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Abstract
To create models that are robust across a wide
range of test inputs, training datasets should
include diverse examples that span numerous
phenomena. Dynamic adversarial data collec-
tion (DADC), where annotators craft examples
that challenge continually improving models,
holds promise as an approach for generating
such diverse training sets. Prior work has
shown that running DADC over 1–3 rounds
can help models fix some error types, but it
does not necessarily lead to better generaliza-
tion beyond adversarial test data. We argue
that running DADC over many rounds maxi-
mizes its training-time benefits, as the differ-
ent rounds can together cover many of the
task-relevant phenomena. We present the first
study of longer-term DADC, where we collect
20 rounds of NLI examples for a small set of
premise paragraphs, with both adversarial and
non-adversarial approaches. Models trained
on DADC examples make 26% fewer errors on
our expert-curated test set compared to mod-
els trained on non-adversarial data. Our analy-
sis shows that DADC yields examples that are
more difficult, more lexically and syntactically
diverse, and contain fewer annotation artifacts
compared to non-adversarial examples.

1 Introduction

Traditional crowdsourcing methods often yield
datasets that lack diversity, contain spurious cor-
relations, and are easy for existing models (Guru-
rangan et al., 2018; Poliak et al., 2018; Geva et al.,
2019; Ko et al., 2020; Potts et al., 2021). Training
on such examples can lead to models that reach
deceptively high accuracy on in-distribution test
data, yet fail on challenge sets (Naik et al., 2018;
Glockner et al., 2018; Gardner et al., 2020), input
perturbations (Wallace et al., 2019; Kaushik et al.,
2020), and distribution shifts (Talmor and Berant,
2019; Hendrycks et al., 2020).

∗Work done while an intern at Facebook AI Research.
†Equal contribution
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Figure 1: Model accuracy on our expert-curated test
set when training on data collected from three differ-
ent methods. Standard non-adversarial data collection
is more effective than adversarial data collection in the
short-term. However, in the long term, adversarial data
collection statistically significantly outperforms stan-
dard data, especially when the data is collected using
a dynamic model that is updated after each round.

Dynamic adversarial data collection (DADC)
holds promise as an approach to mitigate these
training set problems. In DADC, humans are tasked
with creating examples that fool state-of-the-art
models but are answerable by humans. Crucially,
DADC is dynamic in that data collection is repeated
over many rounds with a stream of ever-improving
models-in-the-loop. As models improve, annota-
tors are incentivized to craft new types of examples
that challenge the latest models. In the limit, this
process would ideally cover most task-relevant phe-
nomena, leading to more robust models.

Whether DADC actually leads to diverse, high-
coverage training data, however, has remained un-
clear. It could cause annotators to write unnatural
examples or to focus on a narrow subset of unusual
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examples that models find difficult to learn, thus de-
creasing data diversity (Bowman and Dahl, 2021).
Some prior work has shown that a few rounds of
DADC can indeed improve robustness to adversar-
ial inputs (Dinan et al., 2019; Nie et al., 2020a),
however, there are mixed results on improving ac-
curacy on other distributions (Kaushik et al., 2021).
To date, no study has analyzed how DADC evolves
over many rounds. Thus, the long-term benefits or
drawbacks of adopting it as a core dataset creation
paradigm remain poorly understood.

In this work, we conduct the first study of
DADC’s effects in the long term, where we conduct
many rounds and rapidly update models. We focus
on the task of natural language inference (NLI),
which serves as a crucial benchmark for research
on language understanding (Bowman et al., 2015;
Williams et al., 2018a). To make our study feasible,
we conduct intensive data collection on a small set
of context passages that span different genres and
exhibit numerous natural language phenomena. By
using a small set of contexts, we create a scenario
in which models can improve quickly from round
to round, thus approximating the dynamics of run-
ning DADC at a larger scale. We compare three
approaches for collecting training data—no model,
static model-in-the-loop, and dynamic model-in-
the-loop—in a controlled setting for 20 rounds.

To evaluate the different methods, we collect
expert-curated non-adversarial test examples for
each context that span numerous NLI phenomena
which humans can handle correctly. On this test
set, DADC outperforms the alternative approaches
after many rounds of data collection (e.g., Fig-
ure 1). Standard non-adversarial data collection
causes model accuracy to climb quickly for a short
period of time, but accuracy quickly plateaus after
more examples are collected. On the other hand,
DADC examples yield larger improvements for
later rounds. To understand these results, we show
that DADC examples are overall more diverse in
lexical and syntactic patterns, contain fewer arti-
facts, and become more difficult over each round.
Overall, our results show that building large adver-
sarial training sets may be more useful than stan-
dard model-agnostic collection in the long term.

2 Background

Collecting Data with Crowdsourcing. Most
large-scale supervised datasets are collected using
crowd workers (Bowman et al., 2015; Rajpurkar

et al., 2016; Kočiský et al., 2018). Compared to
experts, crowd workers often produce lower qual-
ity data as they are not necessarily well-trained for
one’s task and can be apathetic to the goals of the
research (Snow et al., 2008; Gadiraju et al., 2017).
These data quality issues are exacerbated for lan-
guage tasks because crowd workers also need to
write inputs, e.g., writing hypothesis sentences for
natural language inference tasks. These manually-
written inputs often follow a very narrow distribu-
tion: they lack diversity over lexical items, syntac-
tic patterns, domains, example difficulties, reason-
ing types, and more (Yang et al., 2018; Gururangan
et al., 2018; Geva et al., 2019; Min et al., 2019;
Kiela et al., 2021).

Dynamic Adversarial Data Collection. In
DADC, workers are tasked with writing examples
that are answerable by humans but fool existing
models (Wallace et al., 2019; Nie et al., 2020a;
Kiela et al., 2021). Concretely, workers are pre-
sented with a user interface where they can ob-
serve model predictions and interactively build data
that exposes model failures. Multiple rounds may
also be conducted, where the model is updated on
the adversarial data collected thus far and rede-
ployed; the goal of this is to encourage workers
to write increasingly more difficult examples. Ad-
versarial data collection has been widely adopted
in recent work, especially for building evaluation
datasets (Dua et al., 2019; Nie et al., 2020a; Di-
nan et al., 2019; Bartolo et al., 2020; Potts et al.,
2021; Liu et al., 2021; Kaushik et al., 2021; Xu
et al., 2020, 2021). Our focus is instead on training,
where past work has shown that after a few rounds
of adversarial data, a model noticeably improves on
its errors, yet many problems still remain (Nie et al.,
2020a; Bartolo et al., 2020; Kaushik et al., 2021;
Zellers et al., 2019). Moreover, it remains unclear
whether collecting adversarial or non-adversarial
data leads to generally more robust models in the
long term (Kaushik et al., 2021).

3 Dynamic Data Collection in the Limit

The paradigm of DADC raises a natural but unan-
swered question: what would happen if we kept
going? If we ran DADC for many years, how ro-
bust would the resulting models be? Would models
improve more quickly than if we had collected
training data without a model-in-the-loop?

Answering these forward-looking questions is
key to understanding whether researchers and prac-
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Premise Model Rd Hypotheses Label Error

Sound
No 20 Old telephones have sheepskin over a cup or cylinder. Entail -
Static 20 Parts of animal anatomy can function as the origins of sound. Entail 7

Dynamic 20 The transmission due to the vibration can be attenuated with distances. Entail 3

Yellow
No 20 Ruiz’s experiment was on three men. Contradict -
Static 20 It turned out that basset hounds were immune to yellow fever. Contradict 3

Dynamic 20 The American Public Health Association meeting, held in October
1900, was about developing vaccines against yellow fever.

Contradict 7

Faraday
No 20 michael faraday’s mother was named margaret Entail -
Static 20 The home of the Faradays, in London, was very crowded. Entail 7

Dynamic 20 Michael had at least nine uncles and/or aunts. Entail 3

Table 1: Examples from the training sets that are generated by crowd workers, with No, Static, or Dynamic models
in the loop. The error column shows whether the worker successfully fooled the model in the loop when submitting
the example in the user interface. See Table 5 for the full premise paragraphs.

titioners should continue to collect data in an ad-
versarial fashion. Of course, we cannot practically
run many years of data collection at once due to
cost and time constraints. Our key idea is to instead
answer these questions for a more manageable test
bed that still retains many of the key challenges
associated with language understanding tasks. In
particular, we scale down the natural language in-
ference (NLI) task to a small number of paragraph-
length premises. In this setting, many rounds of
smaller-scale data collection can tell us whether
DADC or non-adversarial data collection leads to
more robust model accuracy on test hypotheses
for these same contexts. If DADC is indeed supe-
rior, this suggests that DADC can collect data that
more effectively covers the challenging phenom-
ena required for NLI, and therefore scaling it up to
(many) more contexts could yield models that are
similarly robust for more general NLI.

3.1 Task and Context Paragraphs
We choose to focus on NLI, a canonical and well-
studied natural language understanding task (Da-
gan et al., 2005; Bos and Markert, 2005; Giampic-
colo et al., 2007; MacCartney and Manning, 2009).
NLI training datasets are notorious for being rife
with artifacts and biases (Poliak et al., 2018; Guru-
rangan et al., 2018; Tsuchiya, 2018; McCoy et al.,
2019), which makes NLI a suitable test bed for
studying questions surrounding training dataset
quality. Using NLI also enables us to write a rich
and diverse test set with a small number of con-
texts because each premise admits many possible
hypotheses. We focus on binary NLI—definitely
entailing or not entailing—to minimize labeling dis-
agreements stemming from the distinction between
neutral and contradiction in three-way NLI (Pavlick

and Kwiatkowski, 2019; Nie et al., 2020b).
We use ten diverse paragraphs from Project

Gutenberg1 as the premises—each one is chosen to
elicit many possible hypotheses. We choose these
paragraphs to span a range of genres (scientific, bio-
graphical, historical, narrative) and present a differ-
ent set of challenges. For instance, some passages
describe physical objects in detail, requiring com-
monsense understanding of the physical world (e.g.,

“. . . Phonny had not measured his wires in respect to
length, but had cut them off of various lengths, tak-
ing care however not to have any of them too short.
The result was that the ends of the wires projected
to various distances above the board. . . ”). Other
passages describe reasoning about uncertainty (e.g.,

“. . . this negative result might be because these ani-
mals are not susceptible to the disease. . . ”) or hy-
pothetical events (e.g., “. . . If there should be even
partial cooperation between the Austrian leaders,
he must retreat . . . ”). See Appendix A for the full
premise paragraphs. We minimally edit each para-
graph so that they can be read standalone, e.g., we
resolve coreferences.

3.2 Data Collection Procedure

We collect data over many rounds, where each
round comprises three steps. First, crowdworkers
write hypothesis sentences that are either entailed
or not entailed by one of our premises while inter-
acting with the current model-in-the-loop. Second,
other crowdworkers relabel these examples and
help filter out spam and other malformed examples.
Finally, we update the model-in-the-loop by fine-
tuning on all collected data, including data from
the newest round. We use Amazon Mechanical

1https://www.gutenberg.org/
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Turk (AMT) for data collection.

Hypothesis Generation. To generate hypothe-
ses, we run AMT tasks where a worker is randomly
provided one of the premises and is asked to write
ten different hypotheses. After writing each hy-
pothesis, they are shown the predictions of a live
model in the loop. To encourage workers to write
model-fooling examples, they are given a bonus ev-
ery time one of their examples fools the model and
passes the later label verification step. We ask work-
ers to write ten hypotheses for a single premise, as
this allows them to better understand the model’s
behavior and empirically leads to more-difficult
examples (Section 4). The worker can generate
hypotheses for either of the binary labels, but we
encourage them to generate balanced examples in
the onboarding instructions. The user interface is
shown in Appendix B.

Label Verification. To ensure the generated hy-
potheses are labeled correctly, we run a separate
AMT task where workers are asked to label each
example without being shown the original label.
Each example is labeled by at least three workers.
If all three agree, that example is saved. If there is
a disagreement, we ask two additional workers and
keep the example if four out of five agree on the la-
bel. We also provide an option to flag a hypothesis
as “bad”, e.g., it is very ungrammatical or clearly
spam. If more than one worker flags an example
as bad, we remove it. We do not allow workers to
participate in both the labeling and validation AMT
tasks, as we do not want workers to be influenced
by one another’s hypotheses.

Updating the Model. For the initial round of
data collection, we use as our starting point a
RoBERTa-large model (Liu et al., 2019) that has
been finetuned on SNLI (Bowman et al., 2015),
MNLI (Williams et al., 2018a), and FEVER-
NLI (Nie et al., 2019).We use this training data
as it provides us with an accurate initial model,
and note that we collapse the neutral and contradic-
tion labels during training as we focus on binary
NLI. To update the model after each round, we
continue finetuning it on all of the data collected
thus far and then deploy it for the next round. Our
finetuning hyperparameters follow the recommen-
dations of Mosbach et al. (2021): we use a learning
rate of 2× 10−5, a learning rate warmup over the
first 10% of steps, bias-corrected Adam, and 15
epochs of training. We early stop using held-out

validation data (see Section 3.3). We refer to this
setting, where crowdworkers interact with a model-
in-the-loop that is updated after each round, as the
Dynamic Model setting.

Baselines. In addition to the above, we also col-
lect data with two baseline approaches:

• No Model. This is the typical procedure for
collecting training data where workers do not
interact with a model.

• Static Model. We provide a model in the loop
to the workers but the model is kept fixed across
all the rounds. We use the same model that the
Dynamic Model setting uses in its first round.

No data is mixed between methods and workers
can not participate in multiple methods.

3.3 Dataset Details
Our codebase is built on top of the Dynabench
platform (Kiela et al., 2021), we deploy tasks us-
ing the Mephisto library,2 and we serve models
using Dynalab (Ma et al., 2021). We restrict our
AMT workers to those that speak English, have
completed at least 100 tasks on AMT, and have an
approval rating of at least 97%. To qualify for the
task, a worker must also pass an onboarding proce-
dure where they are tasked with correctly labeling
five NLI examples in a row.

For each data collection method, we run 20
rounds of data collection. We stop at 20 rounds as
model performance on our validation sets begins to
saturate. We collect 550 examples per round before
label verification, with an equal distribution over
the ten premises. All the data collection methods
are run in parallel at the same time of day to control
for the effects of time on data quality (Karpinska
et al., 2021). At this scale, we are able to complete
each round of data collection for all three methods
in approximately 24 hours. We hold out 50 exam-
ples from each round to use for early stopping and
for reporting validation metrics.

Table 2 shows overall statistics of our final
datasets. These statistics are similar across the
three datasets, including the label balance, the rate
at which examples are discarded, and the number
of AMT workers. However, the datasets differ in
the rate at which workers fooled the models in the
loop; Figure 2 shows that the fooling rate is rela-
tively constant for the static model but goes down
for the dynamic model as the model is updated.

2https://github.com/facebookresearch/mephisto
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No
Model

Static
Model

Dynamic
Model

# Rounds 20 20 20
# Hypo. 11,000 11,000 11,000
# Verified Hypo. 7,684 7,102 6,911
# Workers 115 104 121
% Contradiction 58.5 56.3 54.6

Table 2: Statistics of our datasets. For each method,
we independently run 20 rounds of data collection with
550 hypotheses per round. We verify the labels of each
hypothesis using additional crowd workers and discard
any low-agreement examples; the adversarial data is
discarded slightly more often. The datasets are roughly
balanced between entailment and contradiction.

Table 1 shows qualitative examples of training hy-
potheses from each method. We will release our
data and models publicly.

3.4 Expert-Curated Test Set

Kaushik et al. (2021) compared standard data col-
lection to a single round of adversarial data col-
lection, finding that adversarial training data im-
proves accuracy only on adversarially-constructed
test datasets but not on others. We hypothesize
that running DADC for many rounds can overcome
this limitation and improve generalization to inde-
pendent, non-adversarial test data. To test this, we
built an expert-curated test set for our ten premise
paragraphs that is intended to be challenging but
not necessarily adversarial to models. We (three of
the authors) wrote 680 NLI examples, and we re-
cruited five researchers who have published in NLI
and spurious correlations to write an additional 320
examples. The test set spans different challenges,
syntactic patterns, and reasoning types, loosely in-
spired by the categorizations from Williams et al.
2020. The examples are not written with a model
in the loop, they are balanced across the labels, and
they are equally distributed over the premises. Ex-
amples are shown in Table 3.

We also collect crowd worker labels for our test
set to ensure that the labels are unambiguous and
to measure human accuracy. First, we collect 15
labels for each example. We remove any example
from the test set where 9 or fewer workers chose
the correct label; this removed 21 examples. Sec-
ond, we collect an additional 5 labels to use for
estimating human accuracy. The average accuracy
is 93.2% when using each label individually.
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Figure 2: Model fooling rates. We show how often
crowd workers write examples that are successfully an-
swered by humans but fool the model they interact with.
For the static model, the fooling rate is relatively con-
stant as the model is kept fixed (the variance across
rounds is due to different crowd workers having differ-
ent fooling rates). For the dynamic model, the fooling
rate goes down over time as the model is updated.

4 Dynamic Adversarial Data
Outperforms Non-Adversarial Data

Here, we show that DADC outperforms both stan-
dard and static adversarial data collection in the
long term. In particular, we train various models
using the three different datasets and compare them
on the validation and expert-curated test sets.

4.1 Training Final Models
For each dataset, we train 20 models—one for each
round—on all of the training data up to and includ-
ing a given round. All models start with the same
RoBERTa-large model that was used for round one
of adversarial data collection. We then continue
finetuning this model on the associated training
data using the hyperparameters from Section 3.2.
Moreover, to measure possible variance across dif-
ferent finetuning runs, we train each model with
five different random seeds.

4.2 Main Results
Figure 1 shows our models’ accuracy on the expert
test set described in Section 3.4. In the short term,
standard non-adversarial data collection performs
best—it has the highest accuracy after the first four
rounds. However, in the long term, adversarial
data collection, especially when done dynamically,
leads to the highest accuracy by a noticeable mar-
gin. We run McNemar’s statistical test to compute
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Premise Hypotheses Label

Sound
The head of a drum and the strings of a piano are similar in that they both vibrate. Entailment
A piano produces sound because the keys vibrate when they are struck by the pianist. Contradiction

Yellow
The speaker only ran one experiment of injecting yellow fever blood into animals. Contradiction
Dr. Daniel Cruz took blood from a sick patient to run his experiment. Entailment

Faraday
Michael Faraday’s wife was named Margaret Hastwell. Contradiction
Yorkshire is a less populous locality to be from then Manchester Square. Entailment

Table 3: Examples from our expert-curated test set. See Table 5 for the premise paragraphs.
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Figure 3: Combined validation accuracy. We create a
validation set by pooling together validation data from
each data collection method. We find the same trend as
the expert-curated test set—dynamic adversarial data
performs best in the long term.

whether the results are significantly different for the
final round 20 models: the DADC model outper-
forms the static adversarial model with p < 0.05
and the non-adversarial model with p < 0.01;
the static adversarial model outperforms the non-
adversarial model with p < 0.05.

We also evaluate models on validation data that
is split off from each round of each data collection
method. Figure 3 shows results on a validation
set that is created by pooling validation data from
all three collection methods; we observe the same
trends as our test set, although the accuracies are
slightly higher on average.

Overall, these results show that when building
training sets in our setting, adversarial data is not
necessarily preferred when the number of examples
is small. On the contrary, when the number of
training examples and rounds is large, using DADC
leads to more robust, broader coverage models.

Costs of DADC. DADC examples are more expen-
sive to collect as it takes crowd workers longer on
average to write and verify them. However, DADC
examples provide more “bang for your buck”—it is
more cost-effective to collect few DADC examples
compared to many regular examples. This can be
seen from Figure 1 while accounting for DADC
being approximately two times more expensive per
example than non-adversarial data.

Comparison to Humans. Even though the round
20 models have approximately 700 training ex-
amples for each premise, they are still noticeably
worse than human accuracy. In particular, the best
DADC model reaches 84.4% accuracy, whereas
human accuracy is 93.2%. This shows that while
DADC does lead to better models, we are still far
from creating NLP systems that perform robust
NLI on our premise paragraphs.

Generalization of DADC Data Across Models.
One possible concern with adversarially-collected
data is that it could be too model-specific, simi-
lar to datasets built with active learning (Lowell
et al., 2019). To test whether the DADC data can
generalize to other (newer) models, we train an
ALBERT XXLarge-v2 model (Lan et al., 2020) on
SNLI, MNLI, and FeverNLI. We then finetune the
model on the data from all 20 rounds for each of
our three datasets. The model has an accuracy of
69.1% before updating on our collected data, and
it reaches an accuracy of 83.1%, 84.6%, and 85.8%
on the no model, static model, and dynamic model
datasets, respectively. This shows that our DADC
data does generalize to better models—it leads to
the highest accuracy among the three datasets—but
the gap from DADC to static adversarial data is
smaller than one from our RoBERTa model.

Generalization Beyond Our Premises. Since the
DADC data is more difficult than typical crowd-
sourced data, it may promote models to learn more
robust NLI features. To evaluate this, we test our
round 20 models on out-of-distribution datasets, in-
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cluding HANS (McCoy et al., 2019) and the MNLI
mismatched test set (Williams et al., 2018b). We
convert both test sets to binary classification by
collapsing the neutral and contradiction labels. We
found that the round 20 models from all three set-
tings, as well as our initial model trained on SNLI,
MNLI, and FEVER-NLI, reached comparable accu-
racies on these test sets. This shows that while the
DADC data does lead to improved in-distribution
test performance, it does not necessarily lead to
better performance under distribution shift.

5 Analyzing Adversarial Data

Why is dynamic adversarial data superior to stan-
dard data in the long term? In Table 4, we re-
port summary statistics about our three collected
datasets. We find that dynamic adversarial data is
more diverse, has higher complexity, and contains
fewer artifacts than non-adversarial data. These
findings agree with our intuition surrounding ad-
versarial datasets: small adversarial training sets
that contain diverse and challenging examples may
be hard for models to learn from. However, larger
datasets of this type will ultimately lead to more
accurate and robust models in the long term. We
describe our analyses in detail below.3

Diversity. DADC data is more diverse at both the
lexical (unigram and bigram) and example levels
(Table 4, top). To measure lexical diversity, we
count the number of unique unigrams and bigrams
in the dataset. To measure example-level diversity,
we iterate through each training example and find
the most similar other training sample according to
BLEU score (Papineni et al., 2002). We then report
the average of these BLEU scores similarities; the
dynamic adversarial examples are the least similar
to one another.4 The difference in inter-example
similarity between the DADC data and the static
adversarial data is significant with p < 0.01 ac-
cording to a t-test.

Syntax and Sentence Complexity. The dy-
namic adversarial data is more complex (Ta-

3Note that when computing each metric, we use a version
of the No Model and Static Model datasets that are randomly
downsampled to be the same size as the dynamic model data
(6,911 examples). This controls for any effect that dataset size
would have on our analyses.

4Note that this diversity metric is effective because we
collect hundreds of examples for a single context paragraph;
otherwise, we would need to measure similarity between hy-
potheses for different premises, a more complicated problem.
We also experimented with BERTScore (Zhang et al., 2019)
and found similar trends as BLEU score.

No
Model

Static
Model

Dynamic
Model

Diversity
Unique Unigrams 4.0k 4.2k 4.3k
Unique Bigrams 23.3k 24.8k 25.6k
Inter-example Sim. 41.2 41.9 39.5

Complexity
Syntax 2.0 2.1 2.3
Reading Level 4.9 5.4 5.9
Length 10.1 10.9 12.1

Artifacts
Hypo-only Acc % 75.4 69.3 69.7
Overlap Entail % 54.2 49.2 47.3

Table 4: Dataset analysis. The hypotheses generated
by DADC are more diverse based on the number of lex-
ical items and inter-example similarity. The hypotheses
are also more complex, as shown by their increased syn-
tactic complexity, reading level, and lengths. Finally,
adversarial data contains fewer instances of known arti-
facts. We bold the best result—lower is better for inter-
example similarity and the artifact analyses.

ble 4, middle). For each hypothesis, we measure
its length in words, its Flesch-Kincaid readabil-
ity (Flesch, 1948), and its syntactic complexity
using Yngve scores (Yngve, 1960; Roark et al.,
2007). Yngve scores roughly measure the devia-
tion of a parse tree from a purely right-branching
tree—it is the average number of left branches on
the path from the root node to each word. To com-
pute Yngve scores, we parse sentences using the
Benepar parser (Kitaev and Klein, 2018) based on
T5 small (Raffel et al., 2020). In all three met-
rics, the dynamic adversarial data scores highest,
and it is statistically significantly higher than the
static model data based on a t-test with p < 0.05.
We also show how the syntactic complexity evolves
over the rounds in Figure 4. For the non-adversarial
and static adversarial data, the syntactic complexity
is relatively constant while the DADC examples
become increasingly more complex.

Fewer Artifacts. NLI training datasets are
known to suffer from spurious correlations. The
DADC examples contain fewer instances of two
known artifacts: hypothesis-only information (Po-
liak et al., 2018; Gururangan et al., 2018; Tsuchiya,
2018) and high-overlap entailment examples (Mc-
Coy et al., 2019). To measure such artifacts, we
first train a hypothesis-only model on the training
set for each dataset using RoBERTa large. We test
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Figure 4: Complexity of syntax over time. We show
how the average syntactic complexity changes over
each round. For the non-adversarial and static adversar-
ial data, the syntactic complexity is relatively constant
across rounds. On the other hand, the DADC examples
become increasingly more complex as annotators are
faced with ever-improving models in the loop.

on validation data split off from each respective
training set, which allows us to measure how much
hypothesis-only information is present within each
dataset. The static adversarial and dynamic ad-
versarial datasets have the lowest hypothesis-only
accuracy. To measure high-overlap entailment in-
stances, we find examples where the hypothesis has
high (>90%) word overlap with the premise and
compute how often the label is entailment. Such
examples appear less frequently in DADC data.

6 Related Work

Post-hoc Adversarial Filtering. In adversarial fil-
tering (Le Bras et al., 2020; Zellers et al., 2018),
one takes an existing dataset and trains a model on
the most difficult subportion of the data. Adver-
sarial filtering shares motivations with adversarial
data collection—difficult examples are more infor-
mative for learning—but it is focused on post-hoc
data filtering rather than collection of new data.

Adversarial Training. Rather than having hu-
mans craft adversarial inputs, past work automati-
cally generates adversarial examples and trains on
them (Goodfellow et al., 2014; Ribeiro et al., 2018;
Ebrahimi et al., 2018). The main downside of such
approaches is their limited diversity—they focus
on specific aspects like paraphrase (Ribeiro et al.,
2018) or syntax (Iyyer et al., 2018) whereas DADC

examples are only limited by human creativity.

Active Learning. Active learning (Lewis and
Gale, 1994), especially when performed using
an uncertainty-based acquisition function, is also
closely related to DADC. The key differences are
in the setup: active learning assumes access to
unlabeled inputs, whereas in our setting we are
interested in building datasets from scratch.

Other Data Quality Improvements. Aside from
adversarial data collection, researchers have ex-
plored numerous methods for improving data qual-
ity when using crowdsourcing. This includes feed-
back from experts (Parrish et al., 2021; Nangia
et al., 2021), gamifying the data collection pro-
cess (Yang et al., 2018; Eisenschlos et al., 2021), en-
couraging counterfactual examples (Kaushik et al.,
2020; Gardner et al., 2020), or providing prompts
that workers can edit (Bowman et al., 2020; Vania
et al., 2020). Many of the ideas from these methods
can be combined with adversarial data collection.

7 Conclusion and Future Work

We investigated dynamic adversarial data collec-
tion in the limit—over a large number of rounds
until model performance starts plateauing—and
demonstrated that data collected via this method is
more valuable for training than alternatives, both on
validation data and an expert-curated test set. We
analyzed the collected data, showing that DADC
yields examples that are more diverse, more com-
plex, and contain fewer annotation artifacts com-
pared to non-adversarial examples. Our results
show that when building large training sets for
training NLP models, data collected in an adversar-
ial fashion with a continually updating model-in-
the-loop can be more useful than standard model-
agnostic collection in the long term.

In future work, it is vital to conduct similar ex-
periments on different tasks, e.g., question answer-
ing and sentiment analysis, as well as on a larger
number of contexts for NLI. Such experiments can
provide insight into the generalizability of our find-
ings. Moreover, given that a core benefit of DADC
is promoting diversity and complexity of examples,
one could explore other diversity-promoting meth-
ods of data collection. Lastly, our DADC setup is
relatively simplistic in that we use a single target
model and provide no other guides to the annota-
tor; it would be interesting to provide generative
models, model interpretations, or other methods to
potentially further improve our DADC results.
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Addressing Possible Ethical Concerns

The premises that we use are sourced from pub-
licly available sources and were vetted to ensure
they contained no overtly offensive content. As
described in main text, we designed our incentive
structure to ensure that crowdworkers were well
compensated (i.e., paid over minimum wage in the
U.S.). Our datasets focus on the English language
as it is spoken in the United States. They are not
collected for the purpose of designing NLP appli-
cations but to conduct a scientific study into col-
lecting data for training machine learning models.
We share our datasets to allow the community to
replicate our findings and do not foresee any risks
associated with the free use of this data.
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A Dataset Examples

Table 5 shows the ten paragraphs that are used as
the premises in our experiments.

B Mechanical Turk Interface

Figure 5 shows our Amazon Mechanical Turk in-
terface for the model-in-the-loop setting.
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Premises

Sound is due to the vibrations of objects. A piano string produces sound because of its vibration when struck, or pulled to one side and then released.
This vibration sets the air in rapid motion, and the result is the recording of the sound on our ear-drums. In old telephones, this recording corresponds
to a film of sheepskin or bladder drawn over a hollow cup or cylinder. When the head of a drum is struck with a small stick it vibrates. In this case
the vibrations are set in motion by the blow, while in the telephone a similar phenomenon is the result of vibratory waves falling from the voice on
the thin membrane, or disk of metal, in the transmitter. When these vibrations reach the ear-drumm the nervous system, corresponding to electricity
in the mechanical telephone, carries this sound to our brains where it is recorded and understood. In the telephone the wire, charged with electricity,
carries the sound from one place to another.

Michael Faraday was born at Newington, Surrey, on September 22, 1791, and was the third of four children. His father, James Faraday, was the
son of Robert and Elizabeth Faraday, of Clapham Wood Hall, in the north-west of Yorkshire, and was brought up as a blacksmith. He was the third
of ten children, and, in 1786, married Margaret Hastwell, a farmer’s daughter. Soon after his marriage he came to London, where Michael was
born. In 1796 James Faraday, with his family, moved from Newington, and took rooms over a coach-house in Jacob’s Well Mews, Charles Street,
Manchester Square. In looking at this humble abode one can scarcely help thinking that the Yorkshire blacksmith and his little family would have
been far happier in a country house than in their new crowded London one, however, had he remained in the countryside, it is difficult to see how
the genius of young Michael could have met with the requisites for its development.

I had demonstrated by repeated experiments that inoculations of yellow fever blood into animals–dogs, rabbits, guinea pigs–gives a negative result.
However, this negative result might be because these animals are not susceptible to the disease. In the civil hospital in Vera Cruz in 1887, Dr. Daniel
Ruiz ran a single inoculation experiment on a man. But, this experiment was inconclusive because the patient from whom the blood was obtained
was in the eighth day of the disease, and it was quite possible that the specific germ was destoyed at that point. These were the facts surrounding
yellow fever when Dr. Reed and his associates commenced their investigations in Cuba during the summer of 1900. In a preliminary note read at the
meeting of the American Public Health Association, October 22, 1900, the board gave a report of three cases of yellow fever which they believed to
be direct results of mosquito inoculations.

There are other signs of a coming change in the weather known less generally. When birds of long flight, such as swallows and others, hang about
home and fly low—rain or wind may be expected. Also when animals seek sheltered places, instead of spreading over their usual range: when pigs
carry straw to their sties; and when smoke from chimneys does not ascend readily, an unfavourable change may be looked for. Dew, on the other
hand, is an indication of fine weather. So is fog. Neither of of these two formations occurs under an overcast sky, or when there is much wind.

A fierce onslaught was made against Alvinczy’s position by Massena’s corps. It was entirely unsuccessful, and the French were repulsed with the
serious loss of three thousand men. Bonaparte’s position was now even more critical than it had been at Castiglione; he had to contend with two
new Austrian armies, one on each flank, and Wurmser with a third stood ready to sally out of Mantua in his rear. If there should be even partial
cooeperation between the Austrian leaders, he must retreat. But he felt sure there would be no cooeperation whatsoever.

The pendulum had swung—it was no longer the Federalist merchants of New England who were discontent with the policies of the governement,
but the planters of the South and particularly of South Carolina. New England was now in favor of a protective tariff. Webster, New England’s
foremost man at Washington, had voted against the tariff of 1816, but had changed his mind and supported a higher tariff in 1824, and a still higher
in 1828. The planters of the South had not found it easy to manufacture goods. They had little or nothing, therefore, to protect against the products
of European countries. On the contrary, they exported much to England, and imported from England and other countries many of the things they
consumed. Accordingly, they were opposed to the whole system of tariff taxation and desired free trade.

The water was wide and deep, so that he could not cross it. He, however, went down to the brink of the water, and got a good drink. This refreshed
him very much, and then he went back again up the bank, and lay down upon the grass there to rest. Presently two cows came down to the water, on
the side opposite to where Tony was sitting.

The death of Socrates was brought under three of his enemies—Lycon, Meletus, and Anytus, the last a man of high rank and reputation in the
state. Socrates was accused by them of despising the ancient gods of the state, introducing new divinities and corrupting the youth of Athens. He
was charged with having taught his followers, young men of the first Athenian families, to despise the established government, to be turbulent and
seditious, and his accusors pointed to Alcibiades and Critias, notorious for their lawlessness, as examples of the fruits of his teaching.

In some places the wires came very near together, and in others the spaces between them were so wide, that Wallace thought that the squirrel, if by
any chance he should ever get put into the cage, would be very likely to squeeze his way out. Then, besides, Phonny had not measured his wires in
respect to length, but had cut them off of various lengths, taking care however not to have any of them too short. The result was that the ends of the
wires projected to various distances above the board, presenting a ragged and unworkmanlike appearance.

Garrity was the most sinister figure in organized baseball. Once a newspaper reporter, he had somehow obtained control of the Rockets by chicanery
and fraud. Sympathy and gratitude were sentiments unknown to him. He would work a winning pitcher to death, and then send the man shooting
down to the minors the moment he showed the slightest symptom of weakness. He scoffed at regulations and bylaws; he defied restraint and control;
he was in a constant wrangle with other owners and managers; and as a creator of discord and dissension he held the belt.

Table 5: The ten paragraphs we use as premises in our experiments. We refer to these contexts as Sound, Faraday,
Yellow, Weather, Battle, Tariff, Water, Socrates, Wires, and Garrity, respectively.
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Figure 5: Our Amazon Mechanical Turk interface for the model-in-the-loop setting.
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