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Abstract

Charts are very popular for analyzing data.
When exploring charts, people often ask a va-
riety of complex reasoning questions that in-
volve several logical and arithmetic operations.
They also commonly refer to visual features
of a chart in their questions. However, most
existing datasets do not focus on such com-
plex reasoning questions as their questions are
template-based and answers come from a fixed-
vocabulary. In this work, we present a large-
scale benchmark covering 9.6K human-written
questions as well as 23.1K questions gener-
ated from human-written chart summaries. To
address the unique challenges in our bench-
mark involving visual and logical reasoning
over charts, we present two transformer-based
models that combine visual features and the
data table of the chart in a unified way to an-
swer questions. While our models achieve the
state-of-the-art results on the previous datasets
as well as on our benchmark, the evaluation
also reveals several challenges in answering
complex reasoning questions.

1 Introduction

Data visualizations such as bar charts and line
charts have become popular in analyzing data
and making informed decisions. To analyze data,
often people ask complex reasoning questions
about charts involving arithmetic and logical opera-
tions (Kim et al., 2020). Answering such questions
requires a significant amount of perceptual and cog-
nitive efforts as people need to combine multiple
operations such as retrieving values, comparing
values, finding maximum, calculating sums and dif-
ferences of values. For example, the question Q1 in
Fig. 1 requires the user to compute the differences
between the two lines for each year and find the
year with the highest difference.

The goal of a Chart Question Answering
(ChartQA) system is to help users by taking a chart
and a natural language question as input and pre-

Q1: Which year has the
most divergent opinions about
Brazil’s economy?
Answer: 2015

Q2: What is the peak value of
the orange line?
Answer: 87

Figure 1: Sample questions in our benchmark.

dicting the answer. This task differs from other QA
tasks such as QA on texts (Rajpurkar et al., 2016)
and tables (Pasupat and Liang, 2015) because the
input for ChartQA is a visual representation of data
that can draw a reader’s attention to various promi-
nent features such as trends and outliers (Kim et al.,
2020, 2021). Also, people tend to ask questions by
referring to visual attributes of marks. For example,
in Fig. 1, Q2 refers to the color of a mark (‘line’)
and its attribute (‘peak’) in the chart.

While the task of ChartQA has received growing
attentions in recent years, existing datasets have
several major limitations: (i) the questions are gen-
erated automatically using pre-defined templates
(Kahou et al., 2017; Kafle et al., 2018; Chaudhry
et al., 2020; Singh and Shekhar, 2020) which lack
naturalness, (ii) the charts are created automatically
using a programming tool like Matplotlib (Singh
and Shekhar, 2020) which do not reflect the diverse
styles of many real-world charts, and finally, (iii) in
most datasets, the answer comes from a small fixed
sized vocabulary (e.g., chart axis labels, ‘yes’, ‘no’),
ignoring many complex reasoning questions where
the answer is derived through various mathematical
operations such as aggregation and comparison.

Since most datasets only support fixed vocabu-
lary questions, existing models usually treat the
task as a classification problem and rely on dy-
namic encoding techniques with the questions and
answers encoded in terms of spatial positions of
chart elements (e.g., x-axis-label-1). Such ap-
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proaches do not work when the OCR model gener-
ates errors or when the question refers to chart ele-
ments using synonyms (e.g., US vs. United States).
PlotQA (Methani et al., 2020) attempts to support
open vocabulary questions by applying a TableQA
model (Pasupat and Liang, 2015) but it does not
consider any visual features of a chart which are
critical for answering visual reasoning questions.

To address these limitations, we present a large-
scale benchmark covering 9,608 human-written
questions focusing on logical and visual reasoning
questions. Since human annotations are costly, we
also generated another 23,111 questions automati-
cally from human-written chart summaries using
a T5 model (Raffel et al., 2020) and manually val-
idated a subset of it for quality assurance. In this
way, we collect a large number of questions auto-
matically while maintaining rich variations in lan-
guage as they were generated from human-written
summaries. Our benchmark consists of 20,882
charts which are curated from four different online
sources to ensure variety in visual styles and topics.

To address the challenges introduced in our
benchmark, where many questions involve com-
plex reasoning and visual references to charts, we
propose an approach that combines visual features
and extracted data from the chart image. Our
pipeline first extracts the underlying data table from
the chart image by adapting the ChartOCR model
(Luo et al., 2021) as well as the visual features
from the chart image using neural models. Then,
we adapt two transformer-based QA models where
we utilize both the extracted data table and visual
features of the chart in a unified way. Our models
achieve the state-of-the-art results, or stands on par
with the previous models on the previous datasets
as well as on our newly created benchmark.

In sum, our main contributions are: (i) A
large-scale ChartQA dataset with real-world charts
and human-authored question-answer pairs; (ii) a
pipeline approach that combines visual features
and automatically extracted data from charts to
utilize in transformer-based QA models that pro-
vide state-of-the-art results; and (iii) an extensive
analysis and evaluation of the performance of our
models. Our code and dataset are publicly available
at https://github.com/vis-nlp/ChartQA

2 Related Work

Existing Datasets ChartQA differs from previ-
ous datasets in two main aspects: the questions’

types (human-authored vs. template-based) and the
chart source (real-world vs. generated using a tool).
A detailed comparison is shown in Table 1. Earlier
datasets such as FigureQA (Kahou et al., 2017),
DVQA (Kafle et al., 2018), LEAF-QA (Chaudhry
et al., 2020) and LEAF-QA++ (Singh and Shekhar,
2020) are mostly synthetic where the questions are
generated using a small number of templates and
the answers come from a fixed set of vocabulary
(e.g. ‘yes’, ‘no’). Moreover, their charts are cre-
ated automatically using the same software. While
FigureQA and DVQA use synthetically-generated
data to plot the charts, LEAF-QA and LEAFQA++
use real-world data. PlotQA (Methani et al., 2020)
is the only dataset with open-vocabulary questions
that require applying aggregation operations on the
underlying chart data. However, they do not have
visual reasoning questions while their questions are
still template-based and the charts are plotted using
a software. Kim et al. (2020) ran a formative study
with a very small human-authored dataset consist-
ing of 52 charts and 629 QA pairs to understand
how people ask questions about charts and explain
answers. To our knowledge, there is no large-scale
Chart QA dataset involving visual and logical rea-
soning questions written by humans on real-worlds
charts which motivated us to build a new dataset.

Existing Models There are two main approaches
for Chart QA. The first approach uses classification-
based visual QA models that can only handle fixed-
vocabulary questions (Chaudhry et al., 2020; Singh
and Shekhar, 2020; Kafle et al., 2019; Kahou et al.,
2017; Kafle et al., 2018). These models use en-
coders to encode the question and the chart image
and an attention mechanism to combine the features
of both the question and chart before applying a
classification layer. These models mostly utilize dy-
namic encoding techniques to encode the question
in terms of the positional information of the textual
elements in the chart image that are prone to OCR
noise. The second approach applies table QA meth-
ods by either assuming that the data table of the
chart is given (Kim et al., 2020; Masry and Hoque,
2021) or by extracting it from the chart image using
vision techniques (Methani et al., 2020).

Chart Data Extraction Early papers introduced
semi-automatic systems to extract the data from the
chart images (Savva et al., 2011; Jung et al., 2017).
Choi et al. (2019), Liu et al. (2019), and (Siegel
et al., 2016) proposed fully automatic chart data
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Datasets
Question

Types
Answer
Types

Real-world
Data

Real-world
Charts

#Charts/
#QA pairs

FigureQA (Kahou et al., 2017) Template-based Fixed ✗ ✗ 180K/2.3M
DVQA (Kafle et al., 2018) Template-based Fixed ✗ ✗ 300K/3.4M
LEAF-QA (Chaudhry et al., 2020) Template-based Fixed ✓ ✗ 240K/2M
LEAFQA++ (Singh and Shekhar, 2020) Template-based Fixed ✓ ✗ 244K/2.5M
PlotQA (Methani et al., 2020) Template-based Open ✓ ✗ 224K/28M

ChartQA-H (ours) Human-authored Open ✓ ✓ 4.8K/9.6K
ChartQA-M (ours) Machine generated Open ✓ ✓ 17.1K/23.1K

Table 1: Comparison between existing datasets and our new ChartQA benchmark

extraction pipelines, however, their methods rely
on various heuristics which do not work for many
real-world charts and the performance was still
limited. Luo et al. (2021) also automatically extract
data from real-world charts with high accuracy.
Still, the model only predicts the raw data values
of marks (e.g., bars) without associating them with
their corresponding axis or legends. We extend
their pipeline to extract the fully-structured data
table to pass it to our models.

3 ChartQA Datasets

3.1 Data Collection & Preparation

To ensure that our benchmark covers various top-
ics and charts with a diverse range of styles,
we crawled charts from four different sources:
(i) Statista (statista.com) is an online platform that
presents charts covering a variety of topics includ-
ing economy, politics, and industry. (ii) The Pew
research (pewresearch.org) publishes report about
social and economic issues, demographic trends
and public opinion with a wide variety of charts.
(iii) Our World In Data or OWID (ourworldin-
data.org) is another platform that contains thou-
sands of charts about different global issues such
as economy, finance, and society. (iv) Organisation
for Economic Co-operation and Development or
OECD (oecd.org) is a global organization which
shares reports and data analysis for policymaking.

For the Pew dataset, we only crawled chart im-
ages since the underlying data tables are not avail-
able. For the other three, we extracted the under-
lying data tables, metadata (e.g., title, chart type),
SVG file and associate text description. Finally, we
extracted the bounding boxes information of the
different chart elements (e.g., x-axis labels) from
the SVG files to train our data extraction models.

3.2 Data Annotation

We have two main annotations procedures: (i) col-
lect human-authored QA pairs using Amazon Me-
chanical Turk (AMT) and (ii) generate QA pairs
from the Statista human-written summaries.

• Human-authored QA annotation To create
human-authored QA pairs, we designed an AMT
task (see A.1 for details) in which we asked the
crowdworkers to focus on two types of questions
for each chart image: compositional and visual
questions. Compositional questions contain at least
two mathematical/logical operations like sum, dif-
ference and average, while visual questions refer
to the visual attributes such as color, height, and
length of graphical marks (e.g., bars) in the chart.
We focus on these two types of questions because
people tend to ask them commonly (Kim et al.,
2020; Hoque et al., 2018) and previous datasets
mostly do not focus on such complex visual and
logical reasoning questions. For each chart, the
workers provide two questions with the answers.
The same questions are then answered by another
annotator. If both workers’ answers exactly match,
we consider the answer to be correct. Otherwise,
we manually check the answers to select the final
correct answer. Overall, the agreement between
the crowd workers based on exact matches was
61.04%. However, such exact match does not con-
sider typos or lexical variations (e.g., 3$ vs. 3
dollars, 86.33 vs 86.3) that are common in human
annotation. Hence, we have also manually checked
the agreement on 500 random samples and found
the agreement to be much higher (78.55%) when
we consider typos and lexical variations.

• Dataset Augmentation Prior work on QA has
performed data augmentation by either creating
template-based or machine generated questions,
e.g., for visual QA (Kafle et al., 2017) and textual
QA (Lewis et al., 2021). Template-based questions
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Split ChartQA-H ChartQA-M
Charts Questions Charts Questions

Training 3,699 7,398 15,474 20,901
Validation 480 960 680 960
Test 625 1,250 987 1,250

Total 4,804 9,608 17,141 23,111

Table 2: Our dataset statistics for each split.

generally lack rich linguistic variations. On the
other hand, large-scale language models like T5
(Raffel et al., 2020) which are trained on very large
data from various web sources can learn general
linguistic properties and variations (Brown et al.,
2020). Therefore, we opt for the latter.

Specifically, we fine-tune a pre-trained T5 model
on the SQuAD QA dataset (Rajpurkar et al., 2016)
and apply to the human-written chart summaries
that come with the charts from Statista to automati-
cally generate questions that are human-like with
sufficient lexical and syntactic variations. The pro-
cess involves training and applying two T5 models:
one for answer extraction and the other for answer-
aware question generation. For answer extraction,
the T5 model is trained to generate possible an-
swers separated by [SEP] token given the textual
summary as input (i.e., trained on SQuAD’s pas-
sage → answer pairs). For question generation, the
proposed answer is first concatenated with the sum-
mary in the format: Answer: Answer Context:
Chart Summary. Then, the T5 model is trained
to generate a question from the given question
using the chart summary. This model is trained
on SQuAD’s (passage, answer) → question pairs.
Since the summaries are human-written, the gener-
ated questions are similar to the human-authored
questions (see example questions in A.7).

However, the T5 question generation model may
still generate invalid questions because of the mis-
match in training and test domains. We notice that
some questions are either incomplete or not answer-
able from the chart (e.g., ‘What province includes
Cape Town?’ is not answerable because it requires
knowledge outside of the chart). To filter out such
invalid questions, we developed a simple heuristic
where we filter out the question if the answer can-
not be found in the chart data table. This heuristic
was inspired by the fact that most answers to the
generated questions were values/labels of chart ele-
ments. After applying the heuristic, we manually
analyzed 1,250 QA pairs and found that 86.64% of
them were complete, answerable, and correct given

Type Statista-H Pew OWID OECD Statista-M

Bar 1,696 783 507 128 15,223
Line 401 249 279 103 1,768
Pie 387 271 0 0 150

Total 2,484 1,303 786 231 17,141

Table 3: Number of charts from each source. Statista-H
and Statista-M refer to the datasets with human-written and
machine generated questions respectively from Statista

Type Example %

Data retrieval What’s the percentage of men who
thinks Valentine’s Day is overrated?

13.0

Visual What is the value of the rightmost
light blue bar?

10.7

Compositional How many years does the poverty
percentage rose above 11%?

43.0

Both visual &
compositional

Between the second and the third
age groups from the left, which opin-
ion deviates the most?

33.3

Table 4: Distribution of questions types of among 300 ran-
domly chosen human written questions (blue-colored tokens
make visual references to the chart).

the chart. Moreover, for the sake of fair evaluation,
we manually cleaned the test set of the machine
generated dataset by removing invalid questions.

• Data split We randomly split both of the
human-written (ChartQA-H) and machine gener-
ated (ChartQA-M) QA pairs into train, validation,
and test sets as shown in Table 2.

3.3 Dataset Analysis

Our dataset has three commonly used chart types:
bar, line, and pie charts (Table 3). Bar is the most
common type of chart across all datasets as they are
quite prevalent in real-world sources. We further
categorize the bar and line charts into simple vs
complex where data tables of simple charts have
only two columns where complex charts involve
multiple columns (e.g., stacked or grouped bars and
multi-line charts). Among bar charts, 79.4% were
simple and 29.6% were complex. For line charts,
61.0% were simple and 39.0% were complex.

We have also analyzed the basic linguistic statis-
tics about our benchmark (see A.2). Unlike pre-
vious datasets, our benchmark has more unique
tokens on both types of QA pairs and on both ques-
tions and answers – 6,150 and 4,319 unique tokens
in questions and answers respectively in ChartQA-
H whereas 12,379 and 11,979 unique tokens in
questions and answers respectively in ChartQA-M.
We also observe that questions cover a variety of
syntactic structure and sometimes exhibit informal
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Figure 2: Our approach for question answering over charts. If not provided, the underlying data table is first extracted from the
chart image using ChartOCR. We then pass the extracted data table in addition to the question and the image features to the
ChartQA model where the ChartQA model represents one of the following: TaPas, VisionTaPas, T5, and VL-T5.

languages and typos. Overall, this suggests the
richness of language variations which may intro-
duce more challenges to the task. Finally, the topic
distribution in our data is quite diverse as it is con-
structed from four different sources. Politics is a
common topic among all sources but particularly
in the Pew dataset where nearly half of charts are
about U.S. Politics & Policy (45.4 %). Other com-
mon topics include economy, health, and society.

To analyze the nature of questions, we randomly
selected 300 QA pairs from our benchmark and
categorized them into four types (Table 4). We see
that the vast majority of questions (76.33% in total)
are either compositional or both visual and com-
positional, which reflects the real-world scenarios
where people ask complex reasoning questions. We
also find that people make visual references to a
variety of visual attributes of marks (see A.2), most
commonly to color (e.g., ‘orange line’) and length
(e.g., ‘tallest bar’) followed by size (e.g., ‘largest
slice’) and position (e.g., ‘leftmost bar’).

4 Method

4.1 Problem Formulation & Data Extraction
The overall process of our ChartQA system is
shown in Fig. 2. We consider two problem settings
for ChartQA. The first setting assumes that the un-
derlying data table of the chart image is available.
Formally, we are given a dataset with N examples
D = {ci, ti, qi, ai}Ni=1, where ci represents a chart
image, ti represents the underlying data table, qi
represents a question over ci, and ai represents the
answer to the question. The ChartQA models learn
to predict the answer ai given ci, ti and qi.

The gold data tables are not generally accessible
in most real-world scenarios. Thus we consider the
second setup where the underlying data table ti for
chart image ci is extracted by adapting a state-of-
the-art ChartOCR (Luo et al., 2021). ChartOCR

first locates the main elements of the chart image
(e.g., plot area, title) as well as data-encoding marks
(e.g., bars ) using key-point detection networks. It
then uses the detected keypoints of each mark along
with axis-labels to estimate the data value of that
mark. However, it does not associate the predicted
data values with corresponding text labels (e.g., x-
axis-label). Hence, we extend their approach to
output the fully-structured data tables. We utilize
the CRAFT (Baek et al., 2019) model to recognize
the texts in the chart elements. Then, we associate
the data values with their text labels using posi-
tional and color information (see A.3 for details).

4.2 Models

Our approach to ChartQA builds on two of the
state-of-the-art TableQA models: T5 (Raffel et al.,
2020; Nan et al., 2021) and TAPAS (Herzig et al.,
2020). The input to these models consists of the
question qi and the data table ti. Different from
TableQA, ChartQA often involves extracting vi-
sual information from chart images. For this, we
also experiment with the visual counterparts of the
TableQA models that also take the chart image fea-
tures into account. While T5 has a visual variant,
VL-T5 (Cho et al., 2021), TAPAS does not. In this
work, we extend Tapas to consider the image fea-
tures and call it VisionTAPAS. More details on
models are provided in A.5.

• T5 (Raffel et al., 2020) is an encoder-decoder
model which unifies the NLP tasks as text-to-
text generation using the same architecture and
loss function. It has been pre-trained on massive
amount of unlabelled data with a self-supervised de-
noising objective. To fine-tune T5 on our ChartQA
task, we flatten the data table and feed it along with
the question as: "Question: Question tokens
Table: Flattened table tokens", and the model is
trained to generate the answer directly.
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(a) TAPAS (b) VISIONTAPAS

Figure 3: TaPas and VisionTaPas models. TaPas adds positional embeddings to the tokens to encode the tabular structure of the
data table. VisionTaPas uses a cross-modality encoder to combine visual features from ViT and outputs from TaPas encoders.

• VL-T5 (Cho et al., 2021) is an extension of T5
that unifies the Vision-Language (VL) tasks as text
generation conditioned on multimodal inputs. The
input consists of both textual tokens and visual fea-
tures of the objects extracted from the image using
Faster R-CNN (Ren et al., 2015). The model is
pre-trained on multiple multimodal tasks such as
language modeling, visual QA, and visual ground-
ing. We utilize VL-T5 for our ChartQA task in the
following manner. For the textual input, we do the
same as T5 where we flatten the data table of the
chart image and concatenate it with the question
text. For the visual input, we extract the visual
features of different marks in the chart image (e.g.,
bars, lines) using Mask R-CNN (He et al., 2017)
with Resnet-101 as its backbone (see A.4 for de-
tails). Unlike the original VL-T5 where a fixed
number of objects is provided (36), the number of
elements varies from one chart to another. To ac-
count for this, we pad the extracted visual features
with zeros to have a fixed length of 36.

• TAPAS (Herzig et al., 2020) extends a BERT
(Devlin et al., 2019) architecture with additional
positional embeddings for rows and columns to en-
code a table. As shown in Fig. 3a, the input to the
model has the following format: [CLS] Question
tokens [SEP] Flattened table tokens. The tokens
are encoded with the table-specific positional em-
beddings in addition to BERT’s segment and po-
sitional embeddings. The model has two output
heads: aggregation operation head and cell selec-
tion head. The aggregation operation head predicts
an operation (e.g., COUNT, SUM, AVERAGE, NONE)
which is then applied to the cell values selected by
the cell selection head. Depending on the opera-
tion type, the selected cells can constitute the final
answer or the input used to infer the final answer.

TaPas is first pre-trained on masked language
modeling objective using table-text pairs crawled
from Wikipedia where table cells are randomly

masked and the model is trained to predict them. It
is then fine-tuned in a weakly-supervised manner
(using answers as the only supervision) with end-
to-end differentiable objectives.

• VisionTaPas is our extension of TaPas for QA
over charts. It consists of three main components:
a vision transformer encoder for encoding the chart
image, a TaPas encoder for encoding the question
and data table and a cross-modal encoder (Fig. 3b).

Vision Transformer or ViT (Dosovitskiy et al.,
2021) utilizes the transformer encoder architecture
(Vaswani et al., 2017) in vision tasks. Given a
2D chart image, the image is divided into a se-
quence of 2D patches {p1, . . . ,pn}. Each patch
is then flattened and linearly projected into a d-
dimensional embedding vector. To incorporate the
positional information of the patches, 1D learnable
positional embeddings are added to the image fea-
tures. An L-layer ViT encoder produces a sequence
of embeddings H = {hL

cls,h
L
1 , . . . ,h

L
n} represent-

ing the special [CLS] token and the image patches.
We initialize the ViT module with the pre-trained
weights from (Dosovitskiy et al., 2021).

The TaPas encoder is utilized in the same man-
ner as described above to encode the tokens in
the question and the data table. For an input
token sequence {wcls, w1, . . . , wm}, an L-layer
TaPas generates the corresponding encodings Z =

{zL
cls, z

L
1 , . . . ,z

L
m}. This module is initialized with

the TaPas weights (Herzig et al., 2020) pre-trained
on the WikiTQ dataset (Pasupat and Liang, 2015).

The Cross-modality Encoder takes the output
of ViT and TaPas encoders (H and Z) and com-
pute multimodal encodings. It has four blocks, each
containing a visual branch and a textual-tabular
branch. The input first passes through the multi-
headed cross attention layers in parallel, where
in the visual branch the query vectors are the vi-
sual features, and the key and context vectors are
the textual-tabular features and vice versa in the
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textual-tabular branch. The cross-attended features
are then passed through a self-attention layer fol-
lowed by a fully connected layer. Similar to the
transformer model, each layer applies layer nor-
malization (Ba et al., 2016) and is wrapped with
a residual connection. Finally, we append the ag-
gregation operation and the cell selection heads of
TaPas to the final layer at the textual-tabular branch.

Extension to Other Operations Many questions
in our ChartQA dataset require performing a sub-
traction or ratio operation, which the original TaPas
model does not support. We thus extend the oper-
ation head to add those two operations (Fig. 3b).
However, instead of training them in a weakly-
supervised manner based on the final answer (as
done in TaPas), we find it more effective when
provided with more direct but potentially noisy su-
pervision on the cells to consider. We rely on some
heuristics to generate such supervision in our train-
ing data. For example, given a question “What’s
the difference between A and B?”, an answer 5,
and data values “3, 6, 8”, we look for two values
between which the difference is 5 (i.e. 8 and 3).
While this may yield noisy supervision, similar ap-
proaches have been successfully exploited to inject
reasoning capability in neural models (Geva et al.,
2020; Saxton et al., 2019); on a random sample
of 100 such questions, a manual checking shows
24% noise with our heuristics. To handle the fixed
vocabulary answers (e.g. ‘Yes’, ‘No’), we further
extend the operation head to include those classes.

5 Evaluation

5.1 Datasets, Baselines & Metrics

We evaluate our models on three datasets from
previous work namely, FigureQA (Kahou et al.,
2017), PlotQA (Methani et al., 2020) and DVQA
(Kafle et al., 2018), as well as our newly created
ChartQA dataset. We compare our benchmarking
models (§4.2) with two following baselines1:
• PREFIL (Kafle et al., 2019) is a classification
approach that fuses the question and image features
in parallel. The features are then aggregated and
projected into a final classification layer.
• PLOTQA* is our reimplementation of
PlotQA (Methani et al., 2020). It parses the chart
image to extract the underlying data table and
then employs a TableQA model from Pasupat and

1Two other datasets (LeafQA, LeafQA++) and baselines
(STL-CQA, LEAF-NET) are not publicly available

Liang (2015). However, since their data extraction
approach is specific to their synthetic dataset that
does not generalize well to real-world charts, we
use data tables extracted according to our method
(§4.1) to evaluate their approach.

Following Methani et al. (2020), we use a re-
laxed accuracy measure for the numeric answers to
allow a minor inaccuracy that may result from the
automatic data extraction process. We consider an
answer to be correct if it is within 5% of the gold
answer. For non-numeric answers, we still need an
exact match to consider an answer to be correct.

5.2 Results

Previous Datasets When the gold data table is
provided, VisionTaPas and VL-T5 achieve near
perfect results, however, the performance slightly
decreases when it is not provided (Table 5). Still,
VisionTaPas and VL-T5 achieve state-of-the-art
results on DVQA (fully-automated setup) and
PlotQA V1 datasets, respectively. For example, Vi-
sionTaPas achieves 94.54% accuracy in the DVQA
test set (14.5% margin over PReFIL). Moreover,
our approach proved to be more robust to OCR
noise. Unlike PReFIL whose performance signif-
icantly dropped by 16.49% when using OCR out-
puts instead of ORACLE, VisionTaPas only wit-
nessed a marginal decrease in performance (0.92%).
Similarly, in the PlotQA dataset, both models have
outperformed the PlotQA model by wide margins.
Another observation is that the improvement of VL-
T5 over T5 is limited only to the PlotQA V1 dataset
likely due to the lack of visual reasoning questions.
In fact, the performance of both models is quite
similar on PlotQA V2 test set where the majority
of the questions are not visual. Finally, while the
TaPas model achieves the best results on FigureQA
(Gold Table setup), it does not perform very well
on DVQA and PlotQA. This is likely because most
questions in FigureQA are answerable from the
data table alone. In PlotQA, however, questions are
not always answerable from the data table alone
and may involve the difference and ratio operations
which are not supported by TaPas. This highlights
the importance of the extensions we have made in
the VisionTaPas model.
ChartQA Dataset We observe that VisionTaPas
achieves state-of-the-art performance on both prob-
lem scenarios. PReFIL performs pooly (4.8%) as it
is a classification model which does not work well
for the open-vocabulary questions in our dataset.
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Models FigureQA DVQA (ORACLE / OCR) PlotQA ChartQA
Val1 Val2 Test1 Test2 Test-Familiar Test-Novel Test V1 Test V2 Val Test

Gold Data Table Provided
TaPas 98.10% 98.09% - - 53.40% 53.40% 21.56% 19.55% 49.16% 51.80%
VisionTaPas 97.59% 97.96% - - 99.36% 99.37% 80.18% 58.29% 59.32% 61.84%
T5 95.75% 95.75% - - 94.33% 81.42% 93.24% 85.99% 59.11% 59.80%
VL-T5 96.45% 96.43% - - 98.90% 80.18% 96.38% 84.70% 58.80% 59.12%

Gold Data Table Not Provided
TaPas 90.32% 90.43% 89.52% 89.57% 50.28% / 48.82% 50.24% / 48.68% 15.09% 12.90% 39.68% 41.28%
VisionTaPas 91.46% 91.45% 90.68% 90.64% 95.38% / 94.43% 95.46% / 94.54% 65.30% 42.50% 42.60% 45.52%
T5 87.97% 87.83% 87.56% 87.57% 90.20% / 89.01% 77.97% / 76.89% 72.62% 56.22% 40.15% 41.04%
VL-T5 88.60% 88.49% 88.20% 88.18% 94.80% / 93.75% 77.04% / 76.14% 75.90% 56.02% 38.43% 41.56%
PReFIL 94.84% 93.26% 94.88% 93.16% 96.37% / 80.88% 96.53% / 80.04% - - 4.53% 4.8%
PlotQA* - - - - ——— / 57.99% ——— / 59.54% 53.96% 2 22.52% 36.15% 38.00%
STL-CQA - - - - 97.35% / ——— 97.51% / ——— - - - -

Table 5: Evaluation results for different models. For DVQA, we have reported the results with and without using Oracle for
OCR. We do not evaluate on FigureQA test sets with the gold data table setup since they do not have ground data tables.

We also notice VL-T5 does not necessarily im-
prove over T5, likely because many visual ques-
tions in our new dataset involve multiple references
to chart elements and VL-T5 cannot effectively
capture such references. Overall, the accuracies of
different models are generally lower in our dataset
compared to previous datasets, suggesting the chal-
lenges introduced with the human-written visual
and logical reasoning questions. Finally, the perfor-
mance of our models decreases when the gold data
table was not given. This highlights the increas-
ing challenge of automatic data extraction from
real-world charts with diversity in styles.

We also evaluate the transferability of the mod-
els and the datasets, where we first pretrain the two
top performing models (VisionTaPas and VL-T5)
on the PlotQA dataset and then fine-tune them on
ChartQA. From Table 6, we notice that the accu-
racy increased from 41.56% to 51.84% for VL-
T5 while the improvement for VisionTaPas was
marginal (1.56%). One possible explanation is that
VisionTaPas does not support nested arithmetic op-
erations which are prevalent in ChartQA, so pre-
training does not have a substantial effect. In con-
trast, we observe that the performance gain for VL-
T5 were mainly for the compositional questions
that do not require nested operations. Overall, this
suggests that large datasets like PlotQA can be use-
ful for pretraining the model even if the questions
are generated from a small number of templates.

We also performed another experiment in which
we train the VL-T5 and VisionTaPas on the PlotQA
dataset and evaluate directly on the ChartQA
dataset without any fine-tuning. As shown in Ta-
ble 6, the performance of the models decreased by
wide margins when they are trained on the PlotQA
dataset instead of the target dataset (e.g,. 45.52%

to 31.96% for VisionTaPas). This supports our hy-
pothesis that our newly created dataset, ChartQA,
introduces more challenging visual and composi-
tional questions and more lexical variations which
the previous datasets lack.

5.3 Ablation Studies

To assess the importance of extensions we made
in the VisionTaPas model, we conducted an abla-
tion study in which we remove the supervision for
‘difference’ and ‘ratio’ operations from the model.
The overall accuracy dropped by 1.80% and the
accuracy on ChartQA-H (which have many such
questions) dropped by 4.76% which suggests the
usefulness of these operations (Table 6).

Model ChartQA-H ChartQA-M Overall
TaPas 28.72% 53.84% 41.28%
VisionTaPas 29.60% 61.44% 45.52%
VisionTaPas† 24.84% 61.60% 43.72%
T5 25.12% 56.96% 41.04%
VL-T5 26.24% 56.88% 41.56%

VisionTaPas⋆ 25.12% 38.80% 31.96%
VL-T5⋆ 22.08% 19.84% 20.96%

VisionTaPas Pretrained 32.56% 61.60% 47.08%
VL-T5 Pretrained 40.08% 63.60% 51.84%

Table 6: Accuracy of the different models on our benchmark.
VisionTaPas† does not support difference and ratio operations.
VisionTaPas⋆ and VL-T5⋆ are trained on PlotQA and evalu-
ated directly on ChartQA.

We further analyze the performance by chart
types and question types (see A.6). VisionTapas
and VL-T5 perform better on bar charts while the
performance decreases for other charts mainly due
to higher data extraction errors, especially for pie
charts which are less common in our dataset. To
analyze question types, we randomly sampled 200

2The result was reported by Levy et al. (2021).
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Figure 4: Example of errors from VisionTaPas

human-written questions. As expected, the perfor-
mance is much higher on the data retrieval ques-
tions that do not require mathematical reasoning
while the performance is lower for visual questions
which refers to chart elements.

5.4 Qualitative Analysis

We have manually analyzed model predictions to
investigate the key challenges existing models face
(see sample predictions in A.7).

Logical Inference with Nested Operations While
VisionTaPas and VL-T5 handle various mathemati-
cal/logical operations, still they cannot effectively
handle nested operations. For example, Q1 in fig. 4
requires the model to add two numbers and then
subtract from another number, but our model only
outputs the difference between two numbers. In
future, we will extend the VisionTaPas model (by
possibly training it in a sequential fashion (Cho
et al., 2018)) to address the issue.

Input Representation Complex visual composi-
tional questions may require a multi-stage reason-
ing process (e.g., Q2 in fig. 4). Currently, our mod-
els take the data table and the visual features of the
chart separately and then combine them. Such rep-
resentation does not fully capture the chart struc-
ture. In future, we will develop better represen-
tations including semantic graph representations
(Teney et al., 2017) that can exploit the relations
among the question, chart objects, and data values.

Computer Vision Challenges Table 5 indicates
that performance of our models decrease when the
gold table is not given, suggesting the need for
more accurate data extraction. Current approaches
for automatic data extraction are modular and com-
bine deep learning and rule-based methods which
are error-prone. An end-to-end deep learning ap-
proach could help improve the performance and
generalize well to different chart styles.

6 Conclusion

We present ChartQA, a new large-scale benchmark
with human-written questions focusing on visual
and logical reasoning. We also introduce a new ap-
proach that combines visual features and extracted
data table from a chart to answer questions. While
our evaluation highlights the promise of this ap-
proach, it also reveals several unique challenges
emerge from the visual and logical reasoning ques-
tions asked by human which exhibit the informal,
intricate, and nuanced nature of language. We hope
that our benchmark will serve as a starting point
for others to address these challenges.
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Ethical Considerations

During the dataset collection and annotation pro-
cess, we have considered several ethical issues. To
respect the intellectual property of dataset sources,
we only used the publicly available charts that com-
ply with their terms and conditions. According to
Statista publication rights,2 users are given open
access to the publicly available charts for academic
purposes. According to the terms and conditions
for Pew,3 users are allowed to download and pub-
lish the content as long as they are attributed to the
Center or are not attributed to a different party. Ac-
cording to OECD 4 terms and conditions, users can
crawl and use the data in their own work for any
purpose unless where restrictions apply. According
to OWID 5 terms and conditions, all their data are
open access and users can download or utilize the
data in their own work.

In order to fairly compensate the Mechanical
Turk annotators, we considered the minimum wage
in the United States at the time ($7.25 USD per
hour). The estimated time taken for each task is
3-5 minutes. Hence, these annotators received $0.6
USD for each task. Additionally, to protect the

2https://www.statista.com/getting-started/publishing-
statista-content-terms-of-use-and-publication-rights

3https://www.pewresearch.org/about/terms-and-
conditions/

4https://www.oecd.org/termsandconditions/
5https://ourworldindata.org/faqscan-i-use-or-reproduce-

your-data
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privacy of these annotators, all of their annotations
were anonymized.

To ensure the reproducibility of our experimental
results, our hyperparameters settings are provided
in Appendix A.5.

Our models can be abused to mislead the public
about the charts content and implications. While
our models provide state-of-the-art results on most
of the existing datasets, we can not guarantee that
their output will be correct all the time.
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A Appendices

A.1 Additional Details on Data Annotation

Amazon Mechanical Turk Task: In each HIT
(Human Intelligent Task), the workers verify two
previously asked questions by other workers and
also provide two new QA pairs. To ensure quality,
we selected workers with an acceptance rate of 95%
and total accomplished HITs of 5000. Moreover,
we further filtered the workers by giving them a pre-
test to select the best qualified workers for this task.
The data collection interface is shown in Figure
5. While presenting the chart, we ensure that the
data labels of chart elements are visible to workers
so that they can accurately perform the necessary
arithmetic and logical operations to provide and
answer the questions successfully.

A.2 Dataset Analysis

Table 7 shows some linguistic statistics about our
benchmark. Also, Figure 6 shows the distribution
of topics in our dataset for each of the four sources.
Politics is a common topic among all sources but
particularly in the Pew dataset where nearly half
of charts are about U.S. Politics & Policy (45.4 %).
The most frequent topic from OECD and OWID is
Society (34.0 % and 26.0 % respectively).

Furthermore, we analyzed how people make vi-
sual references to charts in their questions. Table 8
shows the usage of visual references made in the
randomly selected 300 QA pairs.

Type ChartQA-H ChartQA-M

Avg. Character per question 60.53 67.82
Avg. Character per answer 5.31 5.0
Avg. Token per question 12.32 13.18
Avg. Token per answer 1.31 1.08
Unique tokens in questions 6,150 12,379
Unique tokens in answers 4,319 11,979
Numeric answers 6,583 19,622
Non-numeric answers 3,025 3,489

Table 7: ChartQA benchmark statistics.

Type Examples Percentage
Color green line, red bar 44.70%
Length tallest bar 40.15%
Size largest pie slice 11.36%
Position rightmost, topmost 8.33%
Counting marks how many green bars 3.03%
Unit of a mark bar unit 0.76%

Table 8: Usage of visual references in visual questions
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Figure 5: The user interface for the annotation task
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(a) Statista (b) Pew

(c) OECD (d) OWID

Figure 6: Distribution of topics in the datasets.

Figure 7: Data Extraction Process

(a) OWID Line Chart (b) Pew Bar Chart
Figure 8: Data extraction examples from OWID and Pew.

A.3 Automatic Chart Data Extraction

Model: We extend ChartOCR (Luo et al., 2021)
which relies on both deep-learning models and rule-
based techniques to parse the chart image into the
underlying data table. As described in Section
(§4.1), the chart image is parsed in three main
stages. In the first stage, key-point detection net-
works, adapted from (Law and Deng, 2019), locates
the chart visual marks (e.g. bars, plot area, line
points). Ideally, the network locates the top-left

point and bottom-right points for the rectangular
objects (e.g. bar, plot area). In line charts, the detec-
tion network locates the coordinates of the points
connecting the line segments. In pie charts, the
network locates the intersection points between the
pie segments along the pie perimeter. We extend
their detection networks to also locate the chart tex-
tual elements (e.g. x-axis-label, legend-label ) as
shown in Figure 7a and utilize the CRAFT model
(Baek et al., 2019) to read their underlying texts.
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(a) T5 fine-tuning (b) VL-T5 fine-tuning
Figure 9: Different neural models for ChartQA. Data tables are first flattened and fed into the model along with the
question (and visual features in VL-T5).

In the second stage, the chart scale is estimated
using the y-axis-labels value for line and bar charts,
Figure 7b. For pie charts, the value of each seg-
ment is estimated by calculating the angle between
its borderlines. Finally, the model aggregates the
extracted data values (using color and proximity
heuristics) to output the final raw data values. We
extend their approach to extract the fully-structured
data table with the textual labels (e.g. column head-
ers). As shown in Figure 7, we associate the esti-
mated bars data values (e.g., ‘17.13’, ‘40.14’) with
their closest x-axis-label (’Snapchat’). Moreover,
if the chart has more than one data series (dark bars
or blue bars values), each data series is matched
with its legend-label (e.g., ‘2016’, ‘2014’) based
on the color of the legend mark and data-encoding
marks (e.g., bars). If we cannot match data val-
ues with legends by colors (e.g., when all legend
marks have the same color or there are no legend
marks), we use other criteria that associate data-
encoding marks with legend marks (e.g., proximity,
alignment). For example, in Figure 8b, ’More’ is
matched with ’17’ and ’29’ since they are vertically
aligned. Similarly, for line charts if there is no ex-
plicit legend mark for a line series we associate the
legend labels with the points of their closest lines
as shown in Figure 8a.

Evaluation Metric: Our evaluation metric is
adapted from ChartOCR (Luo et al., 2021). The
distance between any two data values is estimated
as follows:

D(gt, pr) = min(1, ∣∣gt − pr
gt

∣∣)

where gt is the ground truth value and pr is the
predicted value. For each chart, the cost matrix
C, where Cn,m = D(gtn, prm) is computed and
the total minimum cost is calculated by solving the

following linear sum assignment problem

Cost =
K

∑
i=1

K

∑
j=1

Ci,jXi,j

Where K = max(N,M) and X is a binary as-
signment matrix. The final overall score is then
estimated as follows:

Overall Score =
1

L

L

∑
i=1

1 −
cost

Ki

where L is the total number of charts. Our evalua-
tion results are shown in Table 9. We have noticed
that the accuracy is specifically lower on line and
dot line charts in FigureQA and PlotQA. In DVQA,
the extracted tables from logarithmic-scale charts
were quite noisy since ChartOCR does not support
them. Moreover, PlotQA has many charts with very
large values (usually written in E notation). Hence,
errors in such figures have higher impact on the
overall accuracy. Overall, the accuracy on PlotQA
and ChartQA are generally lower since they have
more complex charts (PlotQA has numerous charts
with very large values (e.g., 1e6) and ChartQA has
real-world challenging charts). A major limitation
of evaluation metrics for the chart data extraction
is that they do not take the extracted textual tokens
into consideration (which are much more noisy in
real-world figures). Hence, better metrics are still
needed in the future.

A.4 Visual Features Extraction in VL-T5
Object Detection (Mask R-CNN) We train the
model to detect the following 15 objects: ’Leg-
end’, ’yAxisTitle’, ’ChartTitle’, ’xAxisTitle’, ’Leg-
endPreview’, ’PlotArea’, ’yAxisLabel’, ’xAxisLa-
bel’, ’LegendLabel’, ’PieLabel’, ’bar’, ’pie’, ’pieS-
lice’, ’line’, and ’dotLine’. For the bounding boxes
annotations, we use the available bboxes. For the
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Dataset Accuracy
FigureQA 95.05%

DVQA 89.98%
PlotQA 80.88%

ChartQA 83.85%

Table 9: Accuracies of our data extraction algorithm on
the test sets of DVQA, PlotQA, and ChartQA. Since the
gold data table is not available in FigureQA, we report
the results on the Validation2 set.

masks, we generate them easily using the bounding
boxes for all the rectangular objects. For ’pieSlice’
and ’pie’, we follow a similar approach to (Singh
and Shekhar, 2020) where we generate the masks
by projecting the radius along the pie perimeter
from the starting to the ending points of each slice.
We use the detectron2 library (Wu et al., 2019) and
initialize the model with pre-trained wights on the
COCO dataset (Lin et al., 2014). We fine-tune the
model with a batch size of 8 and an initial learning
rate 0f 0.00025 for 50K iterations.

A.5 ChartQA Baseline Models
T5 and VL-T5 fine-tuning process setup is shown
in Figure 9. Our experiments were carried out on
one 4-V100 GPU and one 4-A100 GPU machines.
Fine-tuning VL-T5 on the PlotQA dataset was the
longest experiment which took around 64-70 hours
on 4 V100 GPUs.

TaPas We follow the same settings as (Herzig
et al., 2020) on the WikiTQ dataset (Pasupat and
Liang, 2015) and fine-tune the TaPas-base-wtq for
40K iterations with a batch size 24 on DVQA,
PlotQA, and our new dataset. For FigureQA, we
follow similar settings to (Eisenschlos et al., 2020)
and fine-tune the model with classification objec-
tive for 4 epochs with a batch size of 48 and initial
learning rate of 0.00001.

VisionTaPas We fine-tune the model (TaPas-
Base 12 layers, ViT-Base 12 layers, and 4 Cross-
Modality Layers) for 4 epochs on FigureQA and
DVQA, one epoch on PlotQA, and 30 epochs on
the new dataset. We use an initial learning rate of
0.00001 and a batch size of 64.

T5 We fine-tune T5-Base (220M, 12 layers) us-
ing the huggingface library (Wolf et al., 2019) for 4
epochs on FigureQA, DVQA, and PlotQA datasets
and for 30 epochs on our new dataset. We use
a batch size of 40 and an initial learning rate of

0.0001. Inference is done with beam search of size
4.

VL-T5 Similar to T5, we fine-tune VL-T5-Base
(220M 12 layers) for 20 epochs on FigureQA and
DVQA, 10 epochs on PlotQA, and 30 epochs on
our dataset. We use a batch size of 96 and an initial
learning rate of 0.0001. Inference is done with
beam search of size 5.

PlotQA We fine-tune the SEMPRE model (Pa-
supat and Liang, 2015) pre-trained on the PlotQA
(Methani et al., 2020) checkpoint for 20 epochs
on the new dataset with a batch size of 1 and L1
regularization coefficient of 0.00003.

PReFIL We follow similar settings to Kafle et al.
(2019) and train the model for 100 epochs with
batch size of 128 and a learning rate of 0.001.

A.6 Additional Results from Evaluation
Table 10 presents the results of two top-performing
models in our benchmark by chart types. To ana-
lyze question types, we randomly sampled 200 QA
pairs from our ChartQA-H and classified them into
four main categories. Table 11 shows the results by
question types on this set of 200 QA pairs.

Model Bar Line Pie Overall
VisionTaPas 49.80% 38.20% 24.41% 45.52%
VL-T5 45.82% 35.40% 25.00% 41.56%

Table 10: Results for VisionTaPas and VL-T5 on the
ChartQA test set by chart type.

Model
Data

Retrieval
Visual

Compositional
Compositional Visual Overall

VisionTaPas 60.00% 29.78% 34.88% 16.21% 34.00%
VL-T5 50.00% 19.14% 24.41% 21.62% 26.50%

Table 11: Accuracies of VisionTaPas and VL-T5 on the
ChartQA-H test set by question type on 200 random
samples.

A.7 Sample Questions and Outputs
Sample machine-generated questions with the
human-written summaries are shown in Table 12.
Sample predictions from our model, VisionTaPas
on ChartQA test set are shown in Figure 10.
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Question Type Human-written Summary Generated Question Answer

Compositional Cancer was the leading cause of death among state prisoners in the United States, which killed 1,137 state
prisoners in 2018. Heart disease was the second leading cause of death in that year, accounting for 1,052 deaths.

What was the second leading cause of
death among state prisoners in 2018?

Heart
disease

Compositional This statistic shows the number of tourist arrivals at accommodation establishments in Latvia from 2006 to 2019.
Since 2009 there has been an increasing trend in arrivals.

Since what year has there been an in-
creasing trend in arrivals?

2009

Data Retrieval The statistic shows the youth unemployment rate in the Gambia from 1999 to 2019. According to the source, the
data are ILO estimates. In 2019, the estimated youth unemployment rate in the Gambia was at 12.44 percent.

What was the youth unemployment
rate in the Gambia in 2019?

12.44
percent

Data Retrieval This statistic shows the total population of Portugal from 2016 to 2020, with projections up until 2026. In 2020,
the total population of Portugal was at approximately 10.29 million inhabitants.

In what year did Portugal’s population
reach 10.29 million?

2020

Table 12: Sample question answer pairs generated from human-written summaries in Statista.

Figure 10: Sample outputs of our model VisionTaPas on our new ChartQA test set. Answers in green are correct and answers in
red are incorrect.
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