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Abstract

The popularity of pretrained language models
in natural language processing systems calls
for a careful evaluation of such models in
down-stream tasks, which have a higher
potential for societal impact. The evaluation
of such systems usually focuses on accuracy
measures. Our findings in this paper call for
attention to be paid to fairness measures as
well. Through the analysis of more than a
dozen pretrained language models of varying
sizes on two toxic text classification tasks
(English), we demonstrate that focusing on
accuracy measures alone can lead to models
with wide variation in fairness characteristics.
Specifically, we observe that fairness can
vary even more than accuracy with increasing
training data size and different random
initializations. At the same time, we find that
little of the fairness variation is explained by
model size, despite claims in the literature.
To improve model fairness without retraining,
we show that two post-processing methods
developed for structured, tabular data can be
successfully applied to a range of pretrained
language models.  Warning: This paper
contains samples of offensive text.

1 Introduction

Pre-trained, bidirectional language models (De-
vlin et al., 2019; Liu et al., 2019; Radford et al.,
2019; Clark et al., 2020; He et al., 2021)] have
revolutionized natural language processing (NLP)
research. LMs have provided a route to signifi-
cant performance increases in several NLP tasks
as demonstrated by NLP leaderboards (Rajpurkar
et al., 2018; Wang et al., 2019a,b; AI2, 2021).
More importantly, LMs have been applied to prac-
tical problems, leading to improved results for web
search (Nayak, 2019) and have become an asset in

"We use the acronym LM(s) to refer to language model(s)
throughout the paper.

fields such as medical evidence inference (Lehman
et al., 2019; Subramanian et al., 2020) and chem-
istry (Schwaller et al., 2021). While the progress in
NLP tasks due to LMs is clear, the reasons behind
this success are not as well understood (Rogers
et al., 2021; McCoy et al., 2019), and there are also
important downsides. In particular, several stud-
ies have documented the bias of LMs (Bolukbasi
et al., 2016; Hutchinson et al., 2020; Webster et al.,
2020; Borkan et al., 2019; de Vassimon Manela
et al., 2021) and others discuss potential societal
harms (Blodgett et al., 2020; Bender et al., 2021)
for individuals or groups. We use the term bias
to refer to systematic disparity in representation
or outcomes for individuals based on their mem-
bership in certain protected groups such as gender,
race, and ethnicity.

In this work, we focus on one important ap-
plication of fine-tuned LMs, toxic text classifi-
cation. Text toxicity predictors are already used
in deployed systems (Perspective API, 2021) and
they are a crucial component for content modera-
tion since online harassment is on the rise (Vogels,
2021). In downstream applications such as toxic
text classification, it is important to examine the
behavior of LMs in terms of measures other than
task-specific accuracy. This provides a more holis-
tic understanding of model performance and appro-
priate uses of LMs for these tasks. As a first step
toward this goal, we provide herein an empirical
characterization of LMs for the task of toxic text
classification using a combination of accuracy and
bias measures, and study two post-processing meth-
ods for bias mitigation that have proved successful
for structured, tabular data. For assessing bias, in
this paper, we focus on group fairness, which we
explain in Section 2 as it applies in general in ma-
chine learning, and discuss what it means in the
context of NLP tasks in the same section. The
implications of measuring group fairness for the
toxicity classification task studied in this paper are
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described in Section 3.

One aspect of LMs that is hard to ignore is the
increase in their size, as measured by the number
of parameters in their architectures. In general,
larger LMs seem to perform better on NLP tasks
as they have the capacity to capture more complex
correlations present in the training data. Bender
et al. (2021) claim that this same property may also
lead to more pronounced biases in their predictions,
as the large data that LMs are trained on is not
curated. On the other hand, for image classifica-
tion models that use large neural networks, Hooker
et al. (2020) discuss how model pruning can lead to
more biased predictions. In this work, we consider
a wide variety of model architectures and sizes. We
acknowledge that size is relative and what we con-
sider large in this paper may not be considered as
such in a different context.

We address the following questions regarding
the effect of various factors on model performance:

1. Model size: How do the accuracy and group
fairness of fine-tuned LM-based classifiers
vary with their size?

2. Random seeds: LMs that start from different
random initializations can behave differently
in classification. What is the effect of random
seeds on the accuracy-fairness relationship?

3. Data size: The size of fine-tuning data is also
an important dimension alongside model size.
What happens to accuracy and fairness when
more/less data is used for fine-tuning?

4. Bias mitigation via post-processing: Given
the expense of training and fine-tuning large
LMs, to what extent can we mitigate bias by
only post-processing LM outputs?

We study the accuracy-fairness relationship in
more than a dozen fine-tuned LMs for two different
datasets that deal with prediction of text toxicity.
The key contributions of our analysis are:

1. We empirically show that no blanket state-
ment can be made regarding the fairness char-
acteristics of fine-tuned LMs with respect to
their size. It really depends on the combina-
tion of LM, task, and dataset.

2. We find that optimizing for accuracy measures
alone can lead to models with wide variation
in fairness characteristics. Specifically:

(a) While increasing data size for fine-tuning
does not improve accuracy much beyond

a point, the improvement in fairness is
more significant and may continue after
the improvement in accuracy has stopped
for certain datasets and tasks. This sug-
gests that choosing data sizes based on
accuracy alone could lead to suboptimal
performance with respect to fairness.

(b) While accuracy measures are known to
vary with different random initializa-
tions (Dodge et al., 2020), the variation
in fairness measures can be even greater.

3. We demonstrate that post-processing bias mit-
igation is an effective, computationally afford-
able solution to enhance fairness in fine-tuned
LMs. In particular, one of the methods we
experimented with allows for a large accuracy-
fairness tradeoff space, leading to relative im-
provements of 50% for fairness, as measured
by equalized odds, while reducing accuracy
only by 2% (see Figure 8 religion group).

Our observations strengthen the chorus of recent
work addressing bias mitigation in NLP in calling
for a careful empirical analysis of fairness with
fine-tuned LMs in the context of their application.
To allow group fairness analysis, annotations of
group membership are preferred and sometimes re-
quired, and, thus, we urge the research community
to include protected group annotations in datasets
to enable extrinsic fairness evaluations that are as
close as possible to the point of deployment.

2 Background and related work

2.1 Fairness in machine learning

As machine learning models have become routinely
deployed in practice, many studies noticed their
tendency to perform unfairly in various contexts
(Angwin et al., 2016, 2017; Buolamwini and Ge-
bru, 2018; Park et al., 2021). To understand and
measure model bias, researchers have proposed
many definitions of algorithmic fairness. Broadly
speaking, they fall into two categories: group fair-
ness (Chouldechova and Roth, 2018) and individ-
ual fairness (Dwork et al., 2012). At a high level,
group fairness requires similar average outcomes
on different groups of individuals considered, for
example comparable university acceptance rates
across ethnicities. Individual fairness requires sim-
ilar outcomes for similar individuals, e.g. two uni-
versity applicants with similar credentials, but dif-
ferent ethnicity, gender, family background, etc.,
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should either be both accepted or both rejected. In
this paper we consider group fairness, noting that
both have their pros and cons (Chouldechova and
Roth, 2018; Dwork et al., 2012).

There are many definitions of group fairness and
we refer to Verma and Rubin (2018) for a compre-
hensive overview and to Czarnowska et al. (2021)
for a discussion of metrics in the context of mea-
suring social biases in NLP. Statistical parity (SP)
is one of the earlier definitions which requires the
output of a model to be independent of the sen-
sitive attribute, such as race or gender. In other
words, the average outcome (e.g. prediction) across
groups defined by the sensitive attribute needs to be
similar. An alternative measure is equalized odds
(EO) (Hardt et al., 2016), which requires the model
output conditioned on the true label to be indepen-
dent of the sensitive attribute. The violation of con-
ditional independence for a given label (positive or
negative) can be measured by the difference in ac-
curacy across sensitive groups conditioned on that
label. Taking the maximum or an average (average
EO) of these label-specific differences quantifies
the overall EO violation.

Many methods for achieving group fairness have
been proposed. These methods are typically cate-
gorized as follows: (a) modifying the training data
(pre-processing), (b) incorporating fairness con-
straints while training the model (in-processing),
and (c) transforming the model output to enhance
fairness (post-processing). A summary and im-
plementation of group bias mitigation approaches
are discussed in Bellamy et al. (2019). In this
study, we investigate the use of post-processing
methods to enhance fairness in classification tasks.
We chose post-processing approaches since they
do not require modification of training data or
model training procedures, and, hence, can be ef-
ficiently applied to all LMs we consider. In addi-
tion, post-processing approaches could minimize
the environmental impact of re-training/fine-tuning
LMs (Patterson et al., 2021; Strubell et al., 2019).
We consider two post-processing approaches pro-
posed by Wei et al. (2020) and Hardt et al. (2016),
which have shown considerable success in mitigat-
ing bias for tabular data. Wei et al. (2020) optimize
a score (predicted probability) transformation func-
tion to satisfy fairness constraints that are linear
in conditional means of scores while minimizing a
cross-entropy objective. Hardt et al. (2016) propose
to solve a linear program to find probabilities with

which to change the predicted output labels such
that the equalized odds violation is minimized.

2.2 Fairness in Natural Language Processing

In NLP systems, bias is broadly understood in two
categories, intrinsic and extrinsic. Intrinsic bias
refers to bias inherent in the representations, e.g.
word embeddings used in NLP (Bolukbasi et al.,
2016). Extrinsic bias refers to bias in downstream
tasks, such as disparity in false positive rates across
groups defined by sensitive attributes in a speci-
fied application/task. The concepts of intrinsic and
extrinsic bias also correlate well with the notions
of representational and allocative harms. While
allocative harms arise from disparities across differ-
ent groups in terms of decisions that lead to alloca-
tion of benefits/harms, representational harms are
those perpetuated by representation of individuals
in the feature space (Crawford, 2017). Abbasi et al.
(2019) discuss how harms from stereotypical repre-
sentations manifest as allocative harms later in the
ML pipeline. However, probably because of the
complexity of LMs, measuring intrinsic bias in the
representations created by LMs may not necessarily
reflect the behavior of models built by fine-tuning
LMs. Goldfarb-Tarrant et al. (2021) discuss how
intrinsic measures of bias do not correlate with ex-
trinsic, application-specific, bias measures. Since
we are concerned with the application of LMs to the
specific task of toxic text classification, we restrict
our focus to group fairness measures, which fall
under the category of extrinsic bias. Previous work
on bias mitigation in NLP has been focused on
pre- and in-processing methods (Sun et al., 2019;
Ball-Burack et al., 2021) and to the best of our
knowledge, we are the first to use post-processing
methods with NLP tasks.

3 Methodology

We are interested in studying how group fairness
varies across different fine-tuned LMs for binary
classification. We choose to focus on text toxicity
as the prediction task. Due to an increase in online
harassment (Vogels, 2021) and the potential of both
propagating harmful stereotypes of minority groups
and/or inadvertently reducing their voices, the task
of predicting toxicity in text has received increased
attention in recent years (Kiritchenko et al., 2021).
While we acknowledge that text toxicity presents
different complex nuances (e.g., offensive text, ha-
rassment, hate speech), we focus on a binary task
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formulation. We adopt the definition of toxicity
described in Borkan et al. (2019) as “anything that
is rude, disrespectful, or unreasonable that would
make someone want to leave a conversation”.

3.1 Datasets

We used two datasets that deal with toxic text clas-
sification: 1) Jigsaw, a large dataset released for the
“Unintended Bias in Toxicity Classification” Kag-
gle competition (Jigsaw, 2019) that contains online
comments on news articles, and 2) HateXplain,
a dataset recently introduced with the intent of
studying explanations for offensive and hate speech
in Twitter and Twitter-like data (i.e., gab . com).
Both datasets have fine-grained annotations for reli-
gion, race and gender. We used as sensitive groups
the coarse-grained groups (e.g., mention of any
religion, see Section 3.3) as opposed to the finer-
grained annotations (e.g., Muslim). Details about
the sizes of the datasets, the splits we used and text
samples can be found in Appendix A.1.

3.2 Language models, fine-tuning and
computation infrastructure

We consider more than a dozen LMs that cover a
large spectrum of sizes. We selected the models
to not only represent various sizes but also differ-
ent styles of architecture and training. The mod-
els in our study are shown in Table 1 along with
the number of parameters and the size of the Py-
Torch (Paszke et al., 2019) model on disk. If not
specified, the version of the model used is base.
For all our experiments, we used the Hugging Face
implementation of Transformers (Wolf et al., 2020)
and the corresponding implementations for all LMs
in our study. In particular, we use the fext sequence
classifier without any modifications to increase re-
producibility.

We run model fine-tuning for 1-3 epochs and
choose the best model based on the highest accu-
racy obtained on the dev split. When presenting ex-
perimental results, we focus primarily on balanced
accuracy as the Jigsaw dataset is highly imbalanced
and reporting only accuracy may be misleading. In
general, higher accuracy leads to higher balanced
accuracy, with the exception of two LMs — GPT2
and SqueezeBERT. For these two, the best balanced
accuracy is less than 2 percentage points higher
than the balanced accuracy resulting from choos-
ing the highest overall accuracy across the various
hyper-parameter runs. We experiment with two
learning rates (2e — 6 and 2e — 5) and observe that

the large models tend to prefer smaller learning rate,
degenerating for higher learning rates. For large
LMs with Jigsaw we fine-tune for one epoch to
keep the compute time under 24 hours. The model
accuracy we obtained are in line with state-of-the-
art results for these types of tasks. The large LMs
are fine-tuned on A100 Nvidia GPUs, while the
rest of the models are fine-tuned on V100 Nvidia
GPUs. The experiments for HateXplain run from
10 minutes to under an hour, while the experiments
for the large models with Jigsaw can take up to 24
hours.

3.3 Sensitive groups and fairness measures

In all our measurements, we considered the fol-
lowing topics as sensitive: religion, race and gen-
der. We categorize a text sample as belonging to
a sensitive group if it mentions one of these topics
(e.g., religion), and otherwise to the complemen-
tary group (no religion). Except in Section 5.5, we
do not analyze finer-grained subgroups (e.g., Jew-
ish), but consider larger groups (any reference to
religion, such as Muslim, Jewish, atheist). There
are several reasons that justify this choice. First,
unlike tabular data where each sample corresponds
to an individual belonging to one identity (e.g., ei-
ther female or male), we do not have information
on the demographics of the person producing the
text. Our categorization is based on the content. In
addition, for the datasets we used, most subgroups
account for significantly less than 1% of the data.
Moreover, there is considerable overlap between
subgroups. For example, in the test split for Jigsaw,
40% of the text belonging to the male subgroup also
belongs to the female subgroup. To summarize, we
analyze the bias/fairness of toxic text prediction in
the presence or absence of information that refers
to religion, race or gender, respectively. The intent
is to not have the performance of the predictor be
influenced by these sensitive topics.

We use equalized odds as the group fairness mea-
sure. Equalized odds is defined as the maximum
of the absolute true positive rate difference and
false positive rate difference, where these differ-
ences are between a sensitive group and its com-
plementary group. In toxic text classification, a
true positive means that a toxic text is correctly
identified as such, while a false positive means
that a benign piece of text is marked as toxic. In
terms of harms, a false negative (toxic text that is
missed) may cause individuals to feel threatened or
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gab.com

Table 1: The size (number of parameters, size on disk) for the language models considered in this study.

Size Group | Language Model # of parameters ~ Size on disk
ALBERT (Lan et al., 2020) 12M 45MB
Small MobileBERT (Sun et al., 2020) 25.3M 95MB
SqueezeBERT (landola et al., 2020) 51M* 196MB
DistilBERT (Sanh et al., 2020) 66M 256MB
BERT (Devlin et al., 2019) 110M 418MB
ELECTRA (Clark et al., 2020) 110M 418MB
Funnel (small) (Dai et al., 2020) 117M* 444MB
Regular RoBERTa (Liu et al., 2019) 125M 476MB
GPT2 (Radford et al., 2019) 117M 487MB
DeBERTa (He et al., 2021) 140M 532MB
ELECTRA-large 335M 1.3GB
Large BERT-large 340M 1.3GB
RoBERTa-large 355M 1.4GB
DeBERTa-large 400M 1.6GB

* Approximate number of parameters.

disrespected, while a false positive may be seen as
censoring, which is particularly problematic if it re-
duces the voices of minority protected groups from
online conversations. By using the sensitive groups
of religion/race/gender mentioned above, we aim
to analyze and reduce the effect of the presence or
absence of religion/race/gender terms on the false
negative and false positive rates. By taking the max-
imum, we are emphasizing the larger discrepancy
as opposed to other studies that take the average of
the two rate differences (average equalized odds).
Note that unlike statistical parity, equalized odds
does allow the sensitive (e.g., mention of religion)
and complementary (no religion) groups to have
different toxicity (positive prediction) rates.

4 Bias mitigation post-processing

We investigated the use of post-processing methods
to mitigate violations of equalized odds. By post-
processing, we mean methods that operate only
on the outputs of the fine-tuned LMs and do not
modify the models themselves®. The ability to
avoid retraining models is a major advantage of
post-processing due to the large computational cost
of fine-tuning LMs. Post-processing also targets
unfairness at a point closest to deployment and
hence can have a direct impact on downstream
operations that use the model predictions.

Hardt, Price, Srebro (2016) (HPS): The first
post-processing method that we consider is by
Hardt et al. (2016) (abbreviated HPS, using the last
names of the authors), who were the original pro-

2This is not to be confused with the post-processing of LM
embeddings, before they are passed to classification layers. In
this case, the classification layers must be retrained to account
for the modified embeddings.

posers of the equalized odds criterion for fairness.
We used the open-source implementation of their
method from Bellamy et al. (2019), which post-
processes binary predictions to satisfy EO while
minimizing classification loss. While this method
is effective in enforcing EO, one limitation is that
it does not offer a trade-off between minimizing
the deviation from EO and reducing the loss in
accuracy.

Fair Score Transformer (FST): We study the
FST method of Wei et al. (2020), in part to provide
the above-mentioned trade-off, and in part because
it is a recent post-processing method shown to be
competitive with several other methods (including
in-processing). FST takes predicted probabilities
(referred to as scores) as input and post-processes
them to satisfy a fairness criterion. We choose
generalized equalized odds (GEO), a score-based
variant of EO, as the fairness criterion and then
threshold the output score to produce a binary pre-
diction. The application of FST required attention
to three issues: 1) its ability to work with input
scores that may not be calibrated probabilities; 2)
the choice of fairness parameter ¢, which bounds
the allowed GEO on the data used to fit FST; 3)
the choice of binary classification threshold ¢. We
consider a range of € and ¢ values to explore the
trade-off between EO and accuracy. Due to numer-
ical instability of the FST implementation in the
original paper (occasional non-convergence in rea-
sonable time for the Jigsaw dataset), we obtained a
closed-form solution for one step in the optimiza-
tion that leads to a more efficient implementation,
running in minutes for all models and all datasets
considered. More details on this implementation
and the tuning of the parameters can be found in
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Appendix A.3.

Threshold post-processing (TPP): We also
tested the effect of thresholding alone, without
fairness-enhancing transformations. We refer to
this as threshold post-processing (TPP). This sim-
ple method corresponds to FST without calibrating
the LM outputs, choosing € large enough so that
FST yields an identity transformation, and thresh-
olding at level ¢.
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Figure 1: Balanced accuracy versus equalized odds for
fine-tuned LMs on the Jigsaw and HateXplain datasets.

5 The accuracy-fairness relationship in
toxic text classification

We report on the performance and fairness charac-
teristics of several LMs while varying parameters
such as random seeds and training data size. We
also experiment with post-processing methods for
group bias mitigation and show that it is possible to
reduce some of the bias presented by these models.

5.1 Characterization of language models of
varied sizes

The first set of experiments present how perfor-
mance and fairness measures vary across models.

In Figure 1 we show the performance as measured
by balanced accuracy® and the group fairness as
measured by equalized odds on the z-axis (lower
EO is better). The models are color-coded by their
size - dark blue for small models, orange for regu-
lar size models and light blue for large models. The
variation in balanced accuracy is not as wide as the
variation in equalized odds. For the HateXplain
dataset, the gap between balanced accuracy and
fairness variability is more prominent. In terms of
accuracy (not balanced), the models perform even
closer as shown in the plots in Appendix A.2. For
EO, the spread is significant, with gaps of 0.10 be-
tween the largest and smallest values for Jigsaw,
and 0.15 for HateXplain. Depending on the dataset
and sensitive group, some larger models seem to
lead to lower EO; for example, ELECTRA-large
achieves the best accuracy-EO results for religion
as the sensitive group (Jigsaw). For race, Squeeze-
BERT, which is one of the small models in the
study, achieves one of the best balanced accuracy-
EO operating points for Jigsaw (considering it is
half the size of RoOBERTa which has better balanced
accuracy but similar EO), hinting that size is not
well correlated with the fairness of the model. Sim-
ilarly, for HateXplain (religion), DistilBERT, again
a small model, obtains the best balanced accuracy-
EO operating point. In the next section, we analyze
models trained using various random seeds and find
a low correlation between EO and model size.

These results strongly suggest that fairness mea-
sures should be included in the evaluation of LMs.
In the next sections, we demonstrate that, if fair-
ness is not carefully considered, we can end up with
models with widely varying fairness characteristics
depending on the training conditions.

5.2 The influence of random seeds

Fine-tuning LMs depends on a random seed used
for mini-batch sampling and for initializing the
weights in the last layers of the network responsible
for the binary classification. It is well documented
in the literature that this random seed may influ-
ence the accuracy of the resulting model (Dodge
et al., 2020). In Figure 2 we show that while bal-
anced accuracy is somewhat stable, fairness can
vary widely by only changing the random seed. In
fact, if we were to plot the accuracy instead of the

*We use balanced accuracy as a measure for performance
as it is more informative, especially for the imbalanced Jigsaw
dataset where a trivial predictor that always outputs the label
“normal” would achieve ~92% accuracy.
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balanced accuracy, all points would be virtually on
a horizontal line for Jigsaw, as shown in Figure A.2.
The variations for EO are larger. For Jigsaw, we
observe a variation of up to 0.05 in equalized odds
for some cases. For HateXplain, the variation is
considerably larger, with several models presenting
a spread of 0.15 or more for the sensitive group of
religion. For example, for DeBERTa-L, depending
on the random seed, one could get one of the best
models with respect to performance-fairness trade-
offs, or one of the worst (balanced accuracy varies
within 0.79-0.80, while EO varies over 0.11-0.30).
The results in our experiments align with the ones
discussed in a recent study on underspecification
in machine learning (D’ Amour et al., 2020), where
different random seeds lead to small variations in
accuracy, but considerable variations in intrinsic
bias as measured by gendered correlations.

To further probe whether there is a correlation be-
tween fairness and model size, we used the results
for multiple random seeds to compute Pearson’s co-
efficient of correlation. These values are -0.357 for
Jigsaw and -0.188 for HateXplain, with p-values
of 5e-6 and 0.017, respectively. These results show
a low correlation between fairness as measured by
EO and model size.

5.3 Low data regime

In general, it is well known that more training data
improves model accuracy. We experiment with fine-
tuning the models using a fraction of the training
dataset, while keeping the test set the same. When
the smaller datasets are subsampled from the orig-
inal dataset, we ensure that the larger datasets in-
clude the smaller ones to simulate situations when
more data is collected and used for training. The
results are shown for one small/regular/large model
in Figure 3. Each data point in the graph represents
the average of eleven runs performed with different
random seeds, one for each run. In very few cases,
the random seed led to a degenerate model and we
did not include these runs in the averaged results.
Overall, there were up to five degenerate runs for
each dataset (across all 14 models in this study, not
only the ones presented in the figure).

We observe that in the case of Jigsaw, equalized
odds generally keeps improving even when the
accuracy plateaus, suggesting that, from a fairness
point of view, it may be beneficial to collect more
data for fine-tuning. This does not seem to be the
case for the HateXplain dataset, where the accuracy
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Figure 2: Balanced accuracy versus equalized odds for
fine-tuned LMs when varying the random seed used in
fine-tuning.

does not plateau and the fairness measure oscillates.
A reason could be that HateXplain is much smaller
in size than Jigsaw and hence Jigsaw’s training is
more stable. Similar trends are observed for the
rest of the models in our study.

5.4 Bias mitigation through post-processing

In this section, we experiment with applying post-
processing methods for group bias mitigation. We
first discuss the results of parameter tuning for Fair
Score Transformer (FST) (Wei et al., 2020). More
details can be found in Appendix A.3. The FST
method has one tunable parameter, e. Using the
transformed scores from FST, we also investigate
tuning the threshold used in the binary classifier,
instead of using the default value of 0.5, as ex-
plained in Section 4. Figure 4 depicts the data
points obtained by varying € and the classification
threshold #. Note that we plot EO decreasingly on
the x-axis, and overall better operating points are

*All points are shown for the dev set as this plot illustrates
the tuning of FST parameters.
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| Religion Christian Jewish Muslim || Race White Black || Gender Female Male LGBT
Baseline 0.18 0.10 0.06 0.20 0.10 0.12 0.13 0.10 0.12 0.13 0.15
FST 0.08 0.03 0.06 0.11 0.09 0.11 0.11 0.05 0.07 0.07 0.15

Table 2: BERT (Jigsaw): Equalized odds before and after applying FST for all sensitive groups and their subgroups.
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Figure 3: Accuracy, balanced accuracy and equalized
odds (religion) for fine-tuned LMs when varying the
fine-tuning data size and the random seeds. Error bars
denote +1 SE (standard error) of the mean.

closer to the top right corner. When choosing an op-
erating point, the points on the black Pareto frontier
are the most interesting points: highest balanced
accuracy and lowest equalized odds. For reference,
we also show the baseline points without bias mit-
igation for the dev and test sets. All data points
are plotted for fine-tuned BERT. Similar trends are
observed for the rest of the models considered in
this study and for the HateXplain dataset.

We also experimented with calibrating the scores
using logistic regression before post-processing. In
Figure 5, we plot the Pareto frontiers of bias miti-
gation when applying FST, with and without cali-
bration, along with the threshold post-processing
(TPP) method. We also show the result of HPS,
which yields a single operating point, as well as
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Figure 4: FST tuning for BERT: Balanced accuracy ver-
sus equalized odds on the Jigsaw dataset when varying
fairness parameter € and classification threshold ¢ for
the FST method for group bias mitigation (religion).
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Figure 5: BERT: Balanced accuracy versus equalized
odds on the Jigsaw dataset when applying the FST and
HPS methods for group bias mitigation and threshold
post-processing (TPP) alone (religion).

the baselines without bias mitigation. In general on
the Jigsaw dataset, FST is successful in reducing
EO with different degrees of success depending
on the model/group (see Appendix A.4 for addi-
tional plots), offering an interesting set of points
with different accuracy-EO trade-offs. For refer-
ence, we show the corresponding point for the test
set (orange x) for the operating point in dev that
achieves an equalized odds of at most 0.05 (orange
square). In certain cases, FST manages to lower
the equalized odds with minimal or no decrease in
accuracy, as seen for religion in Figure 5. Note that
all points in the plots except for the x points are
plotted using the dev split.

In comparison, HPS seems particularly effective
in lowering the equalized odds and thus improving
the fairness of the model, with some penalty on
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the accuracy. For Jigsaw, applying only TPP (i.e.,
tuning the threshold used in the binary classifica-
tion) also offers some interesting operating points.
TPP has a small search space compared to FST
and sometimes the Pareto frontier is reduced to one
point, as is the case in Figure 5. In general, FST has
superior Pareto frontiers compared to TPP alone.
In addition, as we discuss in Appendix A.4, TPP
proved inefficient for the HateXplain dataset. Last,
using score calibration before feeding the scores
to FST does not seem to offer significant improve-
ments. Similar trends can be observed for the rest
of the models.

Overall, we find the post-processing methods
for bias mitigation worth considering. They are
straightforward to apply, run in the order of sec-
onds or minutes on the CPU of a regular laptop
and they offer interesting operating points. On the
other hand, pre-processing or in-processing tech-
niques for bias elimination would incur significant
computational cost. Obtaining the Pareto frontiers
is instantaneous as the search space for FST is not
that large. For more results and discussion of bias
mitigation, we refer the reader to Appendix A.4.

5.5 Sensitive groups and subgroups

In our analysis so far, we looked at sensitive groups
that refer to religion, race and gender. In this sec-
tion we use the Jigsaw dataset to zoom in and ana-
lyze the equalized odds for a sensitive group and
its constituent subgroups. We select all subgroups
that have at least 100 samples in the test split. We
continue to apply FST only at the larger group level
(e.g., religion) and examine its effect on subgroups.
In Table 2, we show the EO measure for BERT be-
fore and after applying FST for all sensitive groups
and subgroups. FST consistently manages to lower
EO for individual subgroups, without overly favor-
ing one subgroup over another. There are a few
instances that do not observe any change, mostly
the smallest subgroups. Note that subgroups can
be overlapping since they do not represent iden-
tities of individuals, instead they derive from the
text which may mention multiple subgroups. One
notable example is that male and female subgroups
have similar EO, both baseline and after FST. This
justifies using larger sensitive groups for fitting FST
since it seems the discussion of gender overall is
problematic as opposed to one gender in particular.

6 Limitations

In our study, we covered a series of different mod-
els that varied in network architecture, size as num-
ber of parameters, training procedures, and pretrain-
ing data. As we did not keep any of the elements
constant (e.g., architecture) while varying the rest
(e.g., pretraining data, size, training procedure), it
is hard to draw insights on how each individual
element affects the fairness of the resulting predic-
tion outcomes. We would like to emphasize that
identifying toxic text is not an easy task, not even
for humans. As such, we expect the datasets to
be noisy and contain samples that are not anno-
tated correctly. Upon manual inspection, we could
identify some samples for which we did not agree
with their labels. Motivated by this observation, we
started looking into understanding the quality of
datasets used in toxic text prediction (Arhin et al.,
2021). As a consequence, while we expect the
trends shown in this paper to hold, the actual abso-
lute numbers may vary with datasets/tasks. More
observations and limitations can be found in Sec-
tion 8.

7 Conclusions

In this work, we addressed the following research
questions for language models: how do model size,
training size, random seeds affect the relationship
between performance and fairness (as measured by
equalized odds)? Can post-processing methods for
bias mitigation lead to better operating points for
both accuracy and fairness? We find these ques-
tions important in the context of the ethics of us-
ing language models in text toxicity prediction, in
particular, and in NLP research, in general. We
presented a comprehensive study of language mod-
els and their performance/fairness relationship. We
chose several models to cover different sizes and
different architectures. While we did not consider
some of the largest recent models available, we
believe we have experimented with a wide vari-
ety of models that have been discussed well in the
literature. We hope that this study can drive the
following point across: we cannot make a blanket
statement on the fairness of language models with
respect to their size or architecture, while training
factors such as data size and random seeds can
make a large difference. This makes it all the more
important for researchers/practitioners to make fair-
ness an integral part of the performance evaluation
of language models.
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8 Ethics Statement

This research used a considerable amount of com-
putational resources and this is our main ethics
concern for conducting this work. We did try to
keep the number and the size of models we experi-
mented with limited, to reduce the carbon footprint
of the experiments. We hope the results we show
in this paper are worth the computational resources
used.

In this study, we looked at coarse-grained
groups defined by the text content mentioning re-
ligion/race/gender, which may obfuscate the be-
havior of the models with respect to finer-grained
groups, such as females and males. Similarly, we
did not consider intersectionality.

Bias mitigation can lead to undesirable outcomes.
For example, one aspect we did not look into is
what happens with other groups when the miti-
gation is applied only for one of the groups. In
addition, we focused only on group fairness and
do not provide any insights into individual fairness.
We also recognize that abstract metrics have limita-
tions and the societal impacts resulting from bias
mitigation are not well understood (Olteanu et al.,
2017). These issues are universal to bias mitigation
techniques and not particular to our use case.

Last, but not least, the datasets we used are En-
glish only. We acknowledge the importance of per-
forming similar studies on multi-lingual datasets.
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A Appendix

In this appendix, we discuss the datasets we used in
our experiments, include additional experimental
results and provide more details on post-processing
methods for bias mitigation. We conclude with
remarks on the reproducibility of this study.

A.1 Datasets

A.1.1 Jigsaw Unintended Bias in Toxicity
Classification

In 2019, Jigsaw released a large dataset as part
of the “Unintended Bias in Toxicity Classification”
Kaggle competition (Jigsaw, 2019). The dataset
is a collection of roughly two million samples of
text from online discussions (Bogdanoff, 2017).
The samples are rated for toxicity and annotated
with attributes for sensitive groups. Table 3 shows
the groups we considered in our analysis and the
available fine-grained group annotations. Note that
we considered the coarser groups; a sample text
belongs to a sensitive (coarse) group if any (fine-
grained) annotation for the sample text exists. We
used the original training dataset split in a 80/20
ratio for training and development (dev) tuning,
respectively. For reporting test results, we used the
private test split released on Kaggle. Statistics for
the dataset splits are shown in Table 5. Each sample
in the dataset (see Table 4 for a few samples from
the dataset) has a toxicity score and we consider
anything higher than 0.5 to be toxic.

For the Jigsaw dataset, a combination of automa-
tion and crowdsourcing was used to ensure that
identity (i.e., sensitive group) labels are a reason-
able approximation of true identity-related content
(see Jigsaw FAQ). Not all the dataset was labeled
for identity terms. While these labels are imperfect,
we do not believe that the degree of imperfection
invalidates our study. We note that the problem of
protected attribute labels being imperfect is well-
accepted and studied (Awasthi et al., 2020).

Noisy and incomplete sensitive group labels are
another reason why we chose equalized odds as the
fairness measure. EO is a valid fairness measure
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even when there is overlap between the protected
groups (e.g., the group labeled “non-religion” still
has samples mentioning religion). To see this, re-
call that EO requires that the prediction conditioned
on the true label be independent of the protected
attribute and its violation can be measured by the
difference |E[Y|Y = 1,A = 1] —E[Y|Y = 1]|
(similarly for Y = 0). The first term in the differ-
ence is measured on a subset of comments (A = 1)
that contain identity information. This is a good es-
timate if a sufficient number of samples were anno-
tated, regardless of the potentially missing identity
annotations on the remaining samples. The second
term does not depend on annotations at all. Thus,
the estimate of EO is not affected by the lack of
annotations on some of the comments.

Table 3: The sensitive groups for Jigsaw dataset with
their corresponding fine-grained annotations.

Group Fine-grained annotation

atheist, buddhist, christian, hindu,
jewish, other religion

race white, asian, black, latino, other race
or ethnicity

bisexual, female, male, heterosexual,
homosexual gay or lesbian, transgen-
der, other gender, other sexual orien-
tation

religion

gender and sexual
orientation™

*Throughout the paper, we use “gender” for short.

A.1.2 HateXplain: Toxic text in Twitter and
Twitter-like text

HateXplain (Mathew et al., 2021) was recently in-
troduced with the intent of studying explanations
in offensive and hate speech in Twitter and Twitter
like data (i.e., gab . com). For the purposes of our
study, we collapse the annotations for offensive and
hate speech into one class of toxic text. Similar to
the Jigsaw dataset, HateXplain samples have fine-
grained annotations for sensitive groups. We use
as groups the coarse-level annotations, as we did
for the Jigsaw dataset. The groups that we consider
are presented in Table 6 and a few examples from
the dataset are shown in Table 7. Note the text in
each sample is represented in the dataset as a list
of tokens; in the table, we concatenated them with
spaces and this is the way we use them as inputs
for the classifiers as well. We used the splits as
provided in the dataset; dataset statistics are shown
in Table 8.

A.2 The influence of random seeds on
accuracy and equalized odds

In this section we present graphs similar to the ones
in Section 5.2 using accuracy as a measure of per-
formance instead of balanced accuracy. These plots
makes it obvious how close in performance all mod-
els are and emphasize the gap in fairness measure
observed across different random seeds for each
fine-tuned model. The results are shown in Fig-
ure 6. Note that all Jigsaw models get an accuracy
in performance of approximately 95% with a gap
of approximately .05 for equalized odds. HateX-
plain models exhibit a higher variance in accuracy
(4-5%) across all models with an even larger gap
of 0.15 for equalized odds for most models. Note
that each LM has a modest variation in accuracy
that spans approximately 1%.

For HateXplain, we also experimented with
BERTweet (Nguyen et al., 2020), a BERT-base
sized model following the RoBERTa pretraining
procedure that is further trained on Twitter data,
using the checkpoint available in the Hugging Face
model hub. In our experiments, BERTweet pre-
sented the largest variation for accuracy (results
not shown), achieving both the best and the worst
accuracy across all models (across the 11 random
seeds we used), spanning a spread of 4.5%. The
EO measure for BERTweet exhibited a variation
of 0.12 for religion. We acknowledge that a more
thorough analysis is required to better understand
the effects of in-domain pretraining (in this case on
tweets) for both accuracy and fairness. For exam-
ple, recent work showed that model behavior can
be adjusted to a set of “target values” if the model is
trained on a small, well-behaved dataset (Solaiman
and Dennison, 2021).

A.3 Fair Score Transformer (FST)

In this section, we expand on our discussion of the
application of FST in this work.

The generalized equalized odds (GEO) criterion
targeted by FST is computed as the maximum of
the between-group absolute differences in average
scores for positively-labeled and negatively-labeled
instances (Wei et al., 2020). It is analogous to EO
where instead of the predicted label, the correspond-
ing probability for the label is used instead.

Regarding issue 1) mentioned in Section 4 (cal-
ibration of input scores), we found that the distri-
butions of softmax outputs of the tested LMs are
bimodal and highly concentrated near values of
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gab.com

Table 4: Jigsaw dataset samples.

Comment text Toxicity Group

The Atwood fable is Donald, is it? My impression of this noise (over Atwood) is that | Toxic Gender
it’s a gimmick by Atwood and her publisher to cash in on the Donald effect. As if we
needed slaves in bonnets to remind us that Donald is a jerk (and where was Atwood’s
novel when Monica was being pawed over?). A word to defenders of women: don’t spend
your political capital on stupid analogies.

I got a question for you, dear, and it is a fair question: We all know what is happening | Normal Gender
in Syria; where are all the women’s marches over the slaughter in that country?. And,
why has Trudeau been silent, like his pal Barry Obama, on taking effective military action
against Syria? All you lefties are the same: you have no side vision.
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Figure 6: Accuracy versus equalized odds for fine-tuned LMs when varying the random seed used in fine-tuning.

Table 5: Jigsaw dataset statistics: sample counts per  Table 6: The sensitive groups for HateXplain dataset

dataset split and sensitive group. with their corresponding fine-grained annotations.
Split Total Religion Race  Gender Group Fine-grained annotation
Train 1443899 50748 31022 70703 race African, Arab, Asian, Cau-
Dev 360975 12769 7999 17869 casian, Hispanic
Test 97320 3316 1911 4367 religion Islam, Buddhism, Jewish,
Hindu, Christian
gender Men, Women

0 and 1 (as commonly observed with deep neural

networks). Such skewed distributions appear to vio-  as linear regression on the logit outputs followed by
late FST’s expectation of probabilities as input and  clipping of the resulting values to the interval [0, 1].
are typically not encountered on tabular datasets  In general, logistic regression proved somewhat
on which FST was previously tested. Thus we ex-  beneficial for the Jigsaw dataset and we included it
perimented with calibrating the LM outputs. We  in our results.

considered both logistic regression of the class la- Regarding issue 2) (choice of fairness parame-
bel on the logit outputs of the LMs (a generalization  ter), we found, as noted by Wei et al. (2020), that
of temperature scaling (Guo et al., 2017)), as well ~ while the parameter € controls the deviation from
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Table 7: HateXplain dataset samples.

Text Toxicity Group
why is anna acting like she black Normal Race
like brazil many are descendants of west africa social constructs labels classifications have | Toxic Race

ruined a many people who falsely self identify as white or just do not even know abt their
native land all b ¢ of them bum ass caucazoids aka caucasians
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Figure 7: FST tuning for BERT: Balanced accuracy versus equalized odds on the Jigsaw dataset when varying
fairness parameter € and binary classification threshold ¢ after applying the FST method for group bias mitigation.

Table 8: HateXplain dataset statistics: sample counts
per dataset split and sensitive group.

Split  Total  Religion Race Gender
Train 15383 3924 5418 3102
Dev 1922 481 672 396
Test 1924 468 685 375

GEO (i.e. the “GEO difference”), this is not always
correlated with the EO difference, which is a func-
tion of the output after thresholding. Regarding 3)
(classification threshold), we found that varying the
threshold ¢ can significantly affect equalized odds
as well as accuracy and balanced accuracy, and can
sometimes even produce a reasonable trade-off be-
tween them. For this reason, we included a version
of post-processing (see “Threshold post-processing
(TPP)” in Section 4. This effect of the prediction
threshold on fairness has not been explored in pre-
vious work to our knowledge.

As a result of our observations regarding 2) and
3), we used the following procedure to select a
set of (e, t) pairs to map out a trade-off between
fairness and accuracy. The training set used to
fine-tune the LMs is never seen by FST. The de-
velopment dataset (“dev”) is used to both tune the
FST parameters and evaluate the resulting transfor-
mation. As such, the dev dataset was further split
into a dev-train set and a dev-eval set. Given an
e value, FST was fit on the dev-train set to ensure
a GEO difference of at most €. Then on the dev-

eval set, given € and ¢, scores were transformed by
FST with parameter ¢, thresholded at level ¢ to pro-
duce a binary label, and finally evaluated for both
fairness and accuracy. Each (e, t) pair thus yields
one point in the equalized odds-accuracy plane, as
seen in Figure 7. We selected (¢, t) pairs that are
Pareto-efficient on the dev-eval set, to ensure the
best fairness-accuracy trade-off.

This is the first time FST is used with unstruc-
tured, text data and with large datasets in the order
of millions of samples. First, we implemented FST
following the proposed implementation in Wei et al.
(2020). This first implementation ended up with
numerical instabilities that lead to either slow run-
ning times (in the order of hours) or even situations
when the method did not converge. We managed
to improve upon the computational cost of FST,
which was instrumental in scaling to the large Jig-
saw dataset and allowing rapid experimentation.
Specifically, in the dual ADMM algorithm of Wei
et al. (2020), the first step (eq. (14) therein) consists
of n parallel optimizations, each involving a single
variable. We observed that these optimizations can
be done in closed form by solving a cubic equation.
We refer to Wei et al. (2021, Appendix B.1) for
details of the closed-form solution as it is not the
focus of the present paper. The replacement of an
iterative optimization with a closed-form solution
greatly reduces the computational cost of FST. The
improved FST runs in the order of 1-2 minutes for
the Jigsaw dataset and in seconds for HateXplain.
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Figure 8: BERT: Balanced accuracy versus equalized odds on the Jigsaw dataset when applying the FST and HPS
methods for group bias mitigation and threshold post-processing (TPP) alone.

Equally important, it also eliminates instances of
the iterative optimization failing to converge.

A.4 Bias mitigation through post-processing
methods

In this section we present additional results on ap-
plying post-processing methods for group bias mit-
igation. We first discuss the results of parameter
tuning for Fair Score Transformer (FST) (Wei et al.,
2020). More details about FST itself can be found
in the Appendix A.3. The FST method has one
parameter, ¢, that can be fine-tuned. Using the
transformed scores from the FST, we also investi-
gate tuning the threshold used in the binary clas-
sifier, instead of using the default value of 0.5, as
explained in Section 4. Figure 7 depicts the data
points obtained by varying epsilon and for each ep-
silon value, varying the classification threshold.
When choosing an operating point, the points on
the black Pareto frontier are the most interesting
points: highest balanced accuracy and lowest equal-
ized odds. For reference, we also show the base-
line points without bias mitigation for the dev and
test sets. All data points are plotted for fine-tuned
BERT. Similar trends are observed for the rest of
the models considered in this study and for the
HateXplain dataset.

We also experimented with calibrating the scores
using logistic regression before post-processing. In
Figure 8, we plot the Pareto frontiers of bias miti-
gation when applying FST, with and without cali-
bration, along with the threshold post-processing
(TPP) method. We also show the result of HPS,
which yields a single operating point, as well as the
baselines without bias mitigation. In general, on
the Jigsaw dataset, FST is successful in reducing
EO with different degrees of success depending on

3 All points are shown for the dev set as this plot corre-
sponds to tuning FST parameters.

the model/group. It thus offers an interesting set of
points with different accuracy-EO trade-offs. For
reference, we show the equivalent point for the test
set (orange x) for the operating point in dev that
achieves an equalized odds of at most 0.05 (orange
square). In certain cases, FST manages to lower the
equalized odds with minimal or no decrease in ac-
curacy, as seen in the religion and gender columns
in Figure 8. Note that all points in the plots except
for the x points are plotted using the dev dataset
split, the = points are test points corresponding to
dev points that obtain an EO of at most 0.05.

In comparison, HPS seems particularly effective
in lowering the equalized odds and thus improv-
ing the fairness of the model, with some penalty
on the accuracy. For Jigsaw, applying only TPP
(i.e., tuning the threshold used in the binary clas-
sification) also offers some interesting operating
points. TPP has a small search space compared to
FST and sometimes the Pareto frontier is reduced
to one point, as is the case for the religion group.
In general, FST has superior Pareto frontiers com-
pared to TPP alone. In addition, as we will discuss
shortly, TPP proved inefficient for the HateXplain
dataset. Last, using score calibration before feeding
the scores to FST does not seem to offer significant
improvements. Similar trends can be observed for
the rest of the models.

In Figure 9, we show the results of applying bias
mitigation techniques for a few LMs, one for each
size category, on the HateXplain dataset with re-
ligion as the sensitive group. Unlike Jigsaw, the
results of the bias mitigation techniques follow dif-
ferent trends. HPS still manages to substantially
reduce the EO for all models, but with a consider-
able decrease in balanced accuracy (in some cases,
more than six percentage points). For FST, the fine-
tuning for epsilon and classification threshold does
not lead to a large search space as observed in the
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Figure 9: Balanced accuracy versus equalized odds for fine-tuned LMs (religion) on the HateXplain dataset when
applying the FST and HPS methods for group bias mitigation and threshold post-processing (TPP) alone.

Jigsaw case. Moreover, the reduction in EO is more
limited and sometimes the improvement observed
for the dev set disappears in test. There are cases,
though, such as BERT, where FST successfully re-
duces EO and the reduction is maintained or even
improved in test. Across the board, tuning only the
threshold used in classification (TPP) did not lead
to improved results and we omit showing them in
the plots.

Overall, we find the post-processing methods
for bias mitigation worth considering. They are
straightforward to apply, run in the order of sec-
onds or minutes on the CPU of a laptop and they
offer interesting operating points when other meth-
ods for bias elimination would incur a significant
computational cost, such as pre-processing or in-
processing techniques. Obtaining the Pareto fron-
tiers is instantaneous as the search space for FST
is not that large.

A.5 Other post-processing methods for bias
mitigation

In addition to the two post-processing methods that
we considered in our study, other post-processing
methods for bias mitigation include assigning fa-
vorable labels to unprivileged groups in regions of
high classifier uncertainty (Kamiran et al., 2012),
minimizing error disparity while maintaining clas-
sifier calibration (Pleiss et al., 2017), a relaxed
nearly-optimal procedure for optimizing equalized
odds (Woodworth et al., 2017), shifting the deci-
sion boundary for the protected group (Fish et al.,
2016), iterative post-processing to achieve unbi-
ased predictions on every identifiable subpopula-

tion (Kim et al., 2019), recalibrating a classifier us-
ing a group-dependent threshold to optimize equal-
ity of opportunity (defined as the difference be-
tween the group-wise true positive rates) (Chzhen

et al., 2019), using optimal transport to ensure sim-
ilarity in group-wise predicted score distributions

(Jiang et al., 2020), and a plug-in approach for
transforming the predicted probabilities to satisfy
fairness constraints (Yang et al., 2020).

A.6 Reproducibility statement

The data processing we performed for the datasets
we used is briefly explained in Appendix A.1. In all
our experiments we used unmodified versions of
the model implementations from the Hugging Face
transformers library (version 4.3.3) and the main
scripts to tune the models are modified versions of
the sequence text classification examples accom-
panying the library. The hyper-parameter tuning
we performed was minimal (varying the number
of epochs from 1-3, two values for learning rates
2e — 6 and 2e — 5, 11 values for random seeds).
More details on the experimental infrastructure can
be found in Section 3.2. The main limiting factor
in reproducing the results presented in this study is
having access to GPUs such as the NVIDIA V100
and A100 and generous, parallel compute time. At
the time of this writing, the implementation of FST
that we used is evolving proprietary code that may
become available for external consumption. More
details are provided in Appendix A.3. For HPS,
we used the open-source implementation that can
be found as part of the AIF360 toolkit, “equalized
odds post-processing” method.
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