Training Text-to-Text Transformers with Privacy Guarantees

Natalia Ponomareva

Jasmijn Bastings

Sergei Vassilvitskii

Google Research
{nponomareva, bastings, sergeiv}@dgoogle.com

Abstract

Recent advances in NLP often stem from large
transformer-based pre-trained models, which
rapidly grow in size and use more and more
training data. Such models are often released
to the public so that end users can fine-tune
them on a task dataset. While it is common
to treat pre-training data as public, it may
still contain personally identifiable informa-
tion (PII), such as names, phone numbers, and
copyrighted material. Recent findings show
that the capacity of these models allows them
to memorize parts of the training data, and sug-
gest differentially private (DP) training as a po-
tential mitigation. While there is recent work
on DP fine-tuning of NLP models, the effects
of DP pre-training are less well understood: it
is not clear how downstream performance is
affected by DP pre-training, and whether DP
pre-training mitigates some of the memoriza-
tion concerns. We focus on TS5 and show that
by using recent advances in JAX and XLA we
can train models with DP that do not suffer a
large drop in pre-training utility, nor in train-
ing speed, and can still be fine-tuned to high
accuracy on downstream tasks (e.g. GLUE).
Moreover, we show that T5’s span corruption
is a good defense against data memorization.

1 Introduction

Recent advances in natural language process-
ing tasks are largely due to introduction of
large Transformer-based models trained on large
amounts of data. Models such as GPT-2 (Radford
et al., 2019) and T5 (Raffel et al., 2020) have bil-
lions of parameters and are trained on hundreds of
gigabytes of mostly uncurated public crawl data.
These models are often released as modifiable
checkpoints, and the end users have the ability to
fine-tune these models to their final tasks using an
often more limited amount of data and compute.
While pre-training datasets are typically treated
as public, their sheer size makes them difficult to
curate or scrutinize (Bender et al., 2021; Rogers,

2021). Moreover, such public datasets (e.g., web
crawls) likely contain private information (Dodge
et al., 2021), e.g., data erroneously released to the
web or copyrighted text. The capacity of recent
models makes it possible for them to memorize
parts of the training data (Carlini et al., 2020), even
after subsequent fine-tuning, and poses risks to the
owners of pre-trained language models. In this
work, we focus on a potential mitigation: making
the model fully private using differential privacy
(DP). We focus on T5 (Raffel et al., 2020) and
explore how well DP mitigates privacy risks and
how it affects pre-training and downstream perfor-
mance.

Our contributions are as follows:

1. We describe how to achieve fully private T5
models by (a) introducing private Sentence-
Piece (DP-SP) and (b) combining it with pri-
vate training (DP-Training).

2. To the best of our knowledge, we are the first
to look into private pre-training (as opposed
to private fine-tuning) of TS5, while also show-
ing how it affects downstream tasks. More
concretely, we demonstrate that fully private
models are able to achieve good pre-training
and fine-tuning utility. Part of the drop in util-
ity introduced by DP-Training is mitigated by
DP-SP (unigram) tokenizer.

3. We show that all private pre-training compo-
nents of T5 (DP-SP and DP-Training) help re-
duce memorization of TS5 models. The biggest
reduction comes from DP-Training, while DP-
SP memorization protection is much smaller.

4. We demonstrate that the pre-training objec-
tive (i.e., span corruption, next token predic-
tion) has a significant impact on the ability
to memorize training instances. In particular,
if memorization is the main concern, models
trained with span corruption, even without any
additional privacy changes, exhibit excellent
resilience to training data extraction.

2182

Findings of the Association for Computational Linguistics: ACL 2022, pages 2182 - 2193
May 22-27, 2022 (©)2022 Association for Computational Linguistics

Example 1

Example 2 — Loss — Grad
Example 3 — Loss — Grad
Example 4 — Loss — Grad

Batch

— Loss — Grad

— Clipped Grad
Noise
— Clipped Grad |
Summed Grad — Private Grad
— Clipped Grad

— Clipped Grad

Figure 1: Differentially private training. Unlike conventional batched training, the gradient is computed and
clipped for each example in the batch separately, then accumulated and noised before updating the parameters.

2 Related work

In this section, we discuss what privacy in ML
means (§2.1), followed by overview of private train-
ing (§2.2) and privacy in language models (§2.3).

2.1 Privacy in ML

Privacy guarantees can come in many forms. On
the one hand, for a trained ML model, one can
provide theoretical Differential Privacy (DP) guar-
antees in the form of (¢, 0) (Dwork and Roth, 2014),
that (roughly) say that with probability 1 — §, no at-
tacker can increase their prior on whether a specific
example is part of the training data by more than a
factor of exp(e). These can be further categorized
into guarantees on all of the weights of the model
(usually achieved via DP-training) or guarantees on
the outputs of the model only (private prediction),
which translates into training data label protection.
The latter is usually achieved via adding noise to
the output. Full model guarantees provide also
the weaker guarantees, i.e., private training also
ensures private prediction but not vice versa.

On the other hand, the term ‘private’ is some-
times applied to ML models to describe empiri-
cal characteristics of the model. For example, a
model can be described as private if it is robust
to membership attacks, training data extraction at-
tacks, or to attacks that attempt to infer some pri-
vate attribute (e.g., the race of a speaker) from the
data. It is worth noting that DP methods like DP-
training can mitigate some (membership attack,
training data extraction attacks) but not all attacks
in this category. And heuristic methods to make
models robust to these attacks, such as adversar-
ial heads or adversarial training data augmentation,
don’t provide any theoretical privacy guarantees.

In this paper, we will focus on theoretical privacy
(full model protection) achieved via DP-Training.

In §5.2 we verify how our models fare with re-
spect to an empirical “privacy” definition, namely
robustness to training data extraction attacks.

2.2 Differentially Private (DP) Training

DP training is a modification of the training process
of ML models that guarantees that the resulting
models (and all of the post processing on them) are
also differentially private. DP training is usually
achieved via gradient noise or perturbing the loss.

Gradient noise, which is by far the most com-
mon method, involves adding noise to the gradients
like DP-SGD and its variants (Abadi et al., 2016;
Pichapati et al., 2019). This is shown in Figure 1
with a batch of examples of various lengths. An al-
ternative is to perturb the loss function and then op-
timize as usual (Chaudhuri et al., 2011; Phan et al.,
2016). Here DP guarantees hold only when the al-
gorithm is fully converged, e.g. a global optimum
is reached, which is not guaranteed for non-convex
problems, and large LMs require many steps to get
there. Iyengar et al. (2019) suggested an alterna-
tive perturbation that does provide guarantees even
if the model reaches only the vicinity of a global
optimum, but convexity remains a requirement.

All of these methods inject noise into the training
process and are known to result in a drop of utility
(Appendix D discusses ways to mitigate the utility
drop in DP-Train). Since Transformer-based NLP
models are non convex, and are usually not trained
to full convergence, we employ one of the most
popular methods that work by noising the gradients
(Abadi et al., 2016).

2.3 NLP models and Privacy

In NLP it is common to pre-train on large amounts
of unlabeled data and then fine-tune on the fi-
nal task. A lot of related work assumes that pre-
training data is essentially public, and makes mod-

2183

els private with respect to the limited fine-tuning
data. For example, Kerrigan et al. (2020) pre-
trained GPT-2 on public data and DP fine-tuned
it on private data. They demonstrated that such
pre-training on public data helps reduce perplex-
ity. Li et al. (2021) performed a similar analysis
and showed that private fine tuning can maintain
accuracy given a good pretrained model. Hoory
et al. (2021a) looked into DP fine-tuning of a (pub-
licly) pre-trained BERT model (Devlin et al., 2019)
in the medical domain and explored how DP fine
tuning affects the performance and privacy of the
models. They point out that multiple components
for language models may need to be adjusted to
incorporate privacy. For BERT-like models, the
tokenization algorithm (WordPiece) can be trained
on the private data (to improve the utility), and thus
needs to be adjusted to preserve the privacy. Secret
sharer (Carlini et al., 2018) was used for evaluation,
and the authors demonstrate that with adjustments
(e.g., larger batch size) for private models, utility
is hurt only marginally while being more robust to
leaking “secrets”, even those with high frequency.

At the same time, several works show that pub-
licly (e.g. not using DP-Training methods) pre-
trained NLP models are vulnerable to privacy at-
tacks (even after subsequent fine tuning). (Thomas
et al., 2020) looked into whether pre-trained BERT,
Glove and ELMO embeddings contained private
data. The authors inserted secret information into
the embeddings’ training data, and then explored
LSTM models subsequently fine-tuned on these
embeddings. They showed that higher dimensional
embeddings leak more information than lower di-
mensional ones, and DP training reduced this leak-
age. Additionally, for all but Glove embeddings,
the presence of multiple secret values with the same
pattern (e.g. multiple sentences of “John is sick
with flu” and “Mary is sick with cold”) reduced the
leakage. Leakage is also correlated with the num-
ber of epochs used to pre-train the embeddings. DP
training (the authors used (e, §) of (10,0.00002)
with a noise level of 0.44) did reduce the “expo-
sure”, sometimes up to 7 fold. However, it is worth
noticing that the exposure metric is calculated by
looking at what log perplexity the model assigns
to the secret word that was present during training
in comparison to the scores that the model assigns
to other secret words (from a limited secret word
vocabulary). This also means that a sequence-to-
sequence model is not guaranteed to never output

a secret word, even if it was trained privately. In-
stead, it means that the probability of outputting
such words is greatly reduced (and the scores with
which they are output are also lower). Additionally,
for sequence generation, it is common to use Beam
search, which takes not just the top prediction but
top k predictions into consideration, so it is still
possible to leak secret pre-training data.

Taking this further, Carlini et al. (2020) demon-
strated that it is possible to extract some training
data instances by prompting the pre-trained GPT-2
(Radford et al., 2019) with enough context: first
the model was used to generate text sequences by
sampling from the model repeatedly word by word,
and then perplexity scores for generated sequences
were used to decide whether the generated data
was actually present in the training data. Finally,
the authors hypothesized (but didn’t verify empir-
ically) that DP-training might help mitigate this
training data attack, but highlight that it usually
does hurt the utility. They also mention that curat-
ing the training data could be helpful but is hard to
do, especially for large pre-training datasets. Addi-
tionally, fine-tuning on the downstream task could
potentially remove some of memorized informa-
tion.

Finally, Lee et al. (2021) demonstrated that due
to non-uniqueness of training data, language mod-
els may output training data instances verbatim,
which obviously is a privacy concern. They pro-
posed to mitigate this by deduplicating the pre-
training data and showed that it resulted in substan-
tial decrease in verbatim training data generation.

2.4 Summary

To summarize, prior work showed that publicly
pre-training LLLMs results in privacy vulnerabili-
ties (e.g., memorization of the training data) that
is exacerbated for larger models, and it was hy-
pothesized that DP training can mitigate these risks.
However, most of the works treat pre-training data
as public and do DP fine-tuning only. Further, it is
not known whether DP pre-trained models can per-
form well on downstream tasks after (public) fine
tuning. In subsequent sections, we look to privately
(DP) pretrain LL.Ms and investigate how their pre-
training and subsequent fine-tuning performance is
affected, as well as verify whether DP pretraining
can mitigate some privacy risks outlined above.

2184

3 Implementing a Fully Private T5

We focus on T5 (Raffel et al., 2020), a popular
encoder-decoder. It uses a slightly modified Trans-
former architecture (Vaswani et al., 2017) and both
the input and output is a sequence of tokens, as to-
kenized by SentencePiece (Kudo and Richardson,
2018). T5 is a good model to focus on, since it can
be used for many input-output tasks, is trained on
a large public crawl data set, is publicly available,
and has been shown to have excellent performance
on subsequent fine-tuning tasks.

What we are protecting. We use the DP defi-
nition, so we provide protection at the level of a
training instance. For encoder-decoders like TS,
that means a pair of input and output sequences.
Importantly, if the same training example is re-
peated multiple times in the training data, the level
of protection for such an example will be smaller.

Modifications. There are two parts to training
T5 that need to be modified to achieve a fully pri-
vate model. The first part is the tokenizer, which
is trained on the training data. This part is often
overlooked by papers claiming to train private NLP
models. It is also unique to NLP models (e.g., in
comparison to image models). In §5.1 we show
that making the tokenizer private is very important
and allows us to reduce the utility drop introduced
by DP-training. The second part is the modification
of the optimization algorithm (DP-Training).

3.1 Private tokenizer (DP-SentencePiece)

SentencePiece (Kudo and Richardson, 2018) is a
tokenizer commonly used for pre-processing text
data. It comes with a number of algorithms that can
be used (e.g., unigram, char, BPE). One of the first
papers that looked into making tokenizers private is
Hoory et al. (2021a), who devised an algorithm that
adds Laplacian noise to the histogram of the word
counts and applied it to the WordPiece algorithm
used by BERT. Hoory et al. (2021a) improved on
these bounds by using Gaussian noise.

Algorithm 1 is a slight modification of their algo-
rithm. For each sentence in the data, compute the
histogram of words and counts. Then, compute the
histogram of the overall dataset by adding the word
counts across all histograms. Contrary to Hoory
et al. (2021a), we do not limit the count of a word in
a sentence to 1, to give per-example (as opposed to
per word) DP guarantees. The words in the original
histogram are not modified or normalized; it may

Algorithm 1: DP-SentencePiece histogram

Input :A histogram h = {w; : ¢;} with
w; a word type and c; the total
count of w; in the data.

o, C - noise and clipping threshold

Output : Private histogram

1 for i < 0 to size(h) do

2 | counti = hlw;] + N(0, 0%)
3 if count], >= C then

4 | W[wi] = count] ;

5 end for

6 return b/

contain words such as “Chrysler's”. The rest
of SentencePiece algorithm is unmodified.

To calculate the bounds, we use Theorem 1 from
Hoory et al. (2021b): Given N the number of
words in a sentence, k& the maximum L2 norm of a
sentence-level histogram, m the maximum infinity
norm of sentence-level histogram, and o the noise
level added to the counts, we would obtain (¢, 9) DP
guarantees with ¢ = %\/ 2log (2.5/0) when the
clipping threshold of C' = m + o exf ~1(1—6§/2N)
is used. Note that in reality there are two reasons
that our e guarantees will be even better. Please
refer to the discussion in Appendix B.

Finally, it is worth mentioning that there are al-
ternatives to using DP SentencePiece algorithm.
Firstly one can use SentencePiece trained on a re-
lated public dataset. We explore the performance
of such models in §5.1. Alternatively, one can con-
sider using models that don’t require a pre-trained
tokenizer, such as ByT5 (Xue et al., 2021). The
character-level SentencePiece algorithm is some-
times seen as more “private” than the unigram one,
however that is not a precise definition of privacy.

3.2 DP-Training

For DP-Training, we protect individual example
privacy and implement the algorithm outlined in
(Abadi et al., 2016). Specifically, we use the
AdaFactor optimizer that was used for training T5
with the following adjustments (See Figure 1):

1. We take the individual examples’ gradients
and clip each to some fixed norm (determined
by privacy parameters).

2. When taking the parameter update step, noise
(determined by privacy parameters) is added
to the accumulated gradients.

2185

3.2.1 Fast per-example gradients with JAX

We use a reimplementation' of T5 in JAX (Brad-
bury et al., 2018) and Flax (Heek et al., 2020). By
doing so, we can follow Subramani et al. (2020)
in leveraging JAX’s vectorization supported by the
XLA compiler. JAX lets us vectorize (‘vmap’) the
computation of the gradient of the loss on a single
example, so that we obtain a batch of per-example
gradients efficiently. This way, we still get most
of the speedup of batched neural network training,
while having a correct implementation of DP. For
each example, we average the loss incurred over all
target tokens in the target sequence, compute the
gradient, and then clip the gradient norm. An up-
date for a batch of examples computes the gradient
for each example in parallel (using vectorization),
accumulates the gradients and adds noise, before
updating the parameters of the model.

4 [Experiments

Hyperparameters. Our experiments in the main
text use TS small, which has 6 encoder layers, 6 de-
coder layers, 8 64-dimensional heads, embedding
dimension of 512, MLP dimension of 2048. We
chose T5 small since it is relatively fast to train
and produces results comparable with that of larger
models (see Appendix A for a discussion of the ef-
fect of the model size on pre-train and fine-tuning
performance). We use AdaFactor (Shazeer and
Stern, 2018) with learning rate 0.5, decay rate 0.8,
warm-up 1000, and rsqgrt learning rate decay.

Datasets. We use The Colossal Clean Crawled
Corpus (C4; Raffel et al., 2020) as a pre-training
task and look into the original “prefix” unsuper-
vised training objective, that predicts next tokens
given the context and the span corruption training
objective (Raffel et al., 2020, §3.3.4), where ran-
domly removed spans of the input are predicted.
We use 512 tokens as input/context and attempt to
predict 114 target tokens. To evaluate fine-tuning
performance, we utilize GLUE datasets (Wang
et al., 2018) that allows to evaluate model perfor-
mance accross a range of NLU tasks.

Ablations. We look separately into the effect of
DP-SentencePiece and DP-Train on Memorization
and pretraining and subsequent fine-tuning perfor-

'0ur code is available at https://github.com/
google-research/google-research/tree/
master/private_text_transformers.

mance. For DP-SP we use the unigram Sentence-
Piece algorithm (Kudo and Richardson, 2018).

Pre-training and fine-tuning performance. It
is known that DP-training hurts the utility (e.g., ac-
curacy) of models. However, the common scenario
in NLP is that models are pre-trained on some data
and then subsequently fine-tuned for the end task.
We look into private pre-training (contrary to the
majority of the papers which look into private fine-
tuning of a publicly pre-trained model), and we
hope that (public) fine-tuning such privately pre-
trained models on public data provides the same
utility as publicly pre-trained models. For these
experiments, we train T5 models with the span cor-
ruption objective with a batch size of 8192 for 100K
steps, and fine-tune on GLUE for 150K additional
steps with a (standard) 128 batch size. The batch
size of 8192 was chosen for pre-training since it
provides good performance for DP-Train. TS5 with-
out DP-training trains with approximately the same
performance using a batch size of 128, however
for DP-Training it is known that the batch size
should be increased significantly in order to get
reasonable performance (see Appendix D). For a
fair comparison we use the same batch size for the
baseline and DP-T5 variants.” Another alternative
is to tune hyper-parameters (for both baseline and
DP variants) and compare the best possible mod-
els, however since tuning parameters for DP will
change the € guarantees, we don’t go this route.
We use an initial learning rate of 0.5 (both baseline
and DP-T5 variants pre-training) and weight decay,
and train with 64 cores. For DP-training, please
refer to Appendix 5 for details on noise, clipping
norm and e. For the Full DP TS5 model, we use a
DP-SP unigram model trained on C4 with e = 0.17
(see Table 1) and combine it with DP-Training with
various noise levels.

Additionally, Appendix D discusses additional
modifications that can be further explored to mini-
mize the utility drop due to DP-Train.

Testing for memorization. It is expected that
DP (both DP-training and DP-SP) should reduce
data memorization of the models. To verify that,
we conduct an evaluation similar to Carlini et al.
(2020) and Lee et al. (2021). In particular, we
train models on C4 and attempt to “extract” the
training data by providing an input prefix and al-
lowing model to generate the rest of the sequence.

2The DP version is only 25% slower than the baseline.

2186

https://github.com/google-research/google-research/tree/master/private_text_transformers
https://github.com/google-research/google-research/tree/master/private_text_transformers
https://github.com/google-research/google-research/tree/master/private_text_transformers

We use 512 tokens prefix length, similar to the in-
put length that was used for training. When the
model generates the output, we calculate the exact
match on a per-instance basis and report the aver-
age across all instances in the dataset. Exact match
is different from per-token accuracy: it is either
0 or 1 for each prefix, depending on whether the
model generated the exact target sequence or not,
whereas token accuracy would report how many
predicted tokens match the target tokens for each
instance. Exact match allows us to gauge what
fraction of instances was output verbatim by the
model, serving as a useful metric for memoriza-
tion. Token-level accuracy serves as an additional
metric; while getting some tokens right does not
guarantee that memorization occurred, high values
of token-level accuracy would indicate that some
tokens generated by the model words might have
matched those from the target exactly. Finally, we
also report median edit distance between predicted
and target tokens, averaged across all instances in
the data. This metric also serves as indirect way of
measuring memorization.

The difference between our setup and that of
Carlini et al. (2020) and Lee et al. (2021) is that
our model is an encoder-decoder, as opposed to
GPT-2 which is a decoder only. Additionally, on
top of using just next word prediction as a training
objective (referred to as prefix training), we get to
experiment with the span corruption objective.

We test for memorization on the the same four
C4-based datasets as Lee et al. (2021):

e Train dup and Train unique: contains ex-
amples from the training set that had near-
duplicates and which had no near-duplicates,
respectively, in the training set.

e Valid in train and Valid unique: examples
from the validation set (not used for training
directly) which are very similar to the exam-
ples from the training data and data that con-
tains examples from the validation set which
had no near-duplicates, respectively.

We would expect the most memorization to be
exhibited on Train dup, and the least memorization
to be present on Valid unique data.

5 Results & Discussion

5.1 Pre-training & Fine-tuning performance

Table 1 presents an ablation study of DP-
SentencePiece’s effect on pre-training and fine-

tuning performance. Additionally, we explore how
tokens pre-selected via SentencePiece trained on
other public (for example Wikipedia) datasets af-
fect the performance of both pre-training and fine
tuning tasks. First, we see that the best pre-training
accuracy does not necessarily translate into the best
fine tuning accuracy. Second, we see that DP-SP
(unigram) serves as a regularizer on the pre-training
task, significantly improving pre-training perfor-
mance (approx. 13% improvement for the best €).
This might be due to the fact that the C4 pretrain-
ing data is not clean; without DP-SP, misspelling
and non-words like “rein-forced;” were passed to
the SentencePiece algorithm and resulted in sub-
optimal tokens being selected. For example, for
e = 0.17, 88.6% of C4 words were dropped at
the histogram creation stage, resulting in only the
most common 11.4% of the words being used for
token selection. Next, we can see that SP trained
on Wikipedia, a different dataset that we may con-
sider public, performs just as well (if not better
on the pre-training task). The choice of (public)
data is important here, and if the data on which the
tokenizer is trained is not similar to the training
data, the performance might be compromised. Ad-
ditionally, character SentencePiece, while without
any privacy guarantees, provides excellent pre-train
and fine-tuning performance. Finally, other Senten-
cePiece models (like BPE) might be more robust
to the noisy data than the unigram and char models
we trained, so it is possible that the regularization
effect of DP will not be as pronounced for those.
We chose unigram because it is the SP algorithm
used for the majority of T5 models.

Table 2 demonstrates pretraining and fine-tuning
performance of DP-Train (only) models and Fully
Private (Full-DP) models that combine DP-SP and
DP-Train. We observe that again better pre-training
utility does not directly translate into better down-
stream fine-tuning performance. Even for the most
stringent guarantees of DP-Train (e of 6.06) which
result in approx 20% of pretrain accuracy drop, on
average GLUE fine-tuned performance is not sig-
nificantly different from the baseline. Full-DP is
able to recover or improve pre-train accuracy. On
average, we also see that full-DP is not significantly
better on subsequent fine-tuning tasks (e.g. mnli_m,
mnli_msm, qnli etc), however for some tasks (e.g.
cola) fine-tuning performance is significantly better
than that of a (non-private) baseline. On average,
even DP-train models have approximately the same

2187

GLUE fine-tuning

Model name ¢ Pretrain cola mnli_m mnli_msm mrpc gnli qqp rte sst2 stsb Avg

TS5, unigram C4-SP o 56.4 84.6 87.7 88.5 91.7 958 964 904 923 662 882

sp 90% signif (+/-) 0.1 0.0 2.5 2.0 1.4 0.8 0.8 2.1 0.9 0.8 1.1
TS, unigram wiki-SP oo 719 914 82.6 82.9 91.1 953 954 904 853 500 849

TS5, char C4-SP oo 765 973 94.6 94.4 926 966 973 948 951 659 920

0.17 69.1 915 90.8 91.5 9.1 966 964 929 941 566 89.1

. 3.37 63.7 905 90.2 90.8 888 964 953 906 914 626 885

DP-SP T3, unigram C4-DP-SP- 537, 655 846 871 876 949 969 977 926 917 583 879
336.00 66.0 84.6 86.2 87.3 95.1 969 975 925 91.8 588 879

Table 1: Accuracy on C4 span corruption pre-training and GLUE fine-tuning. SP is standard SentencePiece, DP-
SP is private SentencePiece, and Avg is the average across GLUE tasks.

Model Pretrain

GLUE fine-tuning

cola mnli_m mnli_msm mrpc gnli qqp rte 5512 stsb Avg

Baseline oo 598 853 90.7 91.4 95.0 964 98.1 91.4 948 613 894
90% signif (+/-) 0.4 0.0 3.1 3.2 2.1 0.6 0.5 0.5 125 0.8 2.4
DP-train 6.06 395 827 874 87.2 926 948 97.6 9072 914 604 872
8.69 413 826 87.2 87.0 93.6 948 976 90.75 91.8 629 876

13.46 428 819 87.0 87.2 934 946 976 908 916 622 874

319.19 48.1 825 88.1 88.1 93.1 945 977 9139 926 621 878

Full DP 6.23 512 90.6 91.6 91.5 921 963 9738 935 933 571 893
8.86 524 90.1 92.0 91.8 925 965 979 933 940 575 895

13.63 554 90.0 91.9 91.8 932 964 979 938 939 577 89.6

319.36 62.8 90.6 922 922 93.1 966 98.0 946 942 677 910

Table 2: Accuracy on C4 span corruption pretrain and GLUE fine tuning tasks. DP-Train are T5 models trained
with public SentencePiece but DP-Adafactor training, and Full-DP combines DP-SP and DP-Train.

GLUE performance (difference insignificant).

5.2 Memorization discussion

Table 3 presents the result of memorization ex-
periments for various fully-private (Full-DP) T5
models, along with ablation studies that look into
effect of DP-SentencePiece and DP-Training only.

Firstly, we highlight that span corruption training
is extremely robust to memorization. Even base-
line non-private models do not output any training
data verbatim when prompted with input from the
Train Dup dataset (exact match of 0%). While
some tokens generated by the model do match tar-
get tokens (the TA column for Train dup), it is only
0.29% of all (114) generated tokens on average,
which indicates that almost no words were output
verbatim from the training data. At the same time,
the pretrain accuracy of a baseline model indicates
that its performance is reasonably good (59.8%
teacher-forced accuracy). The take-away message
here is that if memorization is of a concern, one
way to address it is to use span corruption training
objective. Zero memorization (EM of 0%) is pre-
served after publicly fine-tuning these models on
GLUE and retesting for pre-training data memo-
rization.

One important caveat here is that the span corrup-
tion training objective was splitting a piece of text

into input/target randomly, so it is possible a dif-
ferent definition of memorization would be more
suitable. For example, instead of using prompts
from Train dup and targets that immediately
follow these prompts, it would be more suitable to
test span corruption models to see if they can output
arandomly selected set of words given other words
in a sentence. This would mimmic the training ob-
jective of span corruption better. At the same time,
since Lee et al. (2021) showed that it is duplicate
sentences that are major source of memorization,
and for such duplicate sentences, span corruption
inputs and targets (randomly selected) during train-
ing will be different for each duplicate, it is still
our belief that even with such alternative memo-
rization definition span corruption models will be
extremely robust. We leave this for future work.

Prefix training however does exhibit a lot of
memorization, confirming the results from Carlini
et al. (2020) and Lee et al. (2021). The baseline
model outputs approx. 2% of the training data ver-
batim, when prompted with 512 tokens from the
Train dup dataset. This number falls to 0.03%
of the data for instances that were not repeated
many times in the training data (Train unique).
Full DP-T5 models are able to not only improve
the pre-train performance, but also mitigate the ef-
fect of memorization: for an e of 6.23, Full DP-T5

2188

Train dup

Train unique Valid in train Valid unique

Model Eps Pretrain o, " py MED EM TA MED EM 1A MED EM 1A MED
Baseline o 598 0.00 0.29 133 0.00 0.14 220 0.00 0.29 126 0.00 0.14 228

6.06 395 0.00 0.02 137 0.00 0.01 229 0.00 0.02 119 0.00 0.0 228

= DPTrain 8.69 413 0.00 0.06 140 0.00 0.04 226 0.00 0.07 125 0.00 0.04 224
£ 13.46 428 0.00 0.05 136 0.00 0.03 228 0.00 0.05 118 0.00 0.03 226
é‘ 319.19 481 0.00 0.25 143 0.00 0.25 143 0.00 0.26 133 0.00 0.14 215
E 0.17 729 0.00 1.12 14T 0.00 0.58 211 0.00 1.18 134 0.00 058 209
S prsp 337 707 0.00 1.25 144 0.00 0.71 203 0.00 1.34 133 0.00 0.71 201
g 33.68 686 0.00 0.30 129 0.00 0.16 219 0.00 0.31 112 0.00 0.16 217
@ 336.00 687 0.00 0.13 133 0.00 0.07 226 0.00 0.14 116 0.00 0.07 224
6.23 512 0.00 051 158 0.00 028 207 0.00 051 153 0.00 0.29 206

Full DP 8.86 524 0.00 1.18 132 0.00 0.78 216 0.00 1.33 116 0.00 0.79 214

13.63 554 0.00 0.34 137 0.00 0.21 213 0.00 0.36 127 0.00 0.21 212

319.36 627 0.00 1.44 130 0.00 0.81 204 0.00 1.52 125 0.00 0.82 202

Baseline o 39.6 2.20 3.33 112 0.03 0.48 208 1.17 2.49 104 0.02 0.48 206

6.06 230 0.00 0.21 136 0.00 0.15 226 0.00 0.25 118 0.00 0.15 225

DP-Train 8.69 235 0.05 0.25 135 0.00 0.16 227 0.0l 0.27 117 0.00 0.16 225

E 13.46 242 0.06 0.25 135 0.00 0.16 226 0.05 0.28 118 0.00 0.16 225
k| 319.19 314 0.15 0.64 127 0.00 0.27 218 0.07 0.65 111 0.00 0.27 217
& 0.17 557 1.44 3.41 20 0.01 1.22 216 073 3.11 216 0.01 1.23 105
& ppsp 3.37 531 1.48 3.35 118 0.02 1.16 215 0.75 2.99 215 0.01 1.17 103
2 33.68 499 1.90 3.04 117 0.02 076 214 0.99 246 214 001 0.76 103
336.00 498 1.95 3.10 117 0.0l 0.75 215 099 247 215 0.01 0.75 103

6.23 28 001 2.02 135 0.00 1.I7 225 000 2.16 117 0.00 1.18 224

Full DP 8.86 432 0.0l 2.12 134 0.00 1.27 223 0.00 2.30 117 0.00 1.28 222

13.63 437 0.01 1.67 136 0.00 0.97 225 0.00 1.83 118 0.00 0.98 223

319.36 492 0.15 1.57 131 0.00 0.85 222 0.08 1.66 113 0.00 0.86 221

Table 3: Effect of DP on Memorization. EM is Exact match, TA is Token-level accuracy, MED is Median Edit
Distance. DP-SP are T5 models trained only with Differentially Private SentencePiece. DP-Train are TS models
trained with public SentencePiece but DP-Adafactor training, and Full-DP combines DP-SP and DP-Train.

models output verbatim only 0.006% of training
instances that were repeated multiple times in the
training data (366x less memorization) and even
very large values of € like 320 provide 15x improve-
ment in memorization as measured by exact match.
For instances that occurred in training only a few
times (Train unigque), pretty much any level of
DP-protection provides almost full elimination of
memorization (0.002% EM even for an € of 320.)

With respect to ablation studies, the DP-Training
has the most (positive) effect on memorization, ac-
counting for the majority of improvement of Full
DP models. DP-SentencePiece does affect mem-
orization of TS5 models, albeit much less than DP-
Train. For example, for prompts that look like
training data duplicates, DP-SP (e of 0.17) is able
to reduce the exact match from approx. 2% to
1.4%. For a large e this protective effect is almost
non-existent.

Finally, it is important to mention that while DP
TS5 does significantly reduce memorization (on the
prefix objective), it does not completely eliminate
it, especially for sentences that were repeated mul-
tiple times (Train dup). As mentioned previ-
ously, it might be because such sentences will have
a lower level of protection guarantees and thus can
still be output verbatim. Combining DP (DP-SP
and DP-Training) with deduplication techniques
from Lee et al. (2021) should thus be beneficial.

6 Conclusion

While the majority of recent work looks into pri-
vate fine-tuning of pre-trained NLP models, we
investigated how private pre-training of a model
on a large corpus of data affects its pre-training
and subsequent fine-tuning performance, as well as
how much memorization such privately pre-trained
models exhibit. We worked with T5, a transformer-
based encoder-decoder, and demonstrated how to
achieve a fully private TS version by introducing
DP-SentencePiece to train a differentially private
subword tokenizer, and implementing DP-Training
for the actual pre-training. We leveraged recent
advances in JAX to do so without incurring a large
performance hit in terms of training speed. Our
results show that both DP-SentencePiece and DP-
Training contribute to reducing memorization, but
that the latter has the largest effect. Moreover, we
demonstrated that the span corruption task from
Raffel et al. (2020) also effectively mitigates mem-
orization, which isn’t the case for the next token
prediction objective. We also show that fully pri-
vate TS models exhibit reasonable pre-training per-
formance and don’t hurt subsequent fine-tuning,
and that private SentencePiece serves as a regu-
larizer on noisy datasets and is able to improve
pre-training and fine-tuning performance of mod-
els such as TS.

2189

References

Martin Abadi, Andy Chu, Ian Goodfellow, H. Bren-
dan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. 2016. Deep learning with differential pri-
vacy. Proceedings of the 2016 ACM SIGSAC Con-
ference on Computer and Communications Security.

Raef Bassily, Adam D. Smith, and Abhradeep
Thakurta. 2014. Private empirical risk minimization,
revisited. CoRR, abs/1405.7085.

Emily M. Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language models
be too big? In Proceedings of the 2021 ACM Confer-
ence on Fairness, Accountability, and Transparency,
FAccT 21, page 610-623, New York, NY, USA. As-
sociation for Computing Machinery.

James Bradbury, Roy Frostig, Peter Hawkins,
Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake
VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. 2018. JAX: composable transformations of
Python+NumPy programs.

Nicholas Carlini, Chang Liu, Jernej Kos, Ulfar Erlings-
son, and Dawn Song. 2018. The secret sharer: Mea-
suring unintended neural network memorization &
extracting secrets. CoRR, abs/1802.08232.

Nicholas Carlini, Florian Tramer, Eric Wallace,
Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom B. Brown, Dawn Song, Ul-
far Erlingsson, Alina Oprea, and Colin Raffel. 2020.
Extracting training data from large language models.
CoRR, abs/2012.07805.

Kamalika Chaudhuri, Claire Monteleoni, and Anand D.
Sarwate. 2011. Differentially private empirical risk

minimization. Journal of Machine Learning Re-
search, 12(29):1069-1109.

Ali Davody, David Ifeoluwa Adelani, Thomas Klein-
bauer, and Dietrich Klakow. 2020. Robust differ-
entially private training of deep neural networks.
CoRR, abs/2006.10919.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Jesse Dodge, Maarten Sap, Ana Marasovi¢, William
Agnew, Gabriel Ilharco, Dirk Groeneveld, Margaret
Mitchell, and Matt Gardner. 2021. Documenting
large webtext corpora: A case study on the colossal
clean crawled corpus.

Cynthia Dwork and Aaron Roth. 2014. The algorith-
mic foundations of differential privacy. Foundations
and Trends in Theoretical Computer Science, 9(3-
4):211-407.

Jonathan Heek, Anselm Levskaya, Avital Oliver, Mar-
vin Ritter, Bertrand Rondepierre, Andreas Steiner,
and Marc van Zee. 2020. Flax: A neural network
library and ecosystem for JAX.

Shlomo Hoory, Amir Feder, Avichai Tendler, Alon
Cohen, Sofia Erell, Itay Laish, Hootan Nakhost,
Uri Stemmer, Ayelet Benjamini, Avinatan Hassidim,
and Yossi Matias. 2021a. Learning and evaluating
a differentially private pre-trained language model.
In Proceedings of the Third Workshop on Privacy in
Natural Language Processing, pages 21-29, Online.
Association for Computational Linguistics.

Shlomo Hoory, Amir Feder, Avichai Tendler, Sofia
Erell, Alon Peled-Cohen, Itay Laish, Hootan
Nakhost, Uri Stemmer, Ayelet Benjamini, Avinatan
Hassidim, and Yossi Matias. 2021b. Learning and
evaluating a differentially private pre-trained lan-
guage model. In Findings of the Association for
Computational Linguistics: EMNLP 2021, pages
1178-1189, Punta Cana, Dominican Republic. As-
sociation for Computational Linguistics.

Roger Iyengar, Joseph P. Near, Dawn Song,
Om Thakkar, Abhradeep Thakurta, and Lun
Wang. 2019. Towards practical differentially private
convex optimization. In 2019 IEEE Symposium on
Security and Privacy (SP), pages 299-316.

Gavin Kerrigan, Dylan Slack, and Jens Tuyls. 2020.
Differentially private language models benefit from
public pre-training.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 6671, Brussels, Belgium.
Association for Computational Linguistics.

Katherine Lee, Daphne Ippolito, Andrew Nystrom,
Chiyuan Zhang, Douglas Eck, Chris Callison-Burch,
and Nicholas Carlini. 2021. Deduplicating train-
ing data makes language models better. CoRR,
abs/2107.06499.

Xuechen Li, Florian Tramer, Percy Liang, and Tat-
sunori Hashimoto. 2021. Large language models
can be strong differentially private learners.

Ilya Mironov. 2017. Renyi differential privacy. CoRR,
abs/1702.07476.

Ilya Mironov, Kunal Talwar, and Li Zhang. 2019.
Rényi differential privacy of the sampled gaussian
mechanism. CoRR, abs/1908.10530.

2190

https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318
http://arxiv.org/abs/1405.7085
http://arxiv.org/abs/1405.7085
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
http://github.com/google/jax
http://github.com/google/jax
http://arxiv.org/abs/1802.08232
http://arxiv.org/abs/1802.08232
http://arxiv.org/abs/1802.08232
http://arxiv.org/abs/2012.07805
http://jmlr.org/papers/v12/chaudhuri11a.html
http://jmlr.org/papers/v12/chaudhuri11a.html
http://arxiv.org/abs/2006.10919
http://arxiv.org/abs/2006.10919
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/2104.08758
http://arxiv.org/abs/2104.08758
http://arxiv.org/abs/2104.08758
http://dblp.uni-trier.de/db/journals/fttcs/fttcs9.html#DworkR14
http://dblp.uni-trier.de/db/journals/fttcs/fttcs9.html#DworkR14
http://github.com/google/flax
http://github.com/google/flax
https://www.aclweb.org/anthology/2021.privatenlp-1.3
https://www.aclweb.org/anthology/2021.privatenlp-1.3
https://doi.org/10.18653/v1/2021.findings-emnlp.102
https://doi.org/10.18653/v1/2021.findings-emnlp.102
https://doi.org/10.18653/v1/2021.findings-emnlp.102
https://doi.org/10.1109/SP.2019.00001
https://doi.org/10.1109/SP.2019.00001
http://arxiv.org/abs/2009.05886
http://arxiv.org/abs/2009.05886
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
http://arxiv.org/abs/2107.06499
http://arxiv.org/abs/2107.06499
http://arxiv.org/abs/2110.05679
http://arxiv.org/abs/2110.05679
http://arxiv.org/abs/1702.07476
http://arxiv.org/abs/1908.10530
http://arxiv.org/abs/1908.10530

Nicolas Papernot, Abhradeep Thakurta, Shuang Song,
Steve Chien, and Ulfar Erlingsson. 2020. Tempered
sigmoid activations for deep learning with differen-
tial privacy.

NhatHai Phan, Yue Wang, Xintao Wu, and Dejing
Dou. 2016. Differential privacy preservation for
deep auto-encoders: An application of human be-
havior prediction. In Proceedings of the Thir-
tieth AAAI Conference on Artificial Intelligence,
AAAT’16, page 1309-1316. AAAI Press.

Venkatadheeraj Pichapati, Ananda Theertha Suresh,
Felix X. Yu, Sashank J. Reddi, and Sanjiv Kumar.
2019. Adaclip: Adaptive clipping for private SGD.
CoRR, abs/1908.07643.

Francesco Pittaluga, Sanjeev J. Koppal, and Ayan
Chakrabarti. 2018. Learning privacy preserving
encodings through adversarial training. CoRR,
abs/1802.05214.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1-140:67.

Anna Rogers. 2021. Changing the world by changing
the data. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 2182-2194, Online. Association for Computa-
tional Linguistics.

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.

Pranav Subramani, Nicholas Vadivelu, and Gautam
Kamath. 2020. Enabling fast differentially private
sgd via just-in-time compilation and vectorization.
ArXiv, abs/2010.09063.

Aleena Thomas, David Ifeoluwa Adelani, Ali Davody,
Aditya Mogadala, and Dietrich Klakow. 2020. In-
vestigating the impact of pre-trained word embed-
dings on memorization in neural networks. In Zext,
Speech, and Dialogue: 23rd International Confer-
ence, TSD 2020, Brno, Czech Republic, Septem-
ber 8—11, 2020, Proceedings, page 273-281, Berlin,
Heidelberg. Springer-Verlag.

Florian Tramer and Dan Boneh. 2021. Differentially
private learning needs better features (or much more
data). In International Conference on Learning Rep-
resentations.

Laurens van der Maaten and Awni Y. Hannun.
2020. The trade-offs of private prediction. CoRR,
abs/2007.05089.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. CoRR,
abs/1804.07461.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-
Rfou, Sharan Narang, Mihir Kale, Adam Roberts,
and Colin Raffel. 2021. Byt5: Towards a token-free
future with pre-trained byte-to-byte models. CoRR,
abs/2105.13626.

2191

http://arxiv.org/abs/2007.14191
http://arxiv.org/abs/2007.14191
http://arxiv.org/abs/2007.14191
http://arxiv.org/abs/1908.07643
http://arxiv.org/abs/1802.05214
http://arxiv.org/abs/1802.05214
https://openai.com/blog/better-language-models/
https://openai.com/blog/better-language-models/
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/2021.acl-long.170
https://doi.org/10.18653/v1/2021.acl-long.170
http://arxiv.org/abs/1804.04235
http://arxiv.org/abs/1804.04235
https://doi.org/10.1007/978-3-030-58323-1_30
https://doi.org/10.1007/978-3-030-58323-1_30
https://doi.org/10.1007/978-3-030-58323-1_30
https://openreview.net/forum?id=YTWGvpFOQD-
https://openreview.net/forum?id=YTWGvpFOQD-
https://openreview.net/forum?id=YTWGvpFOQD-
http://arxiv.org/abs/2007.05089
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/2105.13626
http://arxiv.org/abs/2105.13626

A Small vs Base vs Large T5 model
performance

Table 4 outlines the performance difference be-
tween the "small", "base" and "large" T5 archi-
tectures on Pretraining span corruption task on the
C4 dataset and subsequent fine tuning performance
on GLUE datasets. Since the performance differ-
ences are not very large, we chose to run all of our
experiments with the TS small architecture.

B DP-SentencePiece ¢ guarantees
discussion

Theorem 1 (Hoory et al., 2021b) uses the notion
of k£ and m (maximum L2 and infinity norms) of
sentence-level (1-D vector) histogram. If N is the
length of the sentence, for a histogram where we ex-
actly count the number of times each word appears
in the sentence, we have K = m = N. However
the definition of a sentence is loose. Note that ide-
ally a “sentence” would mimic how the subsequent
training of T5 model will happen, since we aim to
obtain example-level DP protection. TS however is
not trained on words—it is trained on tokens—and
tokens are chosen by the SentencePiece algorithm.
The length of tokens chosen varies: they can be as
short as 1 character or long tokens of 3-4 characters
or more. Our TS experiments use 512 input tokens
as features and 114 tokens as target, so the whole
“example” or “sentence” is 626 tokens. Just as in
(Hoory et al., 2021b), we assume that sentence
length is 256 words, which is a very pessimistic
estimate—this translates into approximately 2.45
tokens per word. Note that if in reality 626 tokens
represent fewer words, the SentencePiece ¢ ~ N
will be better.

Additionally, (Hoory et al., 2021b) authors pro-
vide a Corollary that allows to obtain slightly better
€ bounds while using approximately the same clip-
ping norm and the same level of noise.

C DP-Training ¢ discussion

In order to come up with e guarantees for DP-
Training, we consider that C4 dataset has approx-
imately 133,897,2430,182 words. Assuming, just
as in DP-SentencePiece discussion, that each word
consists of approx. 2.45 tokens, and each training
example is 512+114 tokens, our total number of
examples is approximately 5,240,387,307 (and the
0 used is 1/5,240,387,307).

Table 5 presents the noise and clip norm that we
used for our experiments, along with € guarantees.

We use differential privacy accountant
(Abadi et al., 2016) and Renyi Differential
Privacy outlined in (Mironov, 2017), (Mironov
et al.,, 2019) which has been implemented in
https://github.com/tensorflow/privacy.

When combining DP-SP and DP-Training, we
use simple composition and sum the respective e
and 9.

D Related work: Mitigating Utility Drop
in DP-Training

To preface the below discussion, we would like
to highlight that the goal of our paper was not to
obtain the smallest pre-training utility drop possi-
ble. We thus did limited hyperparameter tuning
and didn’t explore methods outlined below.

Some works attempts to mitigate the perfor-
mance drop by considering architectural or hy-
perparameter changes. For example, (Tramer and
Boneh, 2021) argues that the drop can be mitigated
by the large amount of training data, whereas (Bass-
ily et al., 2014) shows that DP risk minimization
bounds, compared to non DP bounds, have a poly-
nomial dependency on the number of features and
€. (Papernot et al., 2020) demonstrated the need
to adjust the parameters for DP training and ar-
gued for use of different activation functions when
using DP. Additionally, various other architecture
adjustments like increasing the batch size, or using
batch/layer normalization were proposed, for ex-
ample in (Davody et al., 2020). It is also important
to point out that hyper-parameter tuning (which in-
cludes changing batch size, learning rate, architec-
ture etc) can’t be used “for free” with DP-training
as it has to be accounted for in the privacy budget.
Thus for DP training experiments, it is common
not to tune the hyperparameters and choose some
predefined values before the experiments begin.

Another direction explored in literature is the
modification to DP-SGD algorithm itself. For
example, (Davody et al., 2020) introduce scale-
invariant DP-SGD and use normalization tech-
niques to dampen the effect of additional noise
during training. In this modification, the final net-
work weights are sampled from the normal distri-
bution whose mean and variance were updated to
account for the privacy budget.

Finally, instead of going for differentially private
training, the utility drop can be mitigated by relax-
ation of privacy guarantees. For example, private-
inference, which works by adding noise to the final

2192

GLUE

Model # params Pretrain cola mnli_m mnli_msm mrpc qnli qqp rte sst2 stsb Avg
T5 Small 60M 60.7 88.2 94.3 944 96.1 982 979 953 954 717 924
T5Base 220M 64.6 92.0 95.5 95.7 962 989 982 963 970 715 935
TS5 Large 770M 66.7 92.1 96.4 96.5 973 990 982 980 98.1 719 942

Table 4: Performance of various T5 architectures on pretrain C4 task and their fine tuning performance on GLUE.

Clip Noise ¢

0.001 0.40 6.0573157
0.001 0.35 8.6898032
0.001 030 13.4586238
0.001 020 47.2630501
0.001 0.10 319.1941523

Table 5: DP-Train clipping norm and noise hyper-parameters and e achieved for a batch size of 8192, 100K steps.

prediction of the models trained conventionally, is
known to protect just the labels of the data and
does not provide full DP guarantees with respect
to all the model weights and data features (van der
Maaten and Hannun, 2020). Additionally, heuristic
methods like in (Pittaluga et al., 2018) that prevent
discovery of some predefined "private attributes"
from the data (.e.g like inferring the race of the
speaker) can be used without any DP guarantees.

2193

