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Abstract

Traditional methods for named entity recog-
nition (NER) classify mentions into a fixed
set of pre-defined entity types. However, in
many real-world scenarios, new entity types
are incrementally involved. To investigate this
problem, continual learning is introduced for
NER. However, the existing method depends
on the relevance between tasks and is prone
to inter-type confusion. In this paper, we pro-
pose a novel two-stage framework Learn-and-
Review (L&R) for continual NER under the
type-incremental setting to alleviate the above
issues. Specifically, for the learning stage, we
distill the old knowledge from teacher to a stu-
dent on the current dataset. For the reviewing
stage, we first generate synthetic samples of
old types to augment the dataset. Then, we
further distill new knowledge from the above
student and old knowledge from the teacher
to get an enhanced student on the augmented
dataset. This stage has the following advan-
tages: (1) The synthetic samples mitigate the
gap between the old and new task and thus
enhance the further distillation; (2) Different
types of entities are jointly seen during training
which alleviates the inter-type confusion. Ex-
perimental results show that L&R outperforms
the state-of-the-art method on CoNLL-03 and
OntoNotes-5.0.

1 Introduction

Traditional Named Entity Recognition (NER) aims
at extracting mentions from a given text and clas-
sifying them into a fixed set of pre-defined entity
types such as Person, Location, Organization, etc
(Ma and Hovy, 2016). However, in many real-
world scenarios, new entity types emerge periodi-
cally by demand and the models are required to rec-
ognize new types of entities without forgetting the
old ones, which can formulate into the paradigm of

∗ This work was done during internship at Baidu Inc.
† Corresponding author.

continual learning (a.k.a. lifelong learning or incre-
mental learning) (Thrun, 1998; Parisi et al., 2019).
For example, voice assistants such as Siri are often
expected to grasp new intents (e.g. GetMovie) and
thus new entity types (e.g. Actor, Genre) are contin-
ually involved. The ability to learn from continuous
streams of data after deployment is important for
modern NER models in specific scenarios.

However, continual learning, as it has long been
recognized, suffers severely from catastrophic for-
getting, i.e., the loss or disruption of previously
learned knowledge when new patterns are learned
(McCloskey and Cohen, 1989; Robins, 1995; Good-
fellow et al., 2013; Kirkpatrick et al., 2017). Dif-
ferent from human beings, an NER model (partic-
ularly that based on deep neural networks) which
stores knowledge by its parameters is vulnerable
to catastrophic forgetting of old knowledge while
updating parameters to learn new entity types.

In order to avoid forgetting old types of entities
while learning the new ones, a naive solution is to
annotate a dataset for both old and new types and re-
train the model from scratch. However, this method
is computational-inefficient and labor-extensive, es-
pecially when the number of entity types is large.
To reduce the cost, Monaikul et al. (2021) advocate
annotating a training set only for new entity types
and retaining previously learned knowledge via
knowledge distillation (KD) (Hinton et al., 2015).
In their approach, the current NER model acts as
the teacher and the target new NER model the stu-
dent. The student then learns new entity types by
using the new training material and retains knowl-
edge of old entities by imitating the teacher’s output
on this new training set. Despite the initial success,
this KD-based approach relies on the co-occurrence
of unlabeled old types in the current training data
of new types. If the new training set (e.g. annotated
only for Restaurant) contains little information re-
lated to the old entity types (e.g. Sport), the knowl-
edge of these old types will be hard to be retained
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Figure 1: An overview of L&R. At the k-th step, with the new training data Dk and the old models Mk−1, G1:k−1

available. We firstly distill the teacher model Mk−1 into the student model M̂k by minimizing αLCE + βLKD on
Dk. Then, we use the generators G1:k−1 to generate some unlabeled contexts D̂1:k−1 which contain old types of
entities to augment the current dataset Dk. We further distill M̂k and Mk−1 into Mk by minimizing αLCE + βLKD

on the augmented dataset
⋃k−1

i=1 D̂i ∪Dk.

simply by distillation. Furthermore, the model will
also have difficulty discriminating the old and new
entity types since they rarely jointly seen. This
issue is typically referred to as inter-type confusion
(Masana et al., 2020).

In this paper, to alleviate the above issues, in-
spired by the reviewing behavior of human students,
we propose Learn-and-Review (L&R), a two-stage
framework that introduces a reviewing stage after
the common learning stage. To be specific, during
the learning stage, we train the student to recog-
nize new types of entities and retain knowledge of
old types under the teacher’s supervision by knowl-
edge distillation. Then, during the reviewing stage,
we first generate synthetic samples containing old
types of entities to augment the current training
set. With the augmented data obtained, we further
distill new knowledge from the above student and
old knowledge from the teacher to get an enhanced
student. By augmenting the current dataset with the
synthetic samples of old types, we mitigate the gap
between the old and the new task and thus enhance
the further distillation. Moreover, since different
types of entities are jointly seen during training,
the model will discriminate better between types
and thus alleviate the inter-type confusion. Besides,
L&R improves the performance at each step and
thus mitigates the error propagation caused by the
distillation.

We evaluate our proposed framework on CoNLL-
03 (Sang and De Meulder, 2003) and OntoNotes-
5.0 (Hovy et al., 2006). Experimental results show
that L&R outperforms the state-of-the-art method.
We also conduct extensive analysis to discuss the
effectiveness of the reviewing stage in enhancing

the distillation and alleviating inter-type confusion.
Our contributions can be summarized as follows:

• To the best of our knowledge, we are the first
to point out the type co-occurrence require-
ment, which is one particular shortcoming of
the existing KD methods for class-incremental
learning.

• We propose a novel augmentation strategy
in the reviewing stage to reduce the type co-
occurrence requirement.

• Extensive experimental results show that our
method outperforms the state-of-the-art base-
line. We also conduct experiments to explain
the reasons of the improvement.

2 Related Work

2.1 Named Entity Recognition
The traditinal NER work focuses on extracting
predifined types of entities from text (Lample et al.,
2016; Zhang and Yang, 2018; Yan et al., 2021).
Yet in many real-world scenarios, new entity types
emerge periodically by demand and the models
are required to recognize new types of entities
without forgetting the old ones. It is inefficient
and sometimes practically impossible to re-train
a NER model from scratch every time new types
added. Hence, some researchers pay their attention
to updating the model by the continual learning
approaches. (Monaikul et al., 2021) re-constructed
the original setting into the type-incremental set-
ting based on several well-known NER datasets in
order to study how to continually train the model
with the addition of new types. In this paper, we
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follow (Monaikul et al., 2021) to study continual
NER in a type-incremental setting.

2.2 Class-incremental Learning

In the field of machine learning, most early meth-
ods for continual learning considered the task-
incremental setting in which a task-ID is available
at inference time (Masana et al., 2020). More re-
cently, methods have started addressing the more
difficult setting of type/class-incremental learning,
where the algorithm does not have access to the
task-ID at inference time, and therefore must be
able to distinguish between all types/classes from
all tasks. Since types are never jointly trained, the
network has difficulty discriminating all classes.
This problem is referred to as inter-type/task con-
fusion (Masana et al., 2020). To prevent inter-type
confusion and learn representations which are opti-
mal to discriminate between all classes, rehearsal
based methods are commonly used. These meth-
ods keep a small number of exemplars (Rebuffi
et al., 2017; Wu et al., 2019) (exemplar rehearsal),
or generate synthetic samples (Shin et al., 2017;
Sun et al., 2019) or features (Xiang et al., 2019)
(pseudo-rehearsal). They prevent the forgetting
of previous tasks by replaying the stored or gen-
erated data from previous tasks. Inspired by the
pseudo rehearsal-based methods, we generate some
data containing old types of entities by a language
model to augment the current data. However, it is
very common for entities introduced in different
steps to co-occur in the same context in NER which
makes the existing rehearsal approaches fail to be
applied. Different from the existing rehearsal meth-
ods, we utilize the teacher and the student obtained
from the learning stage to provide soft labels (i.e.
output probability) for the unlabeled synthetic data
to mitigate the type co-occurrence problem.

3 Preliminary

3.1 Problem Formulation

We adopt the type-incremental setting for NER as
(Monaikul et al., 2021). We train the model on
a sequence of tasks T1, T2, ...Tk, where the k-th
task has its own training set Dk only annotated
for the new entity types Ek. Suppose that entity
types in different tasks are non-overlapping (i.e.,
Ei ∩ Ej = ∅ if i ̸= j). Note that the sentences
in Dk potentially also contain tokens of types in
the past or future step but this information is not
annotated. At the k-th incremental step (k > 1),

with Dk and the previous model Mk−1 available,
our goal is to get a model Mk which can recognize
entities of all seen types

⋃k
i=1Ei.

3.2 NER Model
NER models are usually treated as the sequence
labeling task which classifies every token in a se-
quence into a set of entity types or non-entity. The
NER model we use consists of an encoder E and
a linear softmax classifier C. Given a sequence of
tokens and their labels {xLi=1, y

L
i=1}, the encoder

E maps the inputs into the hidden vectors {hL
i=1}.

With each hi derived, the linear softmax classifier
C maps it into the label space and calculates the
probability distribution of its labels:

zi = Whi + b (1)

P (xi;θ) = softmax(zi) =
exp(zi)∑
j exp(zj)

(2)

where P (xi;θ) ∈ Rn with n being the size of
the label space and θ denotes the learnable model
parameters. The size of the label space depends
on the tagging scheme used. For example, the
BIO format distinguishes begin/inside/outside of
named entities under which the label space have
a dimensionality of h× (2m+ 1), where h is the
size of hidden vector and m is the size of entity
types. In the type-incremental setting, the size of
the label space incrementally expands in each step.
We minimize the cross entropy loss to encourage
the model to correctly predict the true labels:

LCE(x;θ) = −
L∑
i=1

logPyi(xi;θ) (3)

where Pyi(xi;θ) is the model’s output probability
of token xi belonging to class yi.

4 Method

In this section, we first introduce the whole training
procedure of our framework which consists of a
learning and a reviewing stage. Then, we describe
the two stages in detail.

4.1 Training Procedure
The training procedure of our proposed L&R is
illustrated in Fig. 1 and detailed in Algorithm 1.
Assuming that we are at the k-th incremental step
(k > 1), with the new training data Dk and the
old models Mk−1, G1:k−1 at our disposal. L&R
includes two stages to learn new types of entities
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Figure 2: The distillation process. For a sentence with its labels "France backed Fischler’s proposal", "LOC O O
O" (Note that the gold label for Fischler’s is PER but this information is not annotated at this step). If y = LOC,
we compute the cross-entropy between the output of Mk and y (blue). Otherwise, we compute the KL divergence
between the output of Mk−1 and Mk (orange).

while avoiding forgetting the old ones: (1) At the
learning stage (line 6), we distill old knowledge
from the teacher Mk−1 into the student M̂k by
minimizing the weighted sum of the cross-entropy
loss and the knowledge distillation loss on Dk. (2)
At the reviewing stage (line 8 ∼ 12), we firstly
use the generators G1:k−1 to generate some unla-
beled contexts D̂1:k−1 which contain old types of
entities to augment the current dataset Dk. Then,
we further distill new knowledge from M̂k and
old knowledge from k−1 into Mk by minimizing
the above weighted sum on the augmented dataset⋃k−1

i=1 D̂i ∪Dk. Besides, we train Gk by minimiz-
ing the language modeling loss on Dk.

4.2 Learning Stage

For the k-th incremental step (k>1), with the train-
ing data Dk and the models from the last step
Mk−1, G1:k−1 available, the goal of this stage is to
get a model capable of recognizing all previously
seen types. Firstly, We initialize the student M̂k

with the parameters of Mk−1 and expand its linear
layer to accommodate the new entity types. To
be more specific, suppose we use the BIO tagging
schema (introduced in Sec. 3.2), then the origi-
nal weight matrix with dimension h × (2n + 1)
should be expanded to h× (2n+ 2m+ 1), where
n = | ∪ki=1 Ei| and m = |Ek|. After initializing
the student, we distill the old knowledge from the
teacher Mk−1 to the student M̂k−1. Given that the
training dataset Dk is only annotated for Ek, di-
rectly training M̂k−1 on it will cause catastrophic
forgetting. Therefore, we utilize Mk−1 to provide
soft labels (i.e. output probability distribution) for
old types of entities in Dk. At the same time, the

gold annotation for Ek is used to train M̂k to rec-
ognize entities of new types. With all previously
seen types of labels obtained, M̂k is trained on Dk

with the weighted sum of the following two losses
(Eq. 6): the cross entropy loss (Eq. 3) that penal-
izes errors of recognizing new entity types and the
knowledge distillation loss (Eq. 5) that penalizes
forgetting of old entity types.

Formally, for each token with its gold label y,
we compute either the cross-entropy loss or the
KL divergence for that token according to its label
y. When y ∈ Ek, we compute the cross-entropy
between the output distribution of M̂k and y. Oth-
erwise (e.g. y is non-entity), we compute the KL di-
vergence between the output distribution of Mk−1

and M̂k. The process is illustrated in Fig.2.

P (xi;θ, T ) =
exp(zi/T )∑
j exp(zj/T )

(4)

where P (xi;θ, T ) ∈ Rn with n being the size
of the model’s label space. θ denotes the learn-
able model parameters. T denotes the temperature
hyper-parameter that can be tuned to obtain a softer
distribution (Hinton et al., 2015).

LKD = −
L∑

i=1

|∪k
i=1Ei|∑
j=1

Pj(xi;θk−1, T ) logPj(xi; θ̂k, T )

(5)

where P (xi;θk−1, T ) ∈ R|∪k−1
i=1 Ei| denotes the

teacher’s output probability and P (xi; θ̂k, T ) ∈
R|∪k

i=1Ei| denotes the student’s. In order to make
the teacher’s output the same size as the student’s,
we fill the teacher’s outputs of the new labels with
a small constant.
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L = αLCE + βLKD (6)

where α, β denote the weights of the loss.

4.3 Reviewing Stage

In order to mitigate the gap between tasks and al-
leviate the problem of inter-task confusion, we
introduce a novel reviewing stage after the com-
mon learning stage. Firstly, for each old task
i ∈ {1, 2, ..., k − 1}, we use the generator Gi to
generate some unlabeled contexts related to types
Ei. Then, we concatenate the output probability of
old types from Mk−1 and the probability of new
types from M̂k to get the probability of all seen
types for the unlabeled contexts according to Eq. 7.
We calculate the KL divergence between the above
probability on all seen types and the output of Mk

on the generated data using Eq. 8. We calculate the
cross-entropy loss on the current data according to
Eq. 3. Finally, we initialize Mk with M̂k and train
Mk using the above weighted losses Eq. 6. The
process is similar to Fig. 2 except that the proba-
bility of old types is given by M̂k−1 instead of a
small constant.

P (xi;θk−1, θ̂k, T ) =

concat([PE1:k−1(xi;θk−1, T );PEk (xi; θ̂k, T )])
(7)

LKD = −
L∑

i=1

|∪k
i=1Ei|∑
j=1

Pj(xi;θk−1, θ̂k, T ) logPj(xi;θk, T )

(8)

Besides, we train a generator Gk using the unla-
beled contexts in Dk by minimizing Eq. 11

Generator The model we use for generating
contexts is a one-layer LSTM language model. We
train a separate generator for each task and only
use it for inference in the later steps. Specifically,
given a sequence of L tokens {xLi=1}, we feed them
into an embedding layer and a LSTM layer to get
the contextualized representation for each token
{hL

i=1}. Then, we use a linear softmax classifier to
get the probability of the next token:

zi = Whi + b (9)

P (xi|x<i;θ) =
exp(zi,index(xi))∑

j exp(zi,j)
(10)

where zi ∈ RV with V being the vocabulary size
and index(∗) denotes the index of xi in the vocab-
ulary. We train the language model by minimizing

the negative log-likelihood in predicting the next
word:

LLM(x;θ) =
L∑
i=1

− logP (xi|x<i;θ) (11)

For inference, i.e. generating synthetic samples,
given the [BOS] token as the input, the model de-
codes the sentence autoregressively by sampling on
the probability calculated by Eq. 10. By language
modeling the contexts of a specific entity type, we
extract its common patterns for the student to re-
view and refresh its old knowledge. Owning to the
randomness introduced by the sampling process,
the generator tends to provide more diverse sen-
tences rather than merely recovering old samples.

Algorithm 1 Procedure of our framework
Require: A stream of incoming tasks T1, T2, · · · ,

Tk, · · ·, where each task Tk is associated with
a dataset Dk consisting of sentences annotated
only w.r.t. previously unseen entity types Ek.

Ensure: The latest NER model Mk at each step k
which can recognize entities of all seen entity
types ∪ki=1Ei.

1: train M1 by minimizing LCE on D1;
2: train generator G1 by minimizing LLM on D1;
3: k ← 2;
4: while there are still tasks left do
5: // Learning Stage
6: distill Mk−1 into M̂k by minimizing αLCE

+βLKD on Dk;
7: // Reviewing Stage
8: for i = 1 to k − 1 do
9: generate synthetic sentences D̂i from

previous step i by using Gi;
10: end for
11: distill Mk−1, M̂k into Mk by minimizing

αLCE + βLKD on
⋃k−1

i=1 D̂i ∪Dk;
12: train Gk by minimizing LLM on Dk;
13: k=k+1;
14: end while

5 Experiment Setup

5.1 Datasets

To evaluate our framework, we re-construct the
original setting into the type-incremental setting
based on several well-known NER datasets includ-
ing CoNLL-03 English (Sang and De Meulder,
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CoNLL-03 OntoNotes-5.0
PER LOC ORG MISC PERSON GPE ORG DATE CARD NORP

Train 4373 5127 4587 2698 12195 10643 9537 8921 5788 5297
Dev 1120 1329 962 695 1553 1592 1262 1264 736 686
Test 1025 1266 1229 563 1573 1573 1230 1281 772 671

Table 1: The sentence distribution of each entity type in CoNLL-03 and OntoNotes-5.0.

2003) and OntoNotes-5.0 English (Hovy et al.,
2006). For OntoNotes-5.0, we select the following
types to ensure enough examples for training: Or-
ganization, Person, Geo-Political Entity, Date, Car-
dinal, Nationalities and Religious Political Group.

5.2 Settings

We adopt the following setup to simulate the real-
world data collection. When constructing the train-
ing/dev sets for the k-th task, for a sample with
L tokens [x1, x2, . . . , xL] and its corresponding
labels [y1, y2, . . . , yL] in the original training/dev
sets, we replace the label yi with O if yi /∈Ek to get
ŷi. Then, we add [x1, x2, . . . , xL] and its modified
labels [ŷ1, ŷ2, . . . , ŷL] into the training/dev sets of
the k-th task if ∃yi ∈ Ek, 1 ≤ i ≤ L. When
constructing the test sets for the k-th task, we re-
place the above Ek with ∪ki=1Ek (all seen types
up to the current step). Without loss of generality,
we consider adding one type at each step. After
re-constructing the datasets based on the above
rules, the sentence distribution of each entity type
across the official training, development, test sets
are listed in Table 1.

5.3 Implementation Details

We follow the previous work (Monaikul et al.,
2021) for implementation. The details can be found
in Appendix A.

5.4 Compared Methods

We compare our framework to ExtendNER and
select non-CL complete as the upper bound. We
reimplement them according to (Monaikul et al.,
2021). For non-CL complete, we train the model
from scratch on those samples which contain the
entity of all seen types up to the current step.

5.5 Metrics

Following (Monaikul et al., 2021), we compute the
precision, recall and F1 scores for each entity type
at each step. We report the macro-average F1 score

w.r.t. all types seen up to the k-th step, averaged
over all sampled permutations:

F k,r
avg =

1

k × r

∑
e∈

⋃k
i=1 E

r
i

F k,r
e (12)

where
⋃k

i=1E
r
i denotes all types seen up to the k-

th step in the task order r. F k
e denotes the F1 score

of entity e at the k-th step in the order r.
We also evaluate the model’s overall perfor-

mance regarding order-sensitivity to have a more
thorough understanding. The metric we use is Error
Bound (Wu et al., 2021) which is defined as:

EB = Zα
2
× σ√

n
(13)

where Zα
2

is the confidence coefficient of confi-
dence level α, and σ is the standard deviation of
average F1 obtained from n different task orders.
A model with a lower error bound indicates less
order-sensitivity.

6 Results

6.1 Main Results
We conduct extensive experiments on CoNLL-03
and OntoNotes-5.0 and make the following obser-
vations:

(1) Table 2 shows that L&R outperforms the base-
line among all the steps on the two datasets.
For example, L&R achieves 4.01, 6.22, 7.83
average F1 improvement at step 2, 3, 4 on
CoNLL-03. Noting that L&R achieves more
improvement against ExtendNER on later
steps. The reason is that we improve the per-
formance at each step and thus alleviate the
error propagation caused by the distillation.

(2) In additional to the above accumulated im-
provement of L&R, we also report the instant
improvement of the reviewing stage at each
step in Table 2. For example, L&R gets 4.01,
4.02, 4.11 improvement at step 2, 3, 4 after
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Method
CoNLL-03 OntoNotes-5.0

Step 1 Step 2 Step 3 Step 4 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

ExtendNER
92.08 82.93 78.90 77.91 92.06 87.60 83.72 81.41 80.63 79.56

- ±4.51 ±3.82 ±1.41 - ±2.12 ±1.54 ±1.70 ±1.68 ±0.94

L&R
92.08 86.93 85.12 85.74 92.06 88.09 85.69 83.79 83.38 83.02

- ±3.43 ±2.38 ±0.44 - ±1.82 ±2.02 ±1.13 ±0.93 ±0.63
before reviewing 92.08 82.93 81.10 81.63 92.06 87.60 84.53 82.67 82.31 82.03

non-CL complete 92.08 89.86 88.99 88.90 92.06 91.16 90.50 89.69 89.57 89.30

Table 2: The average F1 over seen entity types on the test set of NER datasets at each step. Scores at each step are
averaged over all sampled permutations. Error Bound is indicated after the± symbol. We set the confidence as 0.95.

CoNLL-03 OntoNotes-5.0
PER LOC ORG MISC PERSON GPE ORG DATE CARD NORP

Before 90.53 85.45 77.89 70.37 89.67 89.86 73.06 76.94 76.94 80.55
After 95.19 90.46 83.30 71.67 90.21 90.32 73.40 76.99 78.26 82.93
∆ +4.66 +5.00 +5.41 +1.30 +0.54 +0.46 +0.35 +0.05 +1.31 +2.39

Table 3: The instant improvement of the reviewing stage on different entity types in CoNLL-03 and OntoNotes-5.0

the reviewing stage, demonstrating the effec-
tiveness of our proposed reviewing stage.

(3) Table 2 shows that L&R obtains tight error
bounds among all the steps, demonstrating
better stability against the task order. For ex-
ample, L&R lowers the error bound by 24%,
38%, 69% at step 2, 3, 4 on CoNLL-03.

(4) Figure 3 shows that the values on the diagonal
line of the confusion matrix of L&R are higher
compared to those of ExtendNER. This indi-
cates that L&R discriminates more correctly
between different entity types which is one of
the reasons of its improvement.

6.2 Improvement of the Reviewing Stage

In order to further understand the improvement of
the reviewing stage, we break down its source into
two parts. The first part comes from the instant
improvement after conducting the reviewing stage
at each step. We report the average F1 before/after
reviewing on the fifth/third line of Table 2. The
second part comes from the improvement of the
previous steps which alleviates the error propaga-
tion caused by the distillation. This accumulated
improvement is reported on the third line of Table 2.
From the first and the third line of the table, we
can observe that L&R achieves more improvement
against ExtendNER on later steps. From the third

and the fifth line of the table, we can see that L&R
achieves an average of 4 and 1 improvement on
CoNLL-03 and OnteNotes-5.0 at each step.

We also report the instant improvement of the
reviewing stage on different entity types in Table 3.
From the table we can see that different entity types
obtain different gain from the reviewing stage. This
is rational because different types have different
intrinsic difficulty.

6.3 Inter-type Confusion

To verify our hypothesis that L&R alleviates the
inter-type confusion and thus brings improvement,
we plot the normalized confusion matrix between
different types based on the predictions at the final
step (Figure 3). Concretely, we use the ’B-X’ (X de-
notes a specific entity type) label in the ground truth
as the true labels, and use the ’B-X’ label in the
model’s predictions as the predicted labels. From
the figures we can see that, the values on the diago-
nal line of the confusion matrix of L&R are higher
compared to those of ExtendNER. This indicates
that L&R discriminates more correctly between dif-
ferent entity types compared to ExtendNER. These
results are in consistent with the improvements in
Table 3.

6.4 Influence of Task Order

In order to explore the effect of task orders, we
plot the performance of L&R and ExtendNER at
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Figure 3: The normalized confusion matrices based on
the predictions of L&R (up) and Extend (down).

each step under 8 sampled task orders on CoNLL-
03 in Figure 4. From the figure, we can observe
that: (1) Under all task orders, the performance of
the methods drops with the step increases. This is
in line with our expectation because the test sets
and the type sets are incrementally expanding, in-
dicating more difficult tasks. (2) Different methods
under the same order show the similar trends where
L&R shows a higher average F1 at each step. (3)
Although the performance fluctuate at the middle
steps, they converge at the final step. L&R gets
a more converged result between 0.85 and 0.86
which demonstrates its robustness to the task or-
ders. Besides, we calculate the error bounds to get
a quantitative understanding. From Table 2 we can
see that, the error bounds of L&R are lower than
that of ExtendNER which also demonstrates the
performance of L&R is less sensitive to the task
orders.

6.5 Quantity of Synthetic Samples

To explore how much does the number of synthetic
samples influences our performance, we conduct
the experiments on CoNLL-03 with 100, 500, 1000,
3000 synthetic samples per task. From the Fig-
ure 5 we can see that, generating 100 samples per
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Figure 4: The performance of L&R (red) and Extend-
NER (black) at each step under 8 sampled task orders.
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Figure 5: The performance of L&R at each step using
different number of synthetic data per task.

task is enough for an improvement of 5.05 against
ExtendNER at the final step. Besides, the model
performance conforms to the general rule of better
performance with more data.

7 Conclusion

In this paper, we propose a novel framework intro-
ducing the reviewing stage to alleviate the catas-
trophic forgetting and intra-task confusion issues
for NER under the type-incremental setting. Af-
ter the learning step, we further distill the student
and the teacher on the synthetic sample augmented
dataset to get an enhanced student. Our exper-
iments on the two benchmarks CoNLL-03 and
OntoNotes-5.0 demonstrate that L&R is less prone
to the intra-task confusion and outperforms the
state-of-the-art method.
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Order CoNLL-03 OntoNotes-5.0

1 LOC → ORG → MISC → PER ORG → PER → GPE → DATE → CARD → NORP
2 LOC → PER → ORG → MISC DATE → NORP → PER → CARD → ORG → GPE
3 MISC → ORG → LOC → PER GPE → CARD → ORG → NORP → DATE → PER
4 MISC → PER → LOC → ORG NORP → ORG → DATE → PER → GPE → CARD
5 ORG → LOC → MISC → PER CARD → GPE → NORP → ORG → PER → DATE
6 ORG → MISC → PER → LOC PER → DATE → CARD → GPE → NORP → ORG
7 PER → LOC → ORG → MISC
8 PER → MISC → LOC → ORG

Table 4: The sampled task orders of CoNLL-03 and OntoNotes-5.0.

A Implementation Details

We use uncased BERT-base as our encoder (De-
vlin et al., 2018). The models are implemented in
Pytorch (Paszke et al., 2019) on top of the BERT
Huggingface implementation (Wolf et al., 2019),
and are trained on a single GeForce RTX 3090
GPU. We set the batch size as 32, the max sentence
length as 128, the max training epoch number as
20 with early stopping (patience=3). We use Adam
(Kingma and Ba, 2014) as our optimizer with the
learning rate 5e-5 for all modules. For all student
models, we set the temperature as 2 and α = β = 1
for the weighted sum of the losses. For L&R, we
generate 3000 samples for each previous task by de-
fault. We sample 8 and 6 task orders for CoNLL-03
and OntoNotes-5.0 respectively (listed in Table 4).
For efficiency, we use a one-layer LSTM model as
our generator and find it enough to achieve encour-
aging performance. The average runtime (training
and inference) time is 10 min/task and the size is
50 MB for CoNLL-03.
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