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Abstract

Static and contextual multilingual embeddings
have complementary strengths. Static em-
beddings, while less expressive than contex-
tual language models, can be more straight-
forwardly aligned across multiple languages.
We combine the strengths of static and con-
textual models to improve multilingual rep-
resentations. We extract static embeddings
for 40 languages from XLM-R, validate those
embeddings with cross-lingual word retrieval,
and then align them using VecMap. This re-
sults in high-quality, highly multilingual static
embeddings. Then we apply a novel contin-
ued pre-training approach to XLM-R, leverag-
ing the high quality alignment of our static
embeddings to better align the representation
space of XLM-R. We show positive results for
multiple complex semantic tasks. We release
the static embeddings and the continued pre-
training code.1 Unlike most previous work,
our continued pre-training approach does not
require parallel text.

1 Introduction

Multilingual contextual encoders like XLM-R
(Conneau et al., 2020a) and mBERT (Devlin
et al., 2019), despite being trained without paral-
lel data, exhibit “surprising” cross-linguality (Wu
and Dredze, 2019; Conneau et al., 2020b) and
have demonstrated strong performance on mul-
tilingual and cross-lingual tasks (e.g., Hu et al.,
2020; Lauscher et al., 2020; Kurfalı and Östling,
2021; Turc et al., 2021). However, their language-
neutrality, meaning how well languages are aligned
with each other, has clear limits (Libovický et al.,
2020; Cao et al., 2020, inter alia). In particular,
more typologically distant language pairs tend to
be less well-aligned than more similar ones, affect-
ing transfer performance.

1github.com/KathyHaem/combining-static-
contextual
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Figure 1: a) We feed sentences from 40 monolingual
corpora to XLM-R, extracting partially aligned mul-
tilingual static embeddings (X2S-M). Then, we use
VecMap to align the embeddings further, giving us
X2S-MA. The German example sentence reads ‘The
cat is striped’. b) Taking the representations of words
from X2S-MA and XLM-R, we train the contextual
model representations to be more similar to the well-
aligned static embeddings via an alignment loss (CCA
or MSE). The French example ‘chat’ means ‘cat’.

By contrast, cross-lingual alignment is well-
studied for static embeddings (e.g., Mikolov et al.,
2013; Artetxe et al., 2018a; Vulić et al., 2020).
They can be aligned using simple transformations,
resulting in high quality multilingual embeddings.
However, static embeddings are considerably less
expressive than contextual models and have in
many applications been superseded by them.

This paper aims to combine the strengths of
static and contextual models, and explore how they
may benefit from each other. Our methods require
no parallel corpus. Figure 1 shows a schematic of
our two-part approach with an example: The words
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‘Katze’ in Figure 1a and ‘chat’ in Figure 1b both
mean ‘cat’. While creating X2S-M in Figure 1a,
static vectors are learned for both words in their re-
spective language embeddings. We then align those
embeddings with VecMap, obtaining X2S-MA. In
Fig 1b, we train the contextualised embeddings of
‘Katze’ and ‘chat’ to be closer to their well-aligned
X2S-MA vectors, improving the alignment of the
contextualised embeddings.

Monolingual static embeddings have been ex-
tracted from BERT by Gupta and Jaggi (2021). We
show that their approach can be applied to multi-
lingual embeddings. We distill static embeddings
for 40 languages from XLM-R, showing that the
resulting embeddings are already somewhat cross-
lingually aligned, but that their alignment can be
improved using established tools (Figure 1a; § 3).
These vectors are of high monolingual and cross-
lingual quality despite being distilled using only
1M sentences per language. Second, we present a
novel continued pre-training approach for the con-
textual model, combining masked language mod-
elling (MLM) with an alignment loss that lever-
ages the aligned static embeddings (Figure 1b;
§ 4). This results in improved multilingual contex-
tualised embeddings which work well for complex
semantic tasks.

2 Related Work

XLM-R (Conneau et al., 2020a) and mBERT (De-
vlin et al., 2019) have been successful in multi- and
cross-lingual transfer despite being trained only on
monolingual corpora. However, the 100 languages
in XLM-R—or 104 in mBERT—are not repre-
sented equally well (cf. Wu and Dredze, 2020a),
either in terms of data size or downstream perfor-
mance. Both Singh et al. (2019) and Libovický
et al. (2020) found that mBERT clusters its rep-
resentations of languages in a way that mirrors
typological language family trees. However, repre-
sentations being well-aligned across languages is
related to better cross-lingual transfer performance.
Therefore, this property limits the model’s transfer
ability, putting target languages which are more
distant from the source language at a disadvantage.

In comparison, static embeddings are far less
resource-intensive than contextual models, both at
training and inference time. They can be trained
with smaller data and achieve good representation
quality where a Transformer model would be under-
trained. Where time, data, or computational re-

sources are limited, this makes static embeddings
an attractive approach. Also, some NLP tasks rely
on static embeddings in their formulation, such
as lexical evaluation tasks, approaches compar-
ing vector spaces to detect domain shift (Beyer
et al., 2020) or linguistic change (Shoemark et al.,
2019), or some bias detection and removal tasks
(e.g., Kaneko and Bollegala, 2019; Manzini et al.,
2019). Importantly for us, cross-lingual alignment
has been studied extensively in static embeddings
(e.g., Artetxe et al., 2018a,b; Joulin et al., 2018). Es-
pecially those languages that are ill-represented in
the massively multilingual model can benefit from
using well-aligned static embeddings. In summary,
static and contextual representations have comple-
mentary strengths, which we aim to combine.

Recently, cross-lingual alignment objectives
have been used to train multilingual contextual
models from scratch (Hu et al., 2021; Chi et al.,
2021), to align the outputs of monolingual models
(Aldarmaki and Diab, 2019; Wang et al., 2019),
or to apply a post-hoc alignment to a multilingual
model after pre-training (Zhao et al., 2021; Cao
et al., 2020; Wu and Dredze, 2020b; Kvapilíková
et al., 2020; Ouyang et al., 2021; Alqahtani et al.,
2021). These works typically use objectives that
rely on translated or induced sentence pairs, such
as translation language modelling (TLM; Lample
and Conneau, 2019). Dou and Neubig (2021) and
Nagata et al. (2020) focus on word alignment as a
task and fine-tune the models on word alignment
gold data, though Dou and Neubig (2021) also use
the approach for XNLI. Gritta and Iacobacci (2021)
use translated task data to encourage a task-specific
alignment of XLM-R. Some use word-aligned cor-
pora (e.g., Wang et al., 2019), while others use par-
allel sentences plus unsupervised word alignment
(Alqahtani et al., 2021; Chi et al., 2021). Ouyang
et al. (2021) introduce backtranslation to the align-
ment process, but still use some parallel data. Kva-
pilíková et al. (2020) instead create a synthetic
parallel corpus, using this with TLM.

By contrast, we propose an alternate objective
that relies on aligned static embedding spaces in-
stead of sentence pairs. Our alignment approach
is a post-hoc tuning of the contextual model using
no parallel corpora at any point. This difference
allows us to apply the alignment to many more
languages than most related work. For example,
Wang et al. (2019) use up to 18 languages, Chi et al.
(2021) use 15 with parallel data though 94 in total,
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Hu et al. (2021) use 15, while other related work
often uses 4–9 languages, with a significant focus
on European languages.

3 Static Embeddings from XLM-R

Gupta and Jaggi (2021) extracted English static
embeddings from BERT and RoBERTa. They
showed that their CBOW-like training scales bet-
ter with more data and outperforms an aggregation
approach to extracting static embeddings (Bom-
masani et al., 2020). In their system, X2Static,
the context vector from which to predict the tar-
get word is given by the average of all vectors in
the sentence without the target word. The method
uses ten negative samples per target and calculates
the loss based on similarity scores. However, they
only evaluated their method on English. We extract
this type of static embeddings from a multilingual
contextual model.

3.1 Extraction and Alignment Process

We choose 40 languages for static embeddings ex-
traction (full list in Appendix A). As the multi-
lingual contextual model, we use XLM-R. From
preliminary experimentation, we determined how
best to extract multilingual embeddings from the
model: First, using X2Static (Gupta and Jaggi,
2021) worked better than aggregation (Bommasani
et al., 2020) even with a small amount of data. One
important difference with Gupta and Jaggi’s work
is that for our task the sentence-level variant of
X2Static worked better than the paragraph-level
version. Crucially, we also found that embeddings
extracted from layer 6 of XLM-R performed notice-
ably better than embeddings extracted from the out-
put layer. The latter fits with findings for mBERT
by Muller et al. (2021) that the middle layers are
more multilingually aligned. Due to the large num-
ber of languages and having limited data for some
of them, we decided to use only up to 1M sentences
per language for extraction. See Appendix B for
more detailed reasoning on these choices.

For the full set of embeddings, we used data
from the reconstructed CC100 corpus (Wenzek
et al., 2020). We filtered out headlines and too-
short sentences heuristically. See Appendix C for
data sampling and processing details. We refer
to the newly extracted embeddings as X2S-M for
X2Static-Multilingual.

In a second step, we align X2S-M using VecMap
(Artetxe et al., 2018a) and a set of unsupervised

Model en-xx xx-en
fasttextunsup 54.71 58.26
X2S-M 52.11 59.00
X2S-MA 58.41 65.60
MUSE (Conneau et al., 2018) 58.88 65.21
RCSLS (Joulin et al., 2018) 67.47 71.70

Table 1: Results from MUSE BLI tasks. Scores
are averaged over those language pairs present in all
models. Even before alignment (X2S-M), the em-
beddings derived from XLM-R are competitive with
fasttext vectors aligned using unsupervised VecMap
(fasttextunsup). After alignment and selection (X2S-
MA), they are on-par with the supervised embeddings
released by MUSE despite using much smaller data to
train. We show per-language results in Table 5.

Model cross-lingual monolingual
fasttextunsup 0.712 0.743
X2S-M 0.708 0.699
X2S-MA 0.713 0.706
MUSE 0.707 0.728
RCSLS 0.714 0.718

Table 2: Average monolingual and cross-lingual scores
on SemEval 2017 Task 2 (Camacho-Collados et al.,
2017). See Tables 6 and 7 for detailed results.

dictionaries that we had previously induced from
experiments aligning fasttext vectors (Bojanowski
et al., 2017) with unsupervised VecMap (Artetxe
et al., 2018b). We refer to the aligned embeddings
as X2S-MA (X2Static-Multilingually-Aligned).

3.2 Embedding Evaluation

We validate our static embeddings using the MUSE
benchmark (Conneau et al., 2018), which includes
bilingual dictionary induction (BLI) tasks for 28
of the 40 languages we use, and on SemEval 2017
Task 2 (Camacho-Collados et al., 2017), monolin-
gual and cross-lingual word similarity. Addition-
ally, we conduct a comparative evaluation of the
supervised MUSE embeddings and the supervised
RCSLS embeddings by Joulin et al. (2018).

Tables 1 and 2 show that after alignment and
selection (X2S-MA), our vectors perform similarly
to the supervised embeddings released by MUSE.
We also contrast X2S-M and X2S-MA against the
fasttext embeddings that were used to induce the
dictionaries mentioned above. On the cross-lingual
tasks, X2S-MA performs on par with the fasttext
embeddings; on the monolingual tasks, fasttext
clearly outperforms X2S-M and X2S-MA. Note,
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however, that SemEval Task 2 only contains data
for five of the 40 languages we experiment with.

For most languages, alignment improves BLI by
at least a few points, with differences as large as 17
points for Bengali and Hindi (Appendix, Table 5).
Such large gaps underline the fact that the align-
ment of XLM-R is suboptimal for these languages.
Notable exceptions are Korean, Thai, Tagalog, and
Vietnamese, where the embeddings showed some
success before alignment but were not useful af-
terwards. It may be that the induced dictionar-
ies did not work well for these languages or that
the static embedding spaces were too different (cf.
Vulić et al., 2020). In these cases, we use the “un-
aligned” embeddings for further experiments.

4 Cross-Linguality Transfer to XLM-R

Since our static embeddings are of reasonably high
quality after extraction and their cross-linguality
can be further improved using established methods,
we now ask whether the language neutrality of the
Transformer model can in turn be improved via in-
direct transfer from our aligned static embeddings.

4.1 Continued Pre-Training

We mix an alignment loss with masked language
modelling (MLM). For the alignment loss, we sam-
ple word-vector pairs from our static embeddings,
encode the word using XLM-R, and mean-pool the
contextual representations over the subword tokens.
We then compare this representation to the sampled
static vector using one of two loss terms:

1) MSE. We use mean squared error (MSE), i.e.,
an element-wise comparison of the static and con-
textual representations. This works only if the static
vector dimension matches the model’s hidden size.

2) DCCA. The second option is a correlation loss
(deep canonical correlation analysis; Andrew et al.,
2013; implementation from Arjmand, 2020). Stan-
dard CCA (Hotelling, 1936) takes two continuous
representations of related data and linearly trans-
forms them to create two maximally correlated
views. In deep CCA, the linear transformations
are replaced by deep networks, which can be op-
timised on mini-batches. In our case, we treat the
contextual model as one of the two deep models,
and replace the other with the static embeddings.
We back-propagate the loss only to the deep model.

We train with two sets of static vectors: Fasttext
aligned with unsupervised VecMap (fasttextunsup),

and our aligned and selected X2S-MA vectors. The
former have 300 dimensions and so can only be
used with DCCA; the latter have 768 dimensions
and can thus be used with either loss.

Additionally, we use MLM during training to
ensure that the model retains its contextual capa-
bilities. See Appendix D for training details. As a
second baseline, we also continue the pre-training
with only MLM on our selected languages for the
same number of update steps. This ensures that
any improvements from our proposed model are
not merely a result of carrying out further MLM
training in these languages.

4.2 Downstream Tasks

For our downstream evaluation tasks, we follow
the fine-tuning procedures shown in the repository
for Hu et al. (2020) for better comparability. We
use a zero-shot transfer setting, i.e., we fine-tune
only on English data but evaluate on all test sets.
We report mean F1 score over all test sets and three
fine-tuning runs for all tasks except Tatoeba, which
uses accuracy as its metric and no fine-tuning.

Question Answering. We use two extractive QA
tasks, XQuAD (Artetxe et al., 2020) and TyDiQA-
GoldP (Clark et al., 2020). For XQuAD, the
SQuAD v1.1 (Rajpurkar et al., 2016) training set
is used. TyDiQA includes its own training set.

Sequence Labelling. We experiment with the
PAN-X (Pan et al., 2017) named entity recogni-
tion and the UD-POS part-of-speech tagging tasks.
The annotated data for UD-POS are taken from
Universal Dependencies v2.5 (Zeman et al., 2019).

Tatoeba is a sentence retrieval task compiled by
Artetxe and Schwenk (2019). It does not need fine-
tuning, instead using the cosine similarity of the
mean-pooled layer 7 hidden states for retrieval.

4.3 Results and Discussion

Table 3 shows our downstream task results along
with the average over all evaluated tasks. As ex-
pected, our second baseline with additional MLM
in the affected languages can improve slightly over
the unmodified XLM-R. However, our proposed
training with a DCCA loss improves further over
both baselines, except on UD-POS. This shows that
the improvement is not merely a result of speciali-
sation on the task languages, but that our alignment
loss improves the model’s language-neutrality.
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Model XQuAD TyDiQA PAN-X UD-POS Tatoeba avg
XLM-R 70.51 48.91 60.40 72.92 50.35 60.62
+MLM 70.50 48.15 61.80 72.97 60.87 62.86
+fasttextDCCA 70.84 52.47 61.84 72.09 59.99 63.45
+X2S-MAMSE 70.42 49.20 62.62 72.95 10.05 53.05
+X2S-MADCCA 70.92 51.02 62.73 72.09 68.06 64.96

Table 3: Downstream evaluation results. For the QA and sequence tagging tasks, we report F1 scores averaged
over three fine-tuning runs. For Tatoeba we report accuracy. +fasttextDCCA means continued pre-training was
done using MLM and DCCA with the aligned fasttext vectors, and analogously for +X2S-MAMSE and +X2S-
MADCCA. See appendix Tables 8-12 for per-language results.

Although the fasttextunsup vectors performed
very well in Section 3.2, using them in continued
pre-training is less effective than using X2S-MA.
X2S-MA has the advantage of having the same
dimension as the model hidden size, as well as
being derived from XLM-R itself, both of which
likely make it easier to transfer their alignment
signal to the contextual model.

While both Tatoeba and the QA tasks favour
DCCA, PAN-X improves regardless of the align-
ment loss used with X2S-MA, and UD-POS perfor-
mance even degrades when using DCCA. We spec-
ulate that this is caused by the different task types
requiring different strengths of the model. Further,
UD-POS is a syntactic task, and the strength of the
static embeddings is semantic.

The sentence retrieval task, presumably because
it relies directly on the cosine similarity of hid-
den representations, is highly sensitive to changes
in the representation. If only a few dimensions
change significantly, this could vastly improve—or
“break”—alignment according to cosine similarity.
By contrast, the tasks using fine-tuning are more
stable. It may also be that although the continued
pre-training with DCCA improves the alignment
of XLM-R, fine-tuning for tasks on English data
then primarily changes the English representation
space again, leading to forgetting. This prompts
the question whether the model could in future ben-
efit from using the alignment loss alongside fine-
tuning. Additionally, the static embeddings may
be improved further by training them on more data
per language, leading to an even better signal for
XLM-R. Recent work also shows that some outlier
dimensions in contextual models can obscure rep-
resentational quality, suggesting that “accounting
for rogue dimensions” (Timkey and van Schijndel,
2021, p.4527) when learning static embeddings
may help as well.

5 Conclusions

We have extracted high-quality, highly multilingual
static embeddings from XLM-R using a modified
version of X2Static and only 1M sentences of data
per language. Our vectors have reasonable cross-
lingual quality immediately after extraction, but
we are able to improve their performance using
alignment with dictionaries induced from fasttext
vectors using VecMap. No parallel corpus was
needed for this process. Our final models perform
competitively with supervised vectors from MUSE,
and outperform both MUSE and RCSLS—or pro-
vide models at all—for a number of lower- and
medium-resource languages.

Further, we proposed a continued pre-training
approach that pairs a novel alignment loss with
MLM. Using the DCCA loss, we can improve the
language-neutrality of XLM-R, benefitting down-
stream performance on semantic tasks.

Ethical Considerations

Much NLP research is highly English-centric, with
a small number of other high-resource languages
also benefitting, and the vast majority of languages
being left behind or excluded (Joshi et al., 2020).
This applies to the multilingual contextual model
that we extend, in that high-resource languages are
also overrepresented in its training data, and most
languages are not part of the model at all. As well,
in the zero-shot transfer tasks we evaluate on, the
“source language” is English. Similarly, the BLI
datasets we use are mostly xx-en language pairs.
Although this paper makes an effort to reduce the
gap between higher- and lower-resource languages,
we remain part of this paradigm. We would like to
more strongly focus on low-resource languages in
future work.
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A List of Languages

We list all languages used in our experiments in
Table 4.

Language Code Family
Afrikaans af IE: Germanic
Arabic ar Semitic
Bulgarian bg IE: Slavic
Bengali bn IE: Indo-Aryan
German de IE: Germanic
Greek el IE: Greek
English en IE: Germanic
Spanish es IE: Romance
Estonian et Uralic
Basque eu Isolate
Farsi fa IE: Iranian
Finnish fi Uralic
French fr IE: Romance
Hebrew he Semitic
Hindi hi IE: Indo-Aryan
Hungarian hu Uralic
Indonesian id Malayo-Polynesian
Italian it IE: Romance
Japanese ja Japonic
Javanese jv Malayo-Polynesian
Georgian ka Kartvelian
Kazakh kk Turkic
Korean ko Koreanic
Malayalam ml Dravidian
Marathi mr IE: Indo-Aryan
Malay ms Malayo-Polynesian
Burmese my Sino-Tibetan
Dutch nl IE: Germanic
Portuguese pt IE: Romance
Russian ru IE: Slavic
Swahili sw Niger-Congo
Tamil ta Dravidian
Telugu te Dravidian
Thai th Kra-Dai
Tagalog tl Malayo-Polynesian
Turkish tr Turkic
Urdu ur IE: Indo-Aryan
Vietnamese vi Mon-Khmer
Yoruba yo Niger-Congo
Mandarin zh Sino-Tibetan

Table 4: List of languages used with their ISO codes
and language families (Eberhard et al., 2021). IE stands
for Indo-European.
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B Design Choices for Embedding
Extraction

Preliminary Experiments. We arrived at many
of our design choices through preliminary experi-
ments on English, French and German. Of course,
these are highly related languages; however, they
allowed for easier debugging in the early stages
of embedding extraction. For these experiments,
we used 100k paragraphs per language taken from
the Wikipedia dataset by Rosa (2018), and applied
the data filtering methods proposed by the respec-
tive authors. We first tested the approach by Bom-
masani et al. (2020) on all layers of XLM-R and
found the best BLI performances in layer six. How-
ever, we also found that the method from Gupta
and Jaggi (2021) tended to outperform the pool-
ing approach even on this small data size while
scaling better according to the authors. Inspired
by the results on the pooling method, we decided
to test the second approach on layer six as well,
leading to better BLI results. Rather than expend
the (GPU) time to train embeddings on every layer,
we then experimented with different alignment al-
gorithms before deciding on VecMap for its slight
performance advantage and quick training time.

Data Size. We decided to use no more than 1M
sentences per language partly to upper-bound re-
source consumption (note that this still amounts
to 40M sentences of training data), and partly to
put high- and low-resource languages on a some-
what more even footing. For example, Vulić et al.
(2020) suggest that vastly different training data
sizes make embedding alignment more difficult.
They also find that at least the BLI performance
of high-frequency words starts to saturate when
the aligned embeddings were trained from scratch
using around 1M sentences. Since our embeddings
additionally have something of a head start due
to initialisation from XLM-R, 1M sentences per
language would seem to be a reasonable data size.

Dimensionality. The high dimensionality of the
vectors is on one hand a direct result of the extrac-
tion method, but on the other hand we believe it
may be an advantage for our subsequent alignment
experiments, since having the same dimensional-
ity as the contextual model seems to increase the
stability of our continued pre-training. Quite likely
the high dimensionality is a disadvantage for the
BLI performance of these vectors due to hubness
issues; however, their performance is remarkably

competitive considering this.

C Data Sampling and Processing Details
for X2S-M

Data Sampling. After sampling data from the re-
constructed CC100 corpus (Wenzek et al., 2020),
we do sentence segmentation and tokenisation (see
the list of languages and tools below), then filter the
data heuristically: Like Bommasani et al. (2020),
we discard sentences with fewer than seven tokens.
We also keep only sentences from paragraphs with
at least two sentences, avoiding, for example, head-
lines.

Segmentation and Tokenisation Tools. af, ar,
bg, de, en, el, es, et, eu, fa, fi, fr, he, hi, hu,
id, it, ko, mr, nl, pt, ru, ta, te, tr, ur, vi: Spacy-
UDPipe (Straka and Straková, 2017; Text Analysis
and Knowledge Engineering Lab, 2021) version
1.0.0 for both sentence segmentation and tokenisa-
tion. ja: ICU-tokenizer (Rui, 2020) version 0.0.1
for sentence segmentation, fugashi (McCann, 2020)
version 1.1.1 for tokenisation. zh: ICU-tokenizer
for sentence segmentation, jieba (Junyi, 2013) ver-
sion 0.42.1 for tokenisation. bn, jv, ka, kk, ml, ms,
my, sw, th, tl, yo: ICU-tokenizer for both.

D Continued Pre-Training Details

We start from XLM-RBASE, which has 270M pa-
rameters. At each training step, we mix samples
from a text dataset with samples from our static
embeddings, computing both a language modelling
and an alignment loss. We use an effective batch
size of 64 for MLM and 1024 for the alignment loss.
We use Gensim (Řehůřek and Sojka, 2010) ver-
sion 4.0.0 to load the static embeddings. The data
for MLM is sampled from concatenated Wikipedia
data of all 40 languages. For this corpus, 100k para-
graphs per language were taken from Rosa (2018).
Each model is trained for 7500 update steps, cor-
responding to roughly four epochs over our set
of static embeddings. We use the default hyper-
parameters for language modelling in Huggingface
Transformers (Wolf et al., 2020) version 4.8.2. The
final checkpoints are selected based on the MLM
loss over a separate validation set. Training was
done using PyTorch (Paszke et al., 2019) in version
1.9. Each training run was done on a single Nvidia
GeForce GTX 1080 Ti GPU.
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Model af-en en-af ar-en en-ar bg-en en-bg bn-en en-bn de-en en-de el-en en-el
fasttextunsup 38.49 30.38 49.02 39.07 59.99 46. 27 33.31 24.50 70.11 76.65 60.15 49.86
X2S-M 59.94 57.01 34.88 25.59 57.10 44.72 18.03 18.04 63.34 65.69 48.22 35.95
X2S-MA 64.37 57.01 49.89 38.46 64.75 51.23 36.16 33.07 69.81 73.21 58.76 47.21
MUSE – – 49.87 39.74 57.53 47.27 – – 72.67 74.67 58.47 46.27
RCSLS 40.00 36.27 59.57 56.33 65.20 58.20 28.41 35.93 77.53 79.20 64.53 55.07
Model es-en en-es et-en en-et fa-en en-fa fi-en en-fi fr-en en-fr he-en en-he
fasttextunsup 77.53 79.87 49.16 38.15 38.24 35.41 51.51 44.97 77.20 80.59 54.82 44.82
X2S-M 75.90 72.25 51.23 38.41 33.78 30.56 53.32 45.11 72.88 71.47 39.64 32.29
X2S-MA 78.88 77.11 59.07 46.69 42.88 39.13 60.13 47.91 77.19 77.53 56.04 43.71
MUSE 83.47 81.87 45.67 37.87 – – 59.47 48.07 82.40 82.93 54.14 44.07
RCSLS 87.13 83.73 53.67 52.93 44.27 45.33 69.93 61.80 84.73 84.13 59.88 58.53
Model hi-en en-hi hu-en en-hu id-en en-id it-en en-it ja-en en-ja ko-en en-ko
fasttextunsup 48.00 38.58 58.89 54.45 63.95 66.35 72.86 78.80 40.06 45.40 0.07 0.00
X2S-M 32.22 33.24 59.29 49.00 69.26 66.38 72.25 68.20 26.89 36.24 30.77 22.63
X2S-MA 51.66 48.22 65.16 55.16 75.22 72.36 78.25 74.80 39.46 45.59 27.52 24.14
MUSE – – 64.87 53.87 67.93 67.40 77.87 78.60 – – – –
RCSLS 46.95 44.47 73.00 67.00 72.87 72.87 82.73 81.07 – – 36.55 57.47
Model ms-en en-ms nl-en en-nl pt-en en-pt ru-en en-ru ta-en en-ta th-en en-th
fasttextunsup 39.68 41.95 70.49 76.22 69.79 69.41 55.84 44.08 29.31 24.87 0.00 0.00
X2S-M 56.89 55.99 69.50 69.58 76.47 75.04 53.07 38.14 17.68 16.26 29.06 29.69
X2S-MA 66.04 61.24 75.13 75.04 79.72 73.71 60.97 45.96 31.92 30.55 27.13 30.02
MUSE – – 75.33 75.53 80.27 81.27 63.67 54.07 – – – –
RCSLS – – 80.47 79.67 84.60 83.13 70.27 60.93 22.84 30.67 21.07 32.27

Model tl-en en-tl tr-en en-tr vi-en en-vi zh-en en-zh
fasttextunsup 0.00 0.00 49.12 40.58 0.00 0.00 43.90 23.70
X2S-M 53.99 52.84 55.58 45.26 51.02 41.76 35.04 36.26
X2S-MA 53.49 52.75 56.20 47.75 50.00 43.77 44.89 44.70
MUSE – – 59.17 49.93 55.80 40.60 – –
RCSLS 23.60 31.87 65.78 59.20 66.93 53.13 48.87 52.40

Table 5: Cross-lingual MUSE results, per language with English.

Model de-en de-es de-fa de-it en-es en-fa en-it es-fa es-it fa-it avg
fasttextunsup 0.74 0.75 0.69 0.72 0.73 0.69 0.71 0.70 0.74 0.66 0.712
X2S-M 0.71 0.73 0.66 0.70 0.72 0.69 0.72 0.73 0.74 0.69 0.708
X2S-MA 0.72 0.72 0.67 0.70 0.73 0.71 0.73 0.72 0.74 0.69 0.713
MUSE 0.71 0.70 – 0.68 0.71 – 0.71 – 0.73 – 0.707
RCSLS 0.74 0.71 0.67 0.69 0.73 0.73 0.74 0.71 0.73 0.70 0.714

Table 6: Full cross-lingual results from SemEval 2017 Task 2 (Camacho-Collados et al., 2017).

Model de en es fa it
fasttextunsup 0.80 0.71 0.76 0.72 0.73
X2S-M 0.73 0.70 0.73 0.65 0.68
X2S-MA 0.73 0.72 0.72 0.66 0.70
MUSE (Conneau et al., 2018) 0.73 0.72 0.74 – 0.72
RCSLS (Joulin et al., 2018) 0.73 0.72 0.74 0.66 0.73

Table 7: Full monolingual results from SemEval 2017 Task 2 (Camacho-Collados et al., 2017).

Model ar de el en es hi ru th tr vi zh
XLM-R 65.34 74.47 72.57 83.21 76.98 67.72 74.31 67.66 68.55 73.66 51.09
+MLM 64.93 74.73 72.52 83.66 76.75 68.00 74.30 67.76 67.86 73.35 51.68
+fasttextDCCA 65.50 74.77 73.78 83.66 76.75 68.84 75.06 67.35 68.30 74.18 51.00
+X2S-MAMSE 64.73 74.01 72.87 83.51 76.36 67.82 74.46 67.77 68.04 73.78 51.30
+X2S-MADCCA 65.91 74.83 73.05 84.07 77.00 69.29 74.26 66.99 68.55 73.98 52.20

Table 8: XQuAD results (F1) per language. Averaged over three fine-tuning runs with different random seeds.
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Model ar bn en fi id ko ru sw te
XLM-R 57.43 37.20 62.74 53.87 68.04 20.67 52.25 54.16 33.80
+MLM 57.89 35.48 62.38 51.70 66.06 21.08 52.64 54.76 31.40
+fasttextDCCA 60.96 43.20 63.79 56.52 70.72 23.58 55.57 55.37 42.56
+X2S-MAMSE 57.46 37.59 61.16 52.95 66.77 21.73 51.63 53.10 40.43
+X2S-MADCCA 58.58 42.69 63.48 56.78 69.02 23.11 54.55 54.90 36.04

Table 9: TyDiQA results (F1) per language. Averaged over three fine-tuning runs with different random seeds.

Model af ar bg bn de el en es et eu
XLM-R 74.88 46.12 77.18 67.96 74.34 72.97 82.83 74.52 70.44 57.75
+MLM 76.48 48.25 77.51 69.89 75.00 73.88 82.75 75.90 73.17 57.21
+fasttextDCCA 77.93 47.58 78.00 67.27 76.23 75.34 82.82 79.45 74.06 61.43
+X2S-MAMSE 76.87 47.86 77.79 70.69 75.58 76.34 82.72 77.87 73.96 61.90
+X2S-MADCCA 77.50 53.03 77.98 66.16 75.81 75.30 82.73 75.76 74.67 60.28
Model fa fi fr he hi hu id it ja jv
XLM-R 49.30 74.95 77.51 51.86 66.65 76.10 48.99 77.13 19.61 57.45
+MLM 47.72 75.52 79.17 53.63 68.74 76.94 50.62 77.48 18.28 58.32
+fasttextDCCA 47.74 76.93 78.71 56.70 66.66 77.27 49.35 78.56 17.48 59.14
+X2S-MAMSE 55.45 76.30 78.83 57.81 67.76 77.22 49.92 77.98 20.53 63.28
+X2S-MADCCA 50.56 76.20 78.88 54.91 67.86 76.83 55.03 78.13 17.94 58.42
Model ka kk ko ml mr ms my nl pt ru
XLM-R 65.60 45.45 48.07 60.50 61.31 62.54 53.09 79.45 77.67 63.42
+MLM 67.35 51.14 51.97 63.19 61.30 67.42 52.84 80.64 79.14 62.40
+fasttextDCCA 67.88 51.49 47.48 51.92 63.13 57.89 46.19 81.25 79.48 64.41
+X2S-MAMSE 69.14 51.76 54.13 64.49 62.96 67.43 53.53 80.82 78.90 64.50
+X2S-MADCCA 66.49 50.59 52.55 59.64 60.35 66.94 51.79 81.06 80.45 62.77
Model sw ta te th tl tr ur vi yo zh
XLM-R 63.96 54.64 48.66 3.60 71.46 74.68 54.31 68.58 34.91 25.47
+MLM 65.27 56.12 50.77 3.34 71.39 76.49 62.23 69.88 38.05 24.51
+fasttextDCCA 66.45 57.31 53.63 3.42 71.78 78.59 56.52 71.97 53.07 21.26
+X2S-MAMSE 66.35 58.47 53.66 3.22 70.49 77.09 60.26 69.90 37.00 24.33
+X2S-MADCCA 65.40 56.26 54.61 2.19 67.65 77.53 63.47 70.53 50.23 24.40

Table 10: PAN-X results (F1) per language. Averaged over three fine-tuning runs with different random seeds.
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Model af ar bg de el en es et eu
XLM-R 88.46 67.56 88.58 88.64 87.79 95.85 88.04 85.63 69.38
+MLM 88.75 68.21 88.85 88.57 87.37 95.71 88.51 85.88 69.05
+fasttextDCCA 88.96 67.73 88.30 88.40 87.34 95.79 87.33 85.58 68.33
+X2S-MAMSE 88.87 68.43 88.55 88.72 87.45 95.77 88.61 85.72 69.27
+X2S-MADCCA 88.50 67.45 88.11 88.22 87.26 95.69 87.87 85.99 68.34
Model fa fi fr he hi hu id it ja
XLM-R 70.16 85.60 86.00 66.96 67.83 83.14 72.64 87.41 24.23
+MLM 70.14 85.75 86.50 68.51 68.14 83.07 72.59 88.46 23.59
+fasttextDCCA 68.70 85.69 86.20 66.33 65.70 82.87 72.64 87.32 13.89
+X2S-MAMSE 70.46 85.61 86.76 67.63 69.30 82.82 72.59 88.61 20.61
+X2S-MADCCA 68.81 85.74 86.38 66.34 66.01 82.89 72.82 87.43 14.12
Model kk ko mr nl pt ru ta te th
XLM-R 76.74 53.06 82.95 89.42 86.21 89.25 62.12 84.90 42.36
+MLM 76.54 52.88 83.21 89.45 86.82 89.00 61.62 83.79 42.09
+fasttextDCCA 78.09 52.86 82.86 89.35 85.70 89.11 63.00 84.21 41.54
+X2S-MAMSE 76.55 53.16 84.19 89.45 87.45 89.17 61.44 84.60 42.62
+X2S-MADCCA 77.78 52.93 82.66 89.37 86.07 88.89 62.21 84.49 39.63

Model tl tr ur vi yo zh
XLM-R 88.91 74.27 56.48 58.59 25.29 32.08
+MLM 89.42 74.20 56.58 58.21 24.38 32.06
+fasttextDCCA 88.22 74.53 56.06 57.62 23.76 25.02
+X2S-MAMSE 89.21 74.19 57.45 58.15 25.45 28.54
+X2S-MADCCA 87.44 74.58 56.79 57.68 24.55 25.80

Table 11: UD-POS results (F1) per language. Averaged over three fine-tuning runs with different random seeds.
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Model af ar bg bn de el es et eu
XLM-R 51.60 35.80 66.90 28.70 88.40 51.60 71.00 44.20 26.10
+MLM 65.60 46.50 74.70 41.70 91.90 61.10 79.00 55.80 38.60
+fasttextDCCA 70.60 47.20 78.20 44.90 95.00 68.40 85.80 63.90 44.70
+X2S-MAMSE 10.90 3.90 17.10 2.40 42.50 5.10 15.20 7.90 7.40
+X2S-MADCCA 74.10 57.00 82.10 54.90 95.40 72.50 88.60 75.20 52.50
Model fa fi fr he hi hu id it ja
XLM-R 64.40 63.90 72.50 51.70 50.50 58.70 68.60 64.70 52.80
+MLM 73.50 74.60 77.90 65.10 69.10 69.90 81.10 73.40 64.20
+fasttextDCCA 74.60 78.60 82.30 65.50 61.90 73.30 82.80 78.50 67.00
+X2S-MAMSE 10.50 12.70 22.20 10.10 9.00 13.40 14.30 11.50 10.00
+X2S-MADCCA 79.90 84.30 84.30 71.70 70.10 80.20 86.40 82.30 74.00
Model jv ka kk ko ml mr nl pt ru
XLM-R 15.12 37.13 33.22 50.10 54.73 38.00 76.80 76.60 69.80
+MLM 20.00 45.98 44.17 61.00 64.19 50.70 84.60 84.40 78.50
+fasttextDCCA 16.10 30.56 53.39 40.40 14.56 35.40 87.20 88.30 83.00
+X2S-MAMSE 5.37 4.96 6.09 10.50 4.51 5.30 17.80 19.70 12.50
+X2S-MADCCA 22.93 63.81 62.26 63.20 25.47 34.90 89.30 90.40 85.60
Model sw ta te th tl tr ur vi zh
XLM-R 15.64 25.08 30.77 34.67 29.70 54.90 31.10 67.70 59.40
+MLM 23.59 36.16 37.61 51.28 39.90 65.20 47.40 77.50 75.60
+fasttextDCCA 21.54 42.35 51.28 35.58 37.80 69.30 42.60 76.20 70.80
+X2S-MAMSE 4.10 1.95 3.42 1.64 6.80 6.80 2.50 15.60 6.10
+X2S-MADCCA 23.85 56.35 59.40 68.43 45.10 78.00 45.90 84.40 85.20

Table 12: Tatoeba results (accuracy) per language.
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