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Abstract

Aspect-based sentiment analysis (ABSA)
tasks aim to extract sentiment tuples from a
sentence. Recent generative methods such
as Seq2Seq models have achieved good
performance by formulating the output as a
sequence of sentiment tuples. However, the
orders between the sentiment tuples do not
naturally exist and the generation of the cur-
rent tuple should not condition on the previous
ones. In this paper, we propose Seq2Path to
generate sentiment tuples as paths of a tree.
A tree can represent “1-to-n” relations (e.g.,
an aspect term may correspond to multiple
opinion terms) and the paths of a tree are
independent and do not have orders. For
training, we treat each path as an independent
target, and we calculate the average loss
of the ordinary Seq2Seq model over paths.
For inference, we apply beam search with
constrained decoding. By introducing an
additional discriminative token and applying
a data augmentation technique, valid paths
can be automatically selected. We conduct
experiments on five tasks including AOPE,
ASTE, TASD, UABSA, ACOS. We evaluate
our method on four common benchmark
datasets including Laptop14, Rest14, Rest15,
Rest16. Our proposed method achieves
state-of-the-art results in almost all cases.

1 Introduction

ABSA tasks. Aspect-based sentiment analysis
(ABSA) is a classic research topic and has received
continuous attention. The ABSA tasks aim to ex-
tract sentiment tuples of elements such as the aspect
term (a), opinion term (o), aspect category (c), and
sentiment polarity (s), respectively. Following the
tasks definitions in (Zhang et al., 2021b), we con-
sider various ABSA tasks including aspect opinion
pair extraction (AOPE), aspect sentiment triplet ex-
traction (ASTE), target aspect sentiment detection
(TASD), unified aspect-based sentiment analysis
(UABSA) and aspect category opinion sentiment

(ACOS). The output formats are shown in Table 1.
Throughout this paper, we assume the ASTE task
is our default task to illustrate our ideas.

ABSA Task Abbr Output
Aspect Opinion
Pair Extraction AOPE (a, o)

Aspect Sentiment
Triplet Extraction ASTE (a, o, s)

Target Aspect
Sentiment Detection TASD (c, a, s)

Unified Aspect-Based
Sentiment Analysis UABSA (a, s)

Aspect Category
Opinion Sentiment ACOS (c, a, o, s)

Table 1: The ABSA tasks with their output formats:
AOPE (Zhao et al., 2020; Chen et al., 2020), ASTE
(Peng et al., 2020), TASD (Wan et al., 2020), UABSA
(Li et al., 2019; Chen et al., 2020), ACOS (Cai et al.,
2021). Throughout this paper, the ASTE task is as-
sumed to be our default task to illustrate our ideas.

Seq2Seq for ABSA. Instead of using separate
models for each ABSA task, the recent trend is
to design a unified framework to handle multi-
ple ABSA tasks at the same time. Recently, the
Seq2Seq models have been applied to the ABSA
tasks (Yan et al., 2021; Zhang et al., 2021a,b) by
formulating them as a text-to-text problem

Input text⇒ “(a1, o1, s1), (a2, o2, s2), ...”
where the output is a sequence of sentiment tuples.
Despite their success on performance, they still
have two main drawbacks: (1) Orders, the orders
between the tuples does not naturally exist. (2)
Dependence, the generation of (a2, o2, s2) should
not condition on (a1, o1, s1).

As a result, the fine-tuned model may be “con-
fused” to make decisions. For example: Why does
(a1, o1, s1) have to be the first tuple instead of
“(a2, o2, s2)”? Why does (a1, o1, s1) have to be
followed by (a2, o2, s2) instead of (a3, o3, s3) or
“<eos>”?

Seq2Path for ABSA. We claim that a tree is a
better choice to represent the output. As we know, a
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Figure 1: The generation process for the ASTE task can
be represented by a tree where “<bos>”, “<eos>” and
“,” stand for the start, end and separator tokens. Sen-
timent tuples are independent paths of the tree and do
not have orders.

tree can represent “1-to-n” relations where a token
can be followed by multiple valid tokens during
generation. However, a sequence can only repre-
sent “1-to-1” relations where a token is followed
by exactly one token during generation (greedy).
Consider the example in Figure 1, the two senti-
ment tuples (“rolls”, “big”, “positive”) and (“rolls”,
“not good”, “negative”) share the same aspect term
“rolls”. So it is a “1-to-n” relation because the token
“big” and “not” are following the same token.

In this paper, we propose “Seq2Path” to by for-
mulating the ABSA tasks as a “sequence to paths
of a tree” problem: where each sentiment tuple
can be viewed as a path of a tree and can be inde-
pendently generated. As long as the input text is
given, one can determine any of the valid sentiment
tuples independently. For example, one can deter-
mine (a2, o2, s2) is a valid sentiment tuple without
knowing that (a1, o1, s1) is also a valid one.

For training, we treat every sentiment tuple as an
independent target. We use the ordinary Seq2Seq
model to learn each target and calculate the aver-
age loss. For inference, we apply beam search to
generate multiple paths along with their probabil-
ities. The paths with high probabilities are more
likely to be correct, but not always the case. We
introduce a discriminative token to automatically
select correct paths from beam search. We also
augment the dataset to produce negative samples

for the discriminative token.
Contributions. The main contributions in the

paper are listed as follows:
• We propose Seq2Path, a parallel generative

framework for ABSA. It generates sentiment
tuples as paths of a tree. A discriminative to-
ken is introduced to automatically select valid
paths from beam search.

• We also give some further motivations and
show that Seq2Path is better in learning the
precise conditional transition probability for
token generation.

• Experimental results show that our model
achieves state-of-the-art on four widely used
datasets Laptop14, Rest14, Rest15, Rest16
on the AOPE, UABSA, ASTE, TASD, ACOS
tasks. Our method outperforms the baseline
models on F1 score in almost all cases.

2 Method

2.1 Overview of Seq2Path
We propose our Seq2Path as shown in Figure 2.
The encoder-decoder architecture is an ordinary
Seq2Seq architecture and their differences are de-
scribed as follows. First, we treat each tuple as
an independent target, train an ordinary Seq2Seq
model and calculate the average loss. Second, the
token generation process forms a tree, and we ap-
ply beam search to “parallelly” and “independently”
generate paths. Third, the input is the text and the
output is the set of all valid sentiment tuples with a
binary discriminative token

v ∈ {“true”, “false”}

appended in the end:

AOPE : Input text⇒ “a, o, v”

ASTE : Input text⇒ “a, o, s, v”

TASD : Input text⇒ “c, a, s, v”

UABSA : Input text⇒ “a, s, v”

ACOS : Input text⇒ “c, a, o, s, v”

where a, o, c, s denotes the aspect, opinion, cate-
gory, sentiment, respectively. Since there are no
negative samples for the discriminative token, we
have to construct an augmented dataset for training.

2.2 Training
Loss averaged over paths. For an input sentence
x, we want to output a set of tuples

Y = {y1, ..., yk} (1)
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Encoder

Those rolls were big, but not good and sashimi wasn't fresh.

Decoder

Original Training Dataset

Augmented Dataset

Augment
rolls,	big,	 positive,	true
rolls,	big,	neutral,	false
rolls,	not	good,	negative,	true	
sashimi,	wasn't	fresh,	negative,	true

…

BeamSearch

Pruning

rolls,	big,	 positive
rolls,	not	good,	negative
sashimi,	wasn't	fresh,	negative

D

Daug

<bos>

rolls sashimi

,,

big
not

was

n’t

fresh
good

,,,

positive negative negative

<eos> <eos> <eos>

,,,

true true true

,

neutral
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,

false

Figure 2: The proposed Seq2Path framework. The ASTE task is used for illustrating.

The dataset D is a collection of (x, Y ) pairs. As
shown in Figure 1 and 2, the set Y can be repre-
sented as a tree. Then each1 y corresponds to a
path of the tree and k is the total number of paths.
For the prediction Ŷ from the input x, the loss can
be defined as the average loss of the k paths

L(Y, Ŷ |x) (2)

=
1

k

∑
y∈Y

Lseq(y, ŷ|x) (3)

=
1

k

∑
y∈Y

∑
t

l(yt, ŷt|x, y<t) (4)

where Lseq(·) is the ordinary Seq2Seq loss and l(·)
is the loss for each time step t. More theoretical
justification will be provided in Section 3.

2.3 Inference

Beam search. During the inference phase, we ap-
ply beam search (Srivastava et al., 2014) with con-
strained decoding. The beam search algorithm se-
lects multiple alternatives for an input sequence at
each step based on conditional probability. With
beam search, we output the top-k paths with de-
creasing probabilities which represent how likely
the paths are valid.

Constrained decoding is also applied during de-
coding. Instead of searching the whole vocabulary,
we force beam search to search within only the al-
lowed candidate tokens (inspired by (De Cao et al.,
2020)). The candidate tokens are either from the
input text or some extra task-specific tokens. For

1For notation simplicity, we write yi as y from now on.

example, the ASTE task has the extra tokens includ-
ing the sentiment polarities “positive”, “negative”,
“neutral” and the separator token. Please refer to
Appendix A.1 for more details on constrained de-
coding.

Pruning. We apply pruning to filter invalid
paths. First, we remove some “overlapping” pre-
dictions. If beam search returns both “a, o, s, true”
and “a, o, s, false”, we prefer the one with the
higher sequence probability. If beam search returns
both “a1, o, s, true” and “a2, o, s, true” where a1
and a2 are overlapping, then we also prefer the
one with the higher sequence probability. Then,
we output the valid paths with a discriminative to-
ken vi = “true” and filter the other invalid paths.
Please refer to Appendix A.2 for the overlapping
conditions for pruning.

2.4 Data augmentation

Since there are no negative samples for the dis-
criminative token, the data augmentation step is
necessary. In order to automatically select the valid
paths, a discriminative token v = “false” is ap-
pended at the end of each negative sample. We
generate negative samples

Dn = D1

⋃
D2 (5)

in the following two ways

• D1: To improve the model’s ability to match
tuple elements, we randomly replace the tu-
ple elements. For example, in Figure 1, we
generate “rolls, wasn’t fresh, positive, false”,
“sashimi, big, negative, false”, etc.
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• D2: To improve the model’s ability to filter
most of bad generations, we first train the
model for small epochs then use beam search
to generate negative samples. For example,
in Figure 1, we generate “sashimi, n’t fresh,
negative, false”, etc.

Then the augmented dataset is the union of the
positive and negative samples

D = Dp

⋃
Dn (6)

Loss mask for negative samples. We want
the discriminative token v to be able to filter in-
valid paths. However, we do not want the model’s
generation to mimic the negative samples. We
apply a tricky loss mask here. Suppose y =
(y1, y2, ...yt, ...), the loss mask is defined as fol-
lows.

• If y is a negative sample, i.e., the validation
token of y is “false”, then the loss mask is

m(yt) =


1, yt = “false”
1, yt = “<eos>”
0, o.w.

(7)

• If y is a positive sample, i.e., the validation
token of y is “true”, then the loss mask does
not apply. In other words, we always have

m(yt) = 1. (8)

The loss mask means the token is skipped in loss
calculating, see an example in Table 3. All tokens
except the discriminative token and the “<eos>”
token are masked. Let Lm(·) be the loss with the
loss mask where only tokens with m(t) = 1 are
involved in loss calculating

Lm(Y, Ŷ |x) = 1

k

∑
y∈Y

∑
m(t)=1

l(yt, ŷt|x, y<t) (9)

and the loss for the augmented dataset is

Loss(D) =
∑

(x,Y )∈D

Lm(Y, Ŷ |x). (10)

2.5 Algorithm

The algorithm of Seq2Path are summarized as Al-
gorithm 1 including training, inference and data
augmentation.

Algorithm 1: Seq2Path.
Input: A training dataset Dp, beam size k.
Output: Valid sentiment tuples.

1 Train ordinary Seq2Seq on Dp with loss
averaged over paths for 5 epochs. Generate
negative samples D1 from beam search;

2 Generate more negative samples D2 by
randomly replacing tuple elements;

3 Let Dn = D1
⋃
D2 be the negative samples.

Construct the augmented dataset
D = Dp

⋃
Dn where each sample is

appended with a discriminative token,
either “true” or “false”;

4 Train ordinary Seq2Seq on D with loss
averaged over paths for full epochs where
the loss is masked on negative samples;

5 Apply beam search with constrained
decoding for inference. Generate top k
paths with decreasing probabilities pi and
discriminative tokens vi;

6 Apply pruning to select the valid paths
based on pi and vi. Return valid paths as
valid sentiment tuples.

3 Why Seq2Path?

Conditional transition probability. In this sec-
tion, we give more analysis on the motivation for
Seq2Path. We claim that Seq2Path is better in learn-
ing the precise conditional transition probabilities
for the token generation process:

P (yt = vi|x, y<t) (11)

where x is the input sentence and y<t =
(y1, y2, ..., yt−1) represents the previous tokens and
V = {v1, v2, ...} is the vocabulary.

Intuitive case. Again, we take the example in
Figure 1. Seq2Seq models formulate the output
as sequence “(a1, o1, s1), (a2, o2, s2), ...”, then the
target probability distribution at each time step t is
a one-hot vector in R|V |.

Pone-hot(y4|x, y<4) =

{
1, y4 = “big”
0, o.w.

(12)

However, true target probability distribution is ac-
tually a multi-hot vector in R|V |. For y<4 =
(“<bos>”, “rolls”, “,”),

Pmulti-hot(y4|x, y<4) =


0.5, y4 = “big”
0.5, y4 = “not”
0, o.w.

(13)
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Token Index：

Positive Sample：

Loss Mask：

Negative Sample：

<bos> rolls , ,big positive , true <eos>

1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1

<bos> rolls , ,big neutral , false <eos>

Loss Mask： 0 0 0 0 0 0 0 1 1

Figure 3: An example to show the loss mask. The loss mask means the token is skipped in loss calculating. The
loss mask does not apply to a positive sample. For a negative sample, the loss is calculated only upon the “false”
and the “<eos>” token, and skips the other tokens because they form an invalid generation.

Why average loss over paths? Recall, during
training, we treat each sentiment tuple as an in-
dependent target and calculate the average loss of
ordinary Seq2Seq. Here we justify it. Formally,
suppose the target contains k paths with the previ-
ous tokens x, y<t, say

path-1 : (x, y1, y2, ..., yt−1, vj1 , ...),

path-2 : (x, y1, y2, ..., yt−1, vj2 , ...),

...

path-k : (x, y1, y2, ..., yt−1, vjk , ...).

The next token could be vj1 , ..., vjk , then the tran-
sition probability is a “multi-hot” vector p ∈ R|V |

p[i] =

{
1
k , i = j1, ..., jk,

0, o.w.
(14)

On the other hand, each independent path is learned
with ordinary Seq2Seq where the probability for
i-th path is a “one-hot” vector p′i ∈ R|V |

p′i[`] =

{
1, ` = ji,

0, o.w.
(15)

The next lemma justifies why Seq2Path averages
the ordinary Seq2Seq loss over paths. The proof is
simple and can be found in Appendix A.2.

Lemma 1 The average cross-entropy loss for the
one-hot target (15) is equal to the cross-entropy
loss for the multi-hot transition probability (14).

4 Experiments

4.1 Experimental Settings
Datasets. We evaluate the proposed framework on
four widely used benchmark datasets: Laptop14,
Rest14, Rest15, and Rest16, originally provided by
the SemEval shared challenges (Pontiki et al., 2014,

2015, 2016). We adopt the dataset provided by (Fan
et al., 2019; Li et al., 2019; Xu et al., 2020; Wan
et al., 2020) for AOPE, UABSA, ASTE, TASD,
ACOS respectively. For a fair comparison, we keep
the same data splits as previous works.

Baselines. In the following, we list the main
baselines for each ABSA task. Several early base-
lines are skipped, especially those not encoded with
BERT or T5.

• AOPE:
– SpanMlt (Zhao et al., 2020) is an end-to-

end method to jointly extract the aspect
and opinion.

– SDRN (Chen et al., 2020) proposes a syn-
chronous dual-channel recursive network
to simultaneously extract the opinion en-
tities and relationships.

– BMRC (Chen et al., 2021) proposes a
unified model for ABSA tasks based on
bidirectional MRC.

– GAS-T5 (Zhang et al., 2021b) uses a uni-
fied generation method to solve various
ABSA problems, and encodes natural
language tags into the target output.

• ASTE:
– Jet-BERT (Xu et al., 2020) uses two sets

of BIO tags to annotate aspect and opin-
ion terms in the same sequence in an end-
to-end manner.

– Dual-MRC(Mao et al., 2021) solves all
ABSA tasks through a unified joint train-
ing framework of two MRCs.

– ParaPhrase-T5 (Zhang et al., 2021a)
treats quad prediction as a paraphrase
generation.

– BMRC (Chen et al., 2021) and GAS-T5
(Zhang et al., 2021b) were described pre-
viously.
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• TASD:
– TAS (Wan et al., 2020) is the first to in-

troduce the target aspect sentiment detec-
tion (TASD) task.

– GAS-T5 (Zhang et al., 2021b) and
ParaPhrase-T5 (Zhang et al., 2021a)
were described previously.

• UABSA:
– RACL (Chen and Qian, 2020) is a BERT-

based model with a relation propagation
mechanism.

– Dual-MRC (Mao et al., 2021), BMRC
(Chen et al., 2021) and GAS-T5 (Zhang
et al., 2021b) were described previously.

• ACOS:
– ACOS-Baseline (Cai et al., 2021) is the

first to introduce the aspect-category-
opinion-sentiment (ACOS) quad predic-
tion task.

Evaluation metrics. We use the F1 score as
the evaluation metrics, when all elements of the
prediction result are correct, the prediction result
is considered correct. As a fair comparison, all F1
scores reported in this paper are averaged over 5
runs with different random seeds.

Implementation details. We use Google’s T5-
base model (Raffel et al., 2019) from Huggingface
Transformer library2. The structure of the T53 en-
coder and decoder is similar to that of the Trans-
former (Vaswani et al., 2017). Since sentiment
tuples are generated independently, the maximum
output length = 32 can be very small comparing
to the maximum sequence length = 128. It can
reduce a lot of memory consumption.

For all ABSA tasks, we use a fixed batch size 8
and a fixed learning rate 1e−4 to train the model
with a single Nvidia 1080Ti GPU. We first train
the model with 5 epochs for augmentation. Then
the final model is trained for n = 20 epochs. The
best model is determined based on the loss on the
validation set. For inference, the number of beams
depends on the task and dataset and can be k =
4, 6, 8, 10. Typically, k = 6 can be used for most
cases. In addition, the separator “,” can be replaced
with other separators4 and the experimental results

2https://github.com/huggingface/
transformers

3Although T5-base and BERT-base are both named as
“base” models, the T5-base should be more powerful because
it has more parameters and trained on a larger corpus.

4The separator “|” seems to be slightly better than “,” from
our experiments. It may be related to the T5 tokenization and
decoding mechanisms.

may improve slightly.

4.2 Main Results

The main results for the AOPE, UABSA, ASTE,
TASD, ACOS tasks are reported in Table 2, 3, 4, 5,
6, respectively. Most baseline results are directly
copied from (Zhang et al., 2021b). Our proposed
method achieves the new state-of-the-art results in
almost all F1 scores.

On the AOPE task, our proposed Seq2Path out-
performs the previous best results by 4.74, 1.75,
3.91, 3.67 in percentage on Laptop14, Rest14,
Rest15, Rest16 respectively. The main challenge
for the AOPE task is to match the aspect a and the
opinion o where there are many complex “1-to-n”
relations. Our Seq2Path has a large performance
gain because it can handle these complex relations
very well.

L14 R14 R15 R16
SpanMlt 68.66 75.60 64.68 71.78
SDRN 66.18 73.30 65.75 73.67
BMRC 67.45 76.23 68.60 76.52
GAS-T5 69.55 75.15 67.93 75.42
Seq2Path(k = 4) 72.84 76.78 70.63 78.51
Seq2Path(k = 6) 74.29 76.92 71.84 79.03
Seq2Path(k = 8) 72.62 77.35 70.72 79.09
Seq2Path(k = 10) 73.35 76.91 69.38 78.05

Table 2: Main results of the AOPE task with various
beam sizes k. The best results are in bold and the
second-best results are underlined.

On the ASTE task, our proposed Seq2Path out-
performs the previous best results by 4.14, 3.36,
3.32, 1.97 in percentage on Laptop14, Rest14,
Rest15, Rest16 respectively. The ASTE task is
similar to the AOPE task, but ASTE is even harder
as the sentiment s is also required. Again, our
Seq2Path has a large performance gain.

L14 R14 R15 R16
Jet-BERT 51.04 62.40 57.53 63.83
Dual-MRC 55.58 70.32 57.21 67.40
BMRC 59.27 70.69 61.05 68.13
GAS-T5 60.78 72.16 62.10 70.10
ParaPhrase-T5 61.13 72.03 62.56 71.70
Seq2Path(k = 4) 64.09 74.29 65.42 73.67
Seq2Path(k = 6) 65.27 73.00 65.88 71.62
Seq2Path(k = 8) 64.20 74.88 64.89 72.67
Seq2Path(k = 10) 64.82 75.52 65.88 72.87

Table 3: Main results of the ASTE task with various
beam sizes k. The best results are in bold and the
second-best results are underlined.

On the TASD task, our proposed Seq2Path out-
performs the previous best results by 2.14, 0.13
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in percentage on Rest15, Rest16 respectively. The
challenge for the TASD task is that the aspect terms
a can be “NULL”, and an aspect a can have multi-
ple categories c.

R15 R16
TAS 58.09 65.89
GAS-T5 61.47 69.42
ParaPhrase-T5 63.06 71.97
Seq2Path(k = 4) 63.13 68.47
Seq2Path(k = 6) 65.20 70.16
Seq2Path(k = 8) 63.36 72.10
Seq2Path(k = 10) 63.89 69.23

Table 4: Main results of the TASD task with various
beam sizes k. The best results are in bold and the
second-best results are underlined.

On the UABSA task, our proposed Seq2Path
outperforms the previous best results by 1.36, 1.67,
2.23 in percentage on Laptop14, Rest15, Rest16
respectively. The result on Rest14 is slightly lower
(almost equal) than GAS-T5. The UABSA task is
easier than other ABSA tasks since only two tuple
elements (a, s) are extracted. One challenge is that
the output can be a null set if there is no aspect in
the input text. For such cases, it is most likely that
all beams of Seq2Path will have a discriminative
token v = “false”. Thus, our method is consistent
with such a setting.

L14 R14 R15 R16
RACL 63.40 75.42 66.05 -
Dual-MRC 65.94 75.95 65.08 -
BMRC 67.27 76.39 67.16 73.18
GAS-T5 68.64 77.13 66.78 73.64
Seq2Path(k = 4) 70.00 77.01 68.35 75.87
Seq2Path(k = 6) 69.94 76.07 67.71 75.18
Seq2Path(k = 8) 69.27 77.10 68.33 74.96
Seq2Path(k = 10) 69.08 76.01 68.45 73.73

Table 5: Main results of the UABSA task with vari-
ous beam sizes k. The best results are in bold and the
second-best results are underlined.

The ACOS task is newly published, and the orig-
inal paper is the only baseline available. Our pro-
posed Seq2Path outperforms the previous best re-
sults by 7.17, 13.80 in percentage on Laptop14,
Rest16 respectively. This improvement is huge and
should be partially from the power of T5.

4.3 Analysis
Analysis on the beam size. The main results in Ta-
ble 2, 3, 4, 5, 6 use various beam sizes of 4, 6, 8, 10.
The beam size k is an important hyperparameter
which affects both data augmentation and inference.
The choice of the optimal k depends on the task and

L14 R16
ACOS-Baseline 35.80 44.61
Seq2Path(k = 4) 42.60 57.72
Seq2Path(k = 6) 41.45 58.06
Seq2Path(k = 8) 41.93 57.37
Seq2Path(k = 10) 42.97 58.41

Table 6: Main results of the ACOS task with various
beam sizes k. The best results are in bold and the
second-best results are underlined.

the dataset. Roughly speaking, a smaller beam size
will lead a worse recall while a larger beam size
will lead a worse precision. Nevertheless, with our
pruning process, our results are state-of-the-art re-
gardless of the choice of k. Although beam search
for inference will require a larger GPU memory,
the Seq2Path can use a much shorter max output
sequence length. Then, the memory consumption
will be reduced by a lot.

Ablation study on data augmentation. The
purpose of data augmentation is to generate nega-
tive samples for the discriminative token to auto-
matically select the paths. The ablation results for
data augmentation are shown in Table 7.

Task Augment L14 R14 R15 R16

AOPE
D1 59.47 65.68 59.05 65.96
D2 73.05 77.03 69.91 77.83
Dn 74.29 76.92 71.84 79.03

ASTE
D1 54.98 65.68 57.69 64.90
D2 61.62 73.29 62.46 71.07
Dn 65.27 73.00 65.88 71.62

TASD
D1 - - 40.16 42.94
D2 - - 62.98 69.64
Dn - - 65.20 70.16

UABSA
D1 46.65 64.08 52.74 55.91
D2 69.26 76.72 68.28 72.79
Dn 69.94 76.07 67.71 75.18

ACOS
D1 29.08 - - 37.39
D2 41.05 - - 57.69
Dn 41.45 - - 58.06

Table 7: Ablation results for data augmentation. The
beam size is fixed as k = 6. The datasets D1, D2, Dn

are described in Section 2.2. All results are the F1
scores averaged over 5 runs with different random
seeds. The best results are in bold.

The dataset D1 has minor effects on the F1
scores. For most cases, adding D1 can improve
the F1 scores by up to 3%. It consists of nega-
tive samples by randomly replacing tuple elements
and improves the model’s ability to match tuple
elements. The performance on Laptop14, Rest15
and Rest16 can benefit from D1. However, D1

seems to lead a slight performance drop on Rest14.
One possible reason is that Rest14 has the biggest
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sample size and D1 may not be necessary.
The dataset D2 has major effects on the F1

scores. D2 consists of negative samples generated
by beam search from a fine-tuned model with small
number of epochs. The F1 scores are significantly
improved by adding D2 because D2 can guide the
discriminative token to filter most of bad genera-
tions. For example, generating false repeated to-
kens is very common, and such bad cases can be
handled here.

Case study. Figure 4 shows an example of beam
search generation for the ASTE task with the beam
size k = 6. The input sentence is "the staff was
very nice and courteous and obviously chinese.".
The probabilities are the sequence probabilities
from beam search in decreasing order. The top
3 paths with v = “true” are valid where they are
marked as bold. The other 3 paths with v = “false”
are filtered. The tuple “staff, chinese, positive” is
a valid one because the probability for the token
“true” is larger than “false” 0.7114 > 0.4425. The
other paths such as “chinese stuff, nice, positive”
are pruned for low probabilities.

Figure 4: An example of beam search generation for
the ASTE task with the beam size k = 6. The input
sentence is "the staff was very nice and courteous and
obviously chinese.". The probabilities at the bottom are
the sequence probabilities returned from beam search.
The paths with v = “true” are marked as bold.

5 Related Work

There has been much work addressing technical
solutions for ABSA. The main sentiment elements
involved in ABSA include aspect term, opinion
term, aspect category and sentiment polarity. In
order to extract these sentiment elements, the main
research direction of ABSA is to extract aspect

terms (Liu et al., 2015; Yin et al., 2016; Li et al.,
2018; Ma et al., 2019) and categorize the senti-
ment of a given aspect (Wang et al., 2016; Chen
et al., 2017; Jiang et al., 2019; Zhang and Qian,
2020), and to jointly predict multiple elements si-
multaneously at the same time (Li et al., 2019; Wan
et al., 2020; Peng et al., 2020; Zhao et al., 2020).
Early ABSA problems were mostly expressed as
sequence labeling or multi-classification problems
(Li et al., 2019), which were predicted by designing
task-specific classification networks and using the
class index as labels for training (Huang and Carley,
2019; Wan et al., 2020). However, this approach
requires the design of different classification mod-
els and ignores the label semantics. Recent works
achieve good performance by converting the ABSA
problems as a text generation problem (Yan et al.,
2021; Zhang et al., 2021a,b).

The generative framework has been proven ef-
fective for some other natural language processing
problems including dialogue state tracking (Feng
et al., 2020), entity linking (De Cao et al., 2020),
event extraction (Lu et al., 2021), information ex-
traction (Sui et al., 2020), named entity recognition
(Yan et al., 2021; Tan et al., 2021; Raffel et al.,
2019; Athiwaratkun et al., 2020). In particular,
(Paolini et al., 2021) solved various NLP tasks in a
unified generative framework.

6 Conclusions

In this paper, we propose Seq2Path, a novel paral-
lel generative framework for ABSA. The previous
Seq2Seq based method formulates the output as a
sequence that has two main drawbacks: the order
and the dependence. Instead, our Seq2Path formu-
lates the output as a tree and generates sentiment
tuples as paths of the tree. Seq2Path can learn the
precise conditional transition probability for token
generation, by training with the loss of ordinary
Seq2Seq averaged over paths. During inference,
we apply beam search with constrained decoding.
A discriminative token is also introduced to au-
tomatically select the valid paths. Experiments
show that our model achieves state-of-the-art on
AOPE, ASTE, TASD, UABSA, ACOS across com-
mon datasets including Laptop14, Rest14, Rest15,
Rest16 in almost all cases. In the future, we plan
to extend our method to other structure prediction
tasks in NLP such as information extraction tasks,
event extraction and nested named entity recogni-
tion.
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A Appendix

A.1 Constrained Decoding
A probability distribution is calculated over the
whole vocabulary at each step of decoding. The
candidate tokens can be restricted to a smaller set.
For the input sentence x, the candidate tokens are
the union of the original tokens in x and some extra
task-specific candidate tokens

T (x, task) = T (x)
⋃

T (task) (16)

where T (x) stands for the token set for the input x
and the task specific tokens T (task) are defined in
Table 8.

Task T (task)
AOPE sep
ASTE sep, positive, negative, neutral
TASD sep, positive, negative, neutral, all categories

UABSA sep, positive, negative, neutral
ACOS sep, positive, negative, neutral, all categories

Table 8: Task specific tokens for constrained decoding.
The separator token is used to separate output tuples.
The “positive”, “negative” and “neutral” tokens are the
sentiment polarities. For the TASD and ACOS tasks,
categories should be included in the candidate tokens.

A.2 Pruning
We define the condition when two predictions are
“overlapping” for a specific task in Table 9. If two
predictions are overlapping, then we prefer the one
with a higher probability.

Task Prediction Overlapping Condition

AOPE (a, o)
ovl(ai, aj), oi = oj
ovl(oi, oj), ai = aj

ASTE (a, o, s)
ovl(ai, aj), oi = oj
ovl(oi, oj), ai = aj

TASD (c, a, s) ovl(ai, aj), ci = cj

UABSA (a, s) ovl(ai, aj)

ACOS (c, a, o, s)
ovl(ai, aj), oi = oj , ci = cj
ovl(oi, oj), ai = aj , ci = cj

Table 9: The condition when two predictions are over-
lapping for various ABSA tasks. The letter a, o, c, s de-
notes the aspect, opinion, category, sentiment, respec-
tively. The boolean function ovl(·) represents if two
elements are overlapping.

A.3 Proof of Lemma 1
Proof: First, we consider the loss for the multi-
hot vector. The cross-entropy loss for the target

probability distribution p ∈ R|V | and the predicted
probability distribution ŷt ∈ R|V | is

l(p, ŷt) = −
n∑

i=1

p[i] log ŷt[i] (17)

= −
k∑

i=1

1

k
log ŷt[ji]. (18)

The equation holds because p ∈ R|V | is “multi-hot”
and p[i] = 1 if i = ji for i = 1, 2, ..., k. Now, we
consider the loss average over paths. For i-th path
p′i ∈ R|V |,

l(p′i, ŷt) = −
n∑

`=1

p′i[`] log ŷt[`] (19)

= − log ŷt[ji]. (20)

The equation holds because p′i ∈ R|V | is “one-hot”
and p′i[`] = 1 if ` = ji. Therefore, it follows that

1

k

k∑
i=1

l(p′i, ŷt) = l(p, ŷt) (21)

and the proof is done. �
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