Distillation (VLKD), a simple yet effective ap-
proach to enable CLIP to perform generative multi-
modal tasks through knowledge distillation. Specif-
ically, we align the BART encoder to CLIP’s joint
multimodal embedding space to gain the under-
standing of multimodal knowledge, along with an
image-conditioned language modeling loss to con-
sort BART encoder and decoder. During training,
we freeze CLIP’s weights to keep its learned multi-
modal space. For the finetuning and inference of
downstream tasks, the original CLIP text encoder
is discarded, which can be interpreted as being re-
placed by the distilled BART. Therefore, we lever-
age the strengths from both sides, the expressive
multimodal representation space of CLIP and the
strong text generation capability of BART.

Compared to VLP from scratch, VLKD uses sev-
eral magnitudes fewer image-text pairs and com-
putational resources. As depicted in Figure 1, af-
ter VLKD pre-training, the model exhibits strong
zero-shot performance on generative multimodal
tasks, including open-ended VQA and image cap-
tioning. Without finetuning, it has the ability to
generate answers by reasoning over the question,
the visual information, and the textual knowledge
embedded in the pre-trained BART. Furthermore, it
can also directly generate a plausible caption given
an image. Empirical results show that our model
achieves 44.5% accuracy on the VQAv2 dataset
and 84.6 CIDEr on COCO image caption dataset
in a zero-shot manner. Moreover, the original NLU
and NLG ability of BART is maintained, which
makes the model versatile for both multimodal and
unimodal tasks.

To summarize, our contributions are: 1) We in-
troduce an efficient approach to distill knowledge
from the dual-stream VLP model CLIP to BART.
The resulting model shows strong zero-shot perfor-
mance on generative multimodal tasks, as well as
pure NLP tasks; 2) We exhaustively quantify these
capabilities on six benchmarks under various set-
tings; and 3) We conduct comprehensive analysis
and ablation study to provide insights and grease
future work on this direction.

2 Related Work

2.1 Vision-language Pre-training

Based on how the two modalities interact, recent
VLP models mainly fall into two categories: single-
stream and dual-stream models. Single-stream
models (Chen et al., 2020; Li et al., 2019; Ramesh
etal.,2021; Linetal., 2021; Kim et al., 2021a; Shen
et al., 2022) concatenate the patch-wise or regional
visual features and textual embeddings and feed
them into a single model. Dual-stream models (Lu
et al., 2019; Radford et al., 2021; Jia et al., 2021;
Zhai et al., 2021; Yao et al., 2022) use separate
encoders for images and texts, allowing efficient
inference for downstream multimodal alignment
tasks like image-text retrieval, by pre-computing
image/text features offline. However, these models
can not be directly used for multimodal generation
tasks. In this paper, we propose an efficient method
to align the dual-stream VLP model CLIP’s mul-
timodal embedding space with a powerful PLM
BART to gain multimodal generation ability.

There are also VLP models that can perform
multimodal generation tasks, by expensive pre-
training with objective of image-conditioned auto-
regressive language modeling (Lin et al., 2021;
Wang et al., 2021; Hu et al., 2021; Li et al., 2022).
However, the pre-training of these models requires
a large number of image-text pairs and numer-
ous computation resources. Other models like
(Agrawal et al., 2019; Li et al., 2019, 2020; Cho
et al., 2021; Li et al., 2021) rely on an extra pre-
trained object detector such as Faster-RCNN with
labeled bounding-box data to extract image re-
gional features offline and are less scalable.

2.2 Knowledge Distillation

Knowledge distillation (KD) in deep learning is
first proposed by Hinton et al. (2015), which trans-
fers knowledge embedded in the logits learned in
a cumbersome teacher model to a smaller student
model without sacrificing too much performance.
Besides logits, other forms of knowledge like the
intermediate representations and attentions (Jiao
et al., 2019; Hou et al., 2020) have also been
used in transferring the knowledge embedded in
Transformer-based models. Recently, contrastive
representation distillation (Tian et al., 2019) dis-
tills the knowledge from the teacher network to the
student network by maximizing the mutual infor-
mation between the two networks, and is recently
extended to transfer the knowledge from the pre-
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trained multimodal model CLIP for zero-shot detec-
tion (Gu et al., 2021) and multilingual setting (Jain
et al., 2021). In this paper, we apply the conven-
tional KD as well as the contrastive KD to transfer
the knowledge from the pre-trained CLIP to BART.
Besides, we also propose to transfer the knowledge
in CLIP image encoder to BART decoder through
the cross-attention.

3 Proposed Method

We propose to distill multimodal knowledge from
CLIP to BART for generative multimodal tasks,
which takes the strengths from both sides (power-
ful multimodal representations of CLIP and text
generation ability of BART). To this end, we pro-
pose three objectives (Section 3.2). The overall
architecture is illustrated in Figure 2.

3.1 Model Architecture

CLIP. CLIP (Radford et al., 2021) is a dual-
stream VLP model pre-trained with a contrastive
loss on 400 million image-text pairs. It consists
of a text encoder which is a GPT (Radford et al.,
2019) style Transformer model, and an image en-
coder which can be either a Vision Transformer
(ViT) (Dosovitskiy et al., 2020) or Residual Convo-
lutional Neural Network (ResNet) (He et al., 2016).
CLIP learns a joint multimodal embedding space
with its text encoder and image encoder aligned.
Given an input image-text pair, the image encoder
first reshapes the image into a sequence of 2D
patches and then maps them into 1D embeddings
with a prepended [CLS] token using a trainable
linear projection. These embeddings are fed into
the CLIP image encoder together with positional
encodings. The output embedding of the [CLS]

token can represent the whole image. For the text
sentence, it is bracketed with [SOS] and [EOS]

tokens, and the output embedding of the latter is
used as the sentence-level representation. In this
paper, we explore four CLIP variants, including
ViT-B/16, ViT-L/14, RN50x 16, and RN50x 64.

BART. BART is a Transformer-based (Vaswani
et al., 2017) sequence-to-sequence model that has
a bi-directional encoder and a uni-directional (left-
to-right) decoder, which can be seen as a gener-
alization of the BERT (Devlin et al., 2019) and
GPT (Radford and Narasimhan, 2018). It is pre-
trained on 160GB text data in a self-supervised way
by performing the text span infilling task with the
input sentences corrupted and shuffled. Similar to

the CLIP text encoder, BART also tokenizes and
converts the input text into a sequence of embed-
dings, which are then fed into the BART encoder.
BART excels at both NLG (e.g., abstractive sum-
marization) and NLU tasks.

3.2 Training Objectives

To distill multimodal knowledge from CLIP to
BART, we propose three objective functions:
1) Text-Text Distance Minimization (TTDM); 2)
Image-Text Contrastive Learning (ITCL); and 3)
Image-Conditioned Text Infilling (/CTI). Dur-
ing training, the model parameters of CLIP are
frozen constantly, i.e. no gradients will be back-
propagated through them (marked as SG in Fig-
ure 2), to ensure its two encoders are still aligned
and the multimodal knowledge is not forgotten.

For each training batch with B image-text pairs,
denote the k-th image-text pair as x* = {x¥ xk},
and the output of multimodal encoders of CLIP and
BART encoder as

CLIP;(x}) — VF = v vE, ... vE ],

k k ko ok ko k
CLIPT(XT) — T" = [tsosﬂtl’ e 7tn2ﬂteos]’
BART,,.(x%) — EF = [ef . ef,... ek el ).

Here, n is the number of image patches, no and n3
denote the sequence lengths of the text encoder of
CLIP and BART, respectively. v¥, t* € R% repre-
sents the £2-normalized output embedding from the
CLIP image and text encoder at a certain position.
e” is the unnormalized raw output embedding from
the BART encoder. In the following, we elaborate
on the three distillation objectives.

3.2.1 Text-Text Distance Minimization

To align the CLIP text encoder and BART encoder,
i.e. making their output representations close given
the same input text, we propose to minimize the
{5 distance between their sequence-level output
representations. Specifically, for the k-th input text,
it can be formulated as

ér’;)rm = Weék/HWeékHQa

B

1 . 2

Lrrpym = E Z Hteos - enorm” )
k=1

where e* € R is the average of all output embed-
dings from the BART encoder, and W, € R x4
is a weight matrix to linearly project the output of
BART encoder to CLIP’s multimodal space.

2385



Contrastive Loss

{urcL)
cls tgos 7
NI (IINE (10 (1]

£, norm

L CLIP Text *®

£, norm

L CLIP ImageSG

Encoder Encoder

BART
Encoder

Alarge airplaneis on
the airport runaway

t 4t
Q Alargeairplaneison
the airport runaway

(a) The TTDM and ITCL losses.

!

[Lmear w;) ] [Lmear w2 ]
I's A} s N\ ICTI Loss
S0 00 @D | »-sm- =
T{’z norm T T T T
CLIP Image”® BART BART
Encoder Encoder Decoder
K r ot
<s>- large + runaway

ﬂ Alarge [MASK]on
theairport [MASK]
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Figure 2: Architecture of the proposed VLKD method to distill multimodal knowledge from CLIP to BART. (a)
shows the TTDM and ITCL losses between the dual-stream CLIP encoders and BART encoder. (b) illustrates the
ICTI loss for image-conditioned language modeling. SG denotes the stop gradient operation, indicating that no
gradients will be back-propagated through that part of model parameters.

3.2.2 Image-Text Contrastive Learning

Contrastive training has been shown to be very ef-
fective in cross-modal representation learning (Tian
et al., 2020; Sigurdsson et al., 2020; Zhang et al.,
2020; Radford et al., 2021). To further adapt the
BART encoder to CLIP’s multimodal space, we
optimize a symmetric InfoNCE loss between the
output representations of the BART encoder and
CLIP image encoder. The image-to-text contrastive
loss L;9+ is formulated as

z2t B Z

where 7 is a learnable temperature parameter. Dif-
ferent from Radford et al. (2021), we find that not
clamping the 7 shows a slight improvement. Simi-
larly, the text-to-image contrastive loss L9; is

JT &k

B Z ; exp (vcls norm/T)

Then, the ITCL loss can be calculated as

eXp (Vcl—srenorm/'r)

)
exp (Vcls enorm/T)

Lo exp( cl—srér’form/’r)
t21 —

1
Lircr = §(£i2t + Li2).

Note that when computing the /TCL and TTDM
losses, we do not introduce any new linear projec-
tions to the CLIP output features to avoid destroy-
ing the pre-trained alignment between its image
and text encoders. Instead, we add one linear layer
(parameterized by W.) to project the BART en-
coder to CLIP’s representation space and match
their feature dimension.

3.2.3 Image-Conditioned Text Infilling

With only 7TDM and ITCL, the BART decoder is
not updated at all. To consort BART encoder and
decoder, we propose to perform the text span infill-
ing task conditioned on the corresponding image
features. As depicted in Figure 2b, for the k-th
image-text pair, following Lewis et al. (2020), we
corrupt the input text by masking 15% of whole-
word tokens with span lengths drawn from a Pois-
son Distribution with A = 3.

Considering that VF and W_.EF are already
aligned in the CLIP’s multimodal space through
TTDM and ITCL, and having a different feature di-
mension with the BART decoder, we further project
them to the BART decoder dimension with W, and
W'. Then, we concatenate them together as C*
before feeding into the BART decoder as shown in
Eq.(1). As mentioned in Section 3.1, we explore
two variants of CLIP. With a slight abuse of no-
tation, for ResNet-based CLIP, V* is composed
of representations of all image patches {vk S
while for ViT-based CLIP, V¥ con51sts of the rep-
resentation of the [CLS] token v s only.

Note that the weight matrix W, is initialized to
be the pseudo-inverse of W, such that text rep-
resentations after the two projections W, W E*
are the closest to the original pre-trained BART en-
coder space at initialization'. The BART decoder
then interacts with C* through standard Trans-
former cross-attention layers. We optimize a lan-

'The pseudo inverse matrix WY, satisfies W, =

arg minx |W.X — I||%, where I is the identity matrix and
|| - || 7 denotes the Frobenius Norm.
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guage modeling loss L7 by minimizing the neg-
ative log-likelihood in Eq.(2), in which w; denotes
the token to be predicted at each decoding step.

Cck = concat(Win, W/eWeEk), (D

B
1
EICT[:—EE E logP(WﬂW’ij,Ck). ()
k=1 j

The ICTI loss is crutial for for our methodol-
ogy to work, as it not only coordinates the BART
encoder and decoder, but also enables the BART
decoder to understand the multimodal information
by recovering texts with visual clues.

Finally, we simultaneously optimize the summa-
tion of three losses L as

L =~Lrrpym + Lirer + Liorr,

where ~ is set to 103 by default, as Lrrcor, LioTr
are about three magnitudes larger than L7 pay.

3.3 Datasets for VLKD

Our model is trained on the Conceptual Captions
(CC3M) (Sharma et al., 2018) dataset, which con-
tains 3 million image-text pairs crawled from the
Internet. For larger model variants (ViT-L/14 and
RN50x64), we further include the Visual Genome
Caption data which contains ~700K image-text
pairs. No images for pre-training appear in the
downstream datasets. Compared to previous VLP
work (Radford et al., 2021; Jia et al., 2021; Wang
et al., 2021), VLKD is much cheaper by leverag-
ing several magnitudes less data. Furthermore, we
experiment with even smaller data (1M, 100K) by
uniformly sampling a subset of CC3M to test the
limit of dataset size of VLKD, with results dis-
cussed in Section 5.

4 Experiments

To demonstrate the effectiveness of VLKD, we
evaluate it on generative multimodal tasks for both
zero-shot and finetuning. Specifically, we test the
image captioning task, and also the VQA task under
the open-ended scenario. Furthermore, we also run
the model on NLU and NLG tasks to investigate the
influence of VLKD on the text processing ability
of the original pre-trained BART.

4.1 Finetuning Datasets

Image Captioning. Image captioning requires
the model to generate a relevant description given
an image. We use the COCO image caption

dataset (Lin et al., 2014) with the Karpathy
split (Karpathy and Fei-Fei, 2017). Additionally,
we use the NoCaps (Agrawal et al., 2019) dataset
to test the model performance when there are out-
of-domain objects.

Open-Ended VQA. Unlike previous works (An-
derson et al., 2018; Chen et al., 2020; Li et al., 2020;
Yu et al., 2021a; Zhang et al., 2021; Kim et al.,,
2021b) that treat the VQA task as a discriminative
problem, we let the model generate answers freely,
which is more aligned with the real-world scenario
of this task. We use the standard VQAV2 (Goyal
et al., 2017), and also OK-VQA (Marino et al.,
2019) which requires knowledge to answer ques-
tions correctly.

NLU and NLG. For NLU, we test our model on
the GLUE benchmark (Wang et al., 2019), which
consists of nine text classification tasks. We ex-
clude the WNLI task as it is problematic’>. For
NLG, we test the abstractive summarization task
on XSUM (Narayan et al., 2018) dataset, which
requires the model to comprehend long texts and
generate short summaries with key information.

4.2 Implementation Details

We use BART-large as the pre-trained backbone
NLP model, which has 12 layers in both encoder
and decoder with a hidden size of 1024 and 16
heads in each multi-head attention (MHA) layer.
In total, it contains 406M parameters. For the
pre-trained CLIP (Radford et al., 2021) model,
we report four variants with different visual back-
bones, including ViT-B/16, ViT-L/14, RN50x 16,
and RN50x64.

We use 64 Nvidia V100 GPUs for VLKD and
8 for the finetuning of downstream tasks. In total,
we pre-train the model for 10 epochs, which takes
about 5 hours. We use a batch size of 4608 for ViT-
B/16 and ViT-L/14, 4096 for RN50x16 and 3840
for RN50x64. All of the models are optimized by
the AdamW (Loshchilov and Hutter, 2019) opti-
mizer. The learning rate is warmed up to 2.4e~*
within the first 2% steps and then linearly decay to
0. More information of VLKD pre-training and the
finetuning of each downstream task can be found
in Appendix A.

https://gluebenchmark.com/faq
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_________________________________

On what holiday do people traditionally
eat this bird? Answer: [MASK].

Generated answer:
Thanksgiving.

_________________________________

What retractable appendage could this
animal use to destroy the chair? Answer:
[MASK].

Generated answer:
Claw:

_________________________________

What area of a school might this be?
Answer: [MASK].

Generated answer:
Library.

What's reflecting from the mirror?
Candidate answer(s):
Light; Wall; Shower.

Generated answer:

(a) Zero-shot VQA.

Reference caption:

Two people sit on the beach with
surfboards at their sides.

Generated caption:

A couple sitting on the beach with their
surfboards in the background.

,___________“
[ —_—

Reference caption:
A cat is laying next to a blue book.

Generated caption:
A cat reading a book on a couch in the Ii
ving room.

[ ——

Reference caption:
A woman sitting on a bench with a dog.

Generated caption:
A young woman sitting on a bench with
her dog in the background.

P ——

Reference caption:
A man holds a stick during a hockey
game.

Generated caption:
A young man in the middle of a hockey

[ —_—

(b) Zero-shot image captioning.

Figure 3: Examples of (a) zero-shot VQA and (b) image captioning. Our model shows the ability to recognize
visual objects and generate appropriate sentences based on their properties and relationship. Furthermore, the model
can bind visual objects to text conceptual knowledge that is learned in the PLMs when generating answers given

questions.

4.3 Multimodal Zero-Shot Evaluation

Benefit from the knowledge distillation, especially
the ICTI loss, our model can perform various down-
stream multimodal tasks in a zero-shot manner.

4.3.1 Zero-Shot Image Captioning

During knowledge distillation, the /CT1 loss can be
seen as a simple version of the image captioning
task, which asks the model to fill in the corrupted
locations of image descriptions. If the masking
ratio increases to 100%, it reduces to the image
captioning task. Therefore, it is intuitive to test the
zero-shot performance of our model.

Following Radford et al. (2021) and Wang
et al. (2021), we compose the input with a text
prompt and also m mask tokens, i.e., “A picture
of [MASK] xm.”, for the model to generate the
caption for the image. The zero-shot results are
included in Table 1. Our zero-shot model achieves
comparable overall performance to the finetuned
UpDown (Agrawal et al., 2019) model on NoCaps
dataset. As shown in Figure 3b, the zero-shot gen-
erated captions are plausible with correct objects,
relationships, and actions. However, sometimes
details like colors could be omitted.

In our experiments, we use m = 6 for COCO
and m = 8 for NoCaps. Although it could poten-

tially limit the length of generation, we find that
it has negligible influence to the performance, as
for each [MASK] token, the model is learned to fill
one to three tokens depending on the context. Fur-
thermore, this could be used to control the length of
generated texts for different senarios. See Section 5
for a more detailed discussion about the effects of
number of the masks.

4.3.2 Zero-Shot VQA

Zero-shot VQA is much more challenging than im-
age captioning, as it requires reasoning over both
the image and question, which is very different
from the ICTI loss during the knowledge distil-
lation. As illustrated in Figure 1, we construct
the input by appending a text prompt “Answer:
[MASK] xn.” to the question Given the context
(image+question+prompt), the model is required to
predict the answer by recovering the textual token
in the [MASK] positions. In our experiments, we
use n = 2 for the VQAv2, which is found perform-
ing best among n € {1,2, 3}.

In Table 2, compared to the strong baseline
Frozen (Tsimpoukelli et al., 2021), our model im-
proves the zero-shot accuracy by 13.1% on the
VQAV?2 validation set and 7.4% on the OK-VQA
test set with 7x fewer parameters, indicating the
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#Pretrain COCO Caption NoCaps Validation

Methods Image-text | OD OT Karpathy Test In Near Out Overall

Pairs Bw@4 C M S C S C S C S C S
BUTD! 1.5M v v/ | 363 1201 277 214 | 8.0 120 73.6 113 664 97 731 11.1
OSCAR;[arge 6.5M v v/ | 417 1400 306 245 | 8.4 119 840 11.7 803 100 834 114
VinVLLarge 6.5M v v/ | 4.0 1409 31.1 2521037 137 956 134 838 119 943 13.1
VL-T5 9.2M v X | 346 1161 288 219 - - - - - - - -
VL-BART 9.2M v X | 342 1141 284 213 - - - - - - - -
LEMONjge 203M v o/ | 426 1455 314 255 | 1180 154 1163 151 1202 145 1173 150
SIMVLMpyge 1.8B X X | 40.6 1433 337 254 | 1137 - 110.9 - 115.2 112.2
VLKD (Zero-shot)
ViT-B/16 3M X X | 167 583 197 134 - - - - - - - -
RN50x 16 3M X X | 182 61.1 208 145 | 526 97 529 96 586 93 540 96
RN50x64 3. M X X | 258 851 231 169 | 648 136 623 136 669 99 636 128
VLKD (Finetuned)
ViT-B/16 3M X X | 372 1280 288 224 - - - - - - - -
RN50x 16 3M X X | 389 1311 296 239 | 923 126 8.0 11.8 703 104 81.1 11.7
RN50x64 3. M X X | 403 1357 305 2431|1051 145 997 138 902 121 976 13.6

Table 1: Results on the COCO caption (Karpathy test set) and NoCaps (validation set). B@4, C, M, and S denote
BLEU-4, CIDEr, METEOR, and SPICE, respectively. OD and OT indicate whether object detectors and object
tags are used or not. Numbers of previous models are taken from (Anderson et al., 2018; Li et al., 2020; Zhang
et al., 2021; Cho et al., 2021; Hu et al., 2021; Wang et al., 2021). Models marked by t additionally use the
constrained beam search (CBS) (Anderson et al., 2017) for the NoCaps dataset. Note that LEMON and SIMVLM
use significantly more pre-training data and have more trainable model parameters than the others.

Methods #Params VQAv2 OK-VQA

val / test-dev test
Generative (Open-ended)

Frozen (Zero-shot) 7B 29.5/- 59

Frozen (Finetuned) 48.4 /- 19.6

VLKD (Zero-shot)

RN50x 16 37.4/38.2 9.9

ViT-B/16 38.6/39.7 10.5

ViT-L/14 42.6/44.5 13.3

<1B

VLKD (Finetuned)

RN50x 16 67.4/68.8 36.2

ViT-B/16 69.3/69.8 36.3

ViT-L/14 73.9/74.5 39.0

Discriminative

UNITERage - -/73.8 -

OSCARLarge - -1/73.6 -

VinVLparge - -176.5 -

SIMVLMBg,se - -177.9 -

Table 2: Accuracies(%) on the VQAv2 and OK-VQA
datasets. We categorize models into two parts: answer
questions in a generative or discriminative way.

efficiency and effectiveness of VLKD. Our model
achieves 44.5% zero-shot accuracy on the VQAv2
test-dev set, which to the best of our knowledge
is the new state-of-the-art. Furthermore, as shown
in Figure 3a, our model can bind visual objects to
conceptual knowledge stored in the PLM to answer

Model ‘ In-domain  Out-of-domain
UNITER | 744 10.0
VL-T5 71.4 13.1
VL-BART 72.1 13.2
VLKD (ViT-L/14) 74.9 234

Table 3: Accuracies(%) on VQAv2 Karpathy test-split.

questions. For example, it connects the visual ob-
ject Turkey with the traditional food people usually
eat at the Thanksgiving festival.

4.4 Multimodal Finetuning Evaluation

When finetuning VLKD on downstream multi-
modal tasks, we keep the same input format as
zero-shot to obtain outputs in a generative way.
The CLIP model parameters are still frozen during
finetuning.

4.4.1 Finetuning Image Captioning

In Table 1, we demonstrate that our model can
achieve decent performance when finetuned on
the COCO dataset. The SCST CIDEr optimiza-
tion method (Rennie et al., 2017) is used to fur-
ther improve the performance. Our model outper-
forms VL-T5/BART (Cho et al., 2021) without
using an extra object detector, which is fairly time-
consuming as explained by Kim et al. (2021b).
Compared to state-of-the-art models, however,
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Model CoLA SST2 RTE MRPC QQP MNLI QNLI Avg.
BERTY ,pr (Devlinetal,2019) | 60.6 932 704 829/880 91.3/87.9 864 923 826
BARTY , pcp (Lewis et al., 2020) 628 966 87.0 86.7/90.4 92.5/89.3 90.0 949 87.2
VisualBERT' (Li et al., 2019) 38.6 894 566 71.9/82.1 89.4/86.0 81.6 87.0 74.0
UNITER' (Chen et al., 2020) 374 897 556 69.3/80.3 89.2/85.7 809 860 73.1
VL-BERT' (Su et al., 2020) 38.7 89.8 557 70.6/81.8 89.0/85.4 812 863 736
VViIBERT' (Lu et al., 2019) 36.1 904 537 69.0/79.4 88.6/85.0 799 838 72.1
LXMERT' (Tan and Bansal, 2019) | 39.0 902 572 69.8/80.4 75.3/753 804 842 716
SIMVLM? (Wang et al., 2021) 467 909 639 75.2/84.4 90.4/872 834 88.6 774
VLKD (RN50x 16) | 591 955 812 87.5911 92.1/89.2 89.6 943 857

Table 4: Results on the GLUE development set (single task single models). We report the Matthews correlation for
CoLA, accuracy/F1 for MRPC and QQP, and accuracy for the rest of the tasks. The performance of models that are
marked by ¢ are taken from (Lewis et al., 2020), | are from (Iki and Aizawa, 2021), and I are from (Wang et al.,
2021). Compared to other VLP models, our VLKD model has a great advantage in text-only NLP tasks.

there is still a small performance gap, which we
conjecture is mainly due to their usage of object de-
tector/tags and much more pre-training image-text
pairs. We also evaluate our VLKD models with
ResNet visual backbones on the NoCaps dataset
(Table 1). For zero-shot image caption, the CIDEr
score on the out-of-domain set is even higher than
the in- and near-domain sets, which shows the gen-
eralization of our knowledge distillation method
to common visual objects. After finetuned on the
COCO training set, the performance on NoCaps of
our model with the RN50x 64 backbone is compa-
rable to the state-of-the-art models.

4.4.2 Finetuning VQA

From Table 2, the best performance of VQAv2
is achieved by VLP models that tackle this task
in a discriminative way with a set of pre-defined
answers. However, this approach does not general-
ize to real-world scenarios and cannot be directly
applied to more diverse datasets (e.g., OK-VQA).
Differently, Frozen (Tsimpoukelli et al., 2021) and
our proposed VLKD formulate VQA as a genera-
tive problem to generate answers conditioned on
the questions and images in an open-ended manner,
which also enables zero-shot VQA. Specifically, for
each question-answer pair in the VQAv2 dataset,
we optimize the model to generate the answer with
the cross-entropy loss and a label-smoothing of 0.1.
The loss is weighted by the weight of each answer
candidate. In addition, we augment the training
data with VG-QA (Krishna et al., 2016).
Furthermore, following (Cho et al., 2021), we
test the performance on out-of-domain questions
with rare answers using the Karpathy test-split. As

Model | ROUGE-1 ROUGE-2 ROUGE-L
BARTLyg | 45.14 22.27 37.25
VLKD 44.86 22.06 36.95

Table 5: Results of abstractive summarization on
XSUM. We use the best performing checkpoint of the
RNS50x 16 variant.

shown in Table 3, our method shows a salient ad-
vantage on out-of-domain questions due to the ben-
efit from VLKD and its generative nature without
defining the answer list.

4.5 Evaluation of NLU and NLG

Table 4 shows results on the GLUE benchmark.
Although prior VLP models are either initialized
from the pre-trained BERT model, or trained by a
text-only language modeling loss together with the
vision-language (VL) losses, they generally suffer
from the weakened performance of NLU. For ex-
ample, SIMVLM performs significantly worse than
BART, though trained with five times more textual
data. We speculate that the weakened NLU ability
of these models is caused by the catastrophic for-
getting of the pre-trained BERT weights during the
multimodal pre-training. Moreover, simultaneous
optimization of multimodal and text-only objec-
tives potentially shifts the latter to be an auxiliary
loss, making the NLP ability not as effective.

On the other hand, the resulting model of VLKD
performs only slightly worse than the original
BART and significantly outperforms BERT, as the
original knowledge embedded in BART is well
maintained.
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Additionally, as presented in Table 5, we also
run VLKD on the abstractive summarization task to
evaluate its NLG performance, since BART-based
methods excel on the summarization (Lewis et al.,
2020; Dou et al., 2021; Yu et al., 2021b). The
gap between VLKD and its backbone BART is
negligible. Overall, we empirically demonstrate
that VLKD enables the backbone PLM to perform
multimodal tasks without hurting its original NLP
ability.

5 Ablation Study

Knowledge Distillation Objectives. Table 6
shows the ablation on the knowledge distillation
objectives, except the ICTI loss which is necessary
for our method to work. Without TTDM or ITCL,
we observe a clear degradation of zero-shot perfor-
mance on both VQAv2 and COCO image caption
datasets. It is worth noting that /TCL contributes
more to the image captioning task, which requires
a deeper perception of visual features to generate
captions. Oppositely, T7TDM helps more for the
VQA task, which involves reasoning over the ques-
tion and image features. Removing both of them
incurs a large performance drop, which demon-
strates the importance of aligning the embedding
space between CLIP and BART.

Model ‘ VQAV2 (val) COCO Caption (test)
VLKDYTBS & 38.6 58.3

w/o TTDM 35.5 55.7

w/o ITCL 36.3 54.1

w/o Both 30.1 48.6

Table 6: Ablation study on three distillation objectives.

Number of Masks. Furthermore, we also test
the influence of the number of masks for zero-shot
image captioning in Table 7. As discussed in Sec-
tion 4.3.1, it has a trivial influence as the model
learns to fill a variable length of tokens for each
masked position. We achieve the best performance
on the COCO caption dataset when m = 6 and
NoCaps when m = 8.

#masks ‘ 5 6 7 8

CIDEr | 597 611 606 596

Table 7: Zero-shot image captioning on COCO test
set using VLKD (RN50x 16), with varying number of
masks.

Dataset Size of Distillation. In Table 8, we vary
the size of dataset used for knowledge distillation.
VLKD only has a slight performance drop when
the size is reduced from 3M to 1M, and a sharp
drop when further reduced to 100K.

| VQAV2 (val) COCO Caption (test)

VLKDsy 38.6 58.3
VLKD v 38.3 56.2
VLKD) g0k 33.8 45.1

Table 8: Zero-shot performance of VLKD (ViT-B/16)
on two datasets, with varying dataset size for distillation.

Unfreeze CLIP Weights. To quantitatively mea-
sure the importance of freezing the model weights
of CLIP during the VLKD pre-training, we tried
unfreezing CLIP’s weights and conduct the VLKD
pre-training using the ViT-B/16 variant on CC3M
without modifying other settings. It achieves 31.7
zero-shot accuracy on the VQAv2 validation set
and 44.8 CIDEr on the COCO Caption test set.
We speculate that unfreezing CLIP harms its pre-
trained multimodal space, which further down-
grades the performance of VLKD.

6 Conclusion

Recent dual-stream VLP models (e.g., CLIP) are
powerful in various multimodal classification and
retrieval tasks. However, their ability of multi-
modal generation or pure NLP tasks is highly re-
stricted. In this paper, we propose a novel knowl-
edge distillation method to efficiently align CLIP’s
multimodal encoders and BART’s textual encoder
to the same mutlimodal space, as well as a cross-
modal LM loss to consort BART encoder and de-
coder. This enables multimodal generation under
zero-shot and also fully-finetuned settings without
losing the original BART s NLP ability. Empirical
results show that our model achieves new state-
of-the-art zero-shot performance on VQA and ex-
cellent performance on both NLP and multimodal
tasks when finetuned, demonstrating the effective-
ness of our proposed method.
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Hyper-paramters ‘

Values

Batch size

Optimizer
Learning rate
Weight decay
Eps

Temperature 7
Warmup steps
#Epochs
Gradient clipping

4608 (ViT-B/16 and ViT-L/14),
4096 (RN50x16), 3840 (RN50x64)
AdamW, 8 = (0.99,0.999)
2.4e-4
0.01
le-6
Initialized to 0.07
2%

10
3.0

Reference caption:
A big cat laying down in a chair on a porch.

Generated caption:
A cat lounging on a chair in a hammock.

Reference caption:
A little girl holding up a pink umbrella.

Generated caption:
A girl holding a pink umbrella in the rain.

Table 9: Hyper-parameters of VLKD pre-training.

Image
Hyper-paramters VQA captioning
Batch size 72 64
Total epochs 10 10
#Masks 2 6 (COCO), 8 (NoCaps)
Beam search size 1 (greedy) 6
Optimizer AdamW, 8 = (0.99,0.999)
Learning rate le-4
Weight decay 0.01
Eps le-8
LR warmup First epoch
Gradient clipping 5.0

Table 10: Hyper-parameters for two multimodal tasks.

A Hyper-parameters

In this section, we show the hyper-parameters of
vision-language knowledge distillation (VLKD), as
well as downstream task finetuning.

For VLKD, the hyper-parameters are shown
in Table 9, for both two CLIP variants we ex-
plored. For finetuning multimodal downstream
tasks, we use the hyper-parameters shown in Ta-
ble 10. Within each task, we use the same setting
for multiple datasets.

For the GLUE benchmark, we use the LAMB op-
timizer (You et al., 2020) to train for 10 epochs. We
conduct a hyper-parameter grid search with batch
size={16, 32, 64}, Ir={1e-4, 5e-4, 1e-3}, weight
decay={1le-4, 1e-3}. We warm up the learning rate
in the first epoch, then linearly decay it to zero.

For XSUM, we directly follow the hyper-
parameters used in Lewis et al. (2020).

B More Examples of Zero-shot Inference

In Figure 4, we show more examples of zero-shot
image captioning. In Figure 5, we depict more
cases of the results of zero-shot open-ended VQA.

Reference caption:
A white boat out in the middle of the
ocean.

Generated caption:
Asmall fishing boat in the middle of the

Reference caption:
A small herd of elephants standing in the
grass.

Generated caption:
A herd of elephants in a field of grasses.

What fruit is present on 3 items?
Candidate answer(s):
Apple.

Generated answer:

Where is the cell phone?
Candidate answer(s):
On table; In bowl; Yes.

Generated answer:
On table.

What are the people doing?
Candidate answer(s):
Standing; Playing; Talking.

Generated answer:

What type of fabric is the hat made
of?Candidate answer(s):
Cotton; Wool; Denim.

Generated answer:

What is the animal on top of?
Candidate answer(s):
Laptop; Cat; Computer.

Generated answer:

Why is there a line?
Candidate answer(s):
No parking; Parking; Caution; Curb.

Generated answer:

Figure 5: More examples of zero-shot VQA.
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