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Abstract

Scaling dialogue systems to a multitude of do-
mains, tasks and languages relies on costly
and time-consuming data annotation for differ-
ent domain-task-language configurations. The
annotation efforts might be substantially re-
duced by the methods that generalise well
in zero- and few-shot scenarios, and also ef-
fectively leverage external unannotated data
sources (e.g., Web-scale corpora). We pro-
pose two methods to this aim, offering im-
proved dialogue natural language understand-
ing (NLU) across multiple languages: 1)
Multi-SentAugment, and 2) LayerAgg. Multi-
SentAugment is a self-training method which
augments available (typically few-shot) train-
ing data with similar (automatically labelled)
in-domain sentences from large monolingual
Web-scale corpora. LayerAgg learns to select
and combine useful semantic information scat-
tered across different layers of a Transformer
model (e.g., mBERT); it is especially suited
for zero-shot scenarios as semantically richer
representations should strengthen the model’s
cross-lingual capabilities. Applying the two
methods with state-of-the-art NLU models ob-
tains consistent improvements across two stan-
dard multilingual NLU datasets covering 16
diverse languages. The gains are observed in
zero-shot, few-shot, and even in full-data sce-
narios. The results also suggest that the two
methods achieve a synergistic effect: the best
overall performance in few-shot setups is at-
tained when the methods are used together.

1 Introduction

The aim of Natural Language Understanding
(NLU) in task-oriented dialogue systems is to iden-
tify the user’s need from their utterance (Xu et al.,
2020). This comprises the following crucial in-
formation: 1) intents, what the user intends to do,
and 2) (typically predefined) slots, associated ar-
guments of the intent (Tur et al., 2010; Tur and
De Mori, 2011) which need to be filled with spe-
cific values. Intent detection is often framed as a
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Figure 1: Illustration of two user utterances in the ATIS
flight domain with associated intents and slot tags.

standard sentence classification task, where every
sentence maps to one or more intent classes; slot
labelling is typically cast as a sequence labelling
task, where each word is labelled with a BIO-style
slot tag (Bunk et al., 2020), see Figure 1.

The supervised models for NLU in English
are plentiful and achieve extremely high accuracy
(Louvan and Magnini, 2020a; Qin et al., 2021). At
the same time, porting an NLU system to any new
domain and language requires collecting a large in-
domain dataset, and training a model for the target
language (Xu et al., 2020). Such in-domain annota-
tions in multiple languages are extremely expensive
and time-consuming (Rastogi et al., 2020), also re-
flected in the fact that large enough dialogue NLU
datasets for other languages are still few and far be-
tween (Razumovskaia et al., 2021). This in turn cre-
ates the demand for strong multilingual and cross-
lingual methods which generalise well and learn
effectively in zero-shot and few-shot scenarios. In
this work, we propose two methods to this end:
1) Multi-SentAugment, a weakly supervised data
augmentation method which improves the capabil-
ity of current state-of-the-art (SotA) dialogue NLU
in few-shot scenarios via self-training; 2) Layer-
Agg learns to effectively leverage and combine the
knowledge stored across different layers of a pre-
trained multilingual Transformer (e.g., mBERT).

The main goal of Multi-SentAugment is to re-
duce the required amount of labelled data and man-
ual annotation labour by harvesting the large pool
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of unannotated data, and carefully selecting rele-
vant in-domain examples which can then be auto-
matically labelled (Du et al., 2021). In a nutshell,
domain-relevant unannotated sentences are first re-
trieved from a large multilingual sentence bank.
The synthetic labels for the data are then generated
by a teacher model, previously trained with avail-
able annotated data. A final student model is then
trained on the combination of synthetically labeled
and annotated data. To the best of our knowledge,
our work is the first to mine large unannotated
monolingual resources in multiple languages to
augment data for multilingual dialogue NLU.

The goal of LayerAgg is to leverage useful lexi-
cal and other semantic information scattered across
layers (Tenney et al., 2019; Vuli¢ et al., 2020) of a
pretrained multilingual Transformer. Moving away
from the standard fine-tuning practice of using only
the representations from the top layer, we hypothe-
sise that the model’s cross-lingual capabilities can
be increased by forcing it (i) to propagate seman-
tic information from lower layers, as well as (ii)
to aggregate/combine semantic information from
all its layers. In a nutshell, we propose to use a
multilingual encoder with cross-layer Transformer,
which selects and combines the knowledge from
all layers of a pretrained model during fine-tuning.

Our experiments show that Multi-SentAugment
gives consistent improvements in few-shot and full-
data scenarios on the two available multilingual
dialogue NLU datasets: MultiATIS++ (Xu et al.,
2020) and xSID (van der Goot et al., 2021). The
results further indicate that LayerAgg improves
zero-shot performance on the same datasets. Fi-
nally, since the two methods can be independently
applied to SotA NLU models, we demonstrate that
they yield a synergistic effect: the highest scores
on average are achieved with their combination.

Contributions. 1) Multi-SentAugment is a simple
yet effective data augmentation approach which
leverages unannotated data from large Web-scale
corpora to boost multilingual dialogue NLU. 2)
LayerAgg is a novel cross-layer attention method
which learns to effectively combine useful semantic
information from multiple layers of a multilingual
Transformer. 3) The two methods applied with
SotA NLU models obtain consistent gains across
two standard multilingual NLU datasets in zero-
shot, and 8 languages in few-shot, and full-data
setups, boosting the capability of cross-lingual dia-
logue in resource-lean scenarios.

2 Related Work and Background

Multilingual NLU for Dialogue Systems is usu-
ally divided into two tasks: intent detection and slot
labelling (Tur et al., 2010; Xu et al., 2020). In “pre-
Transformer” times, the methods for training multi-
lingual NLU systems were based on static multilin-
gual word vectors (Mrksi¢ et al., 2017; Upadhyay
et al., 2018; Schuster et al., 2019), lexicon align-
ment (Liu et al., 2019b,a), and model or annotation
projection via parallel data (Kulshreshtha et al.,
2020; Lopez de Lacalle et al., 2020).

Transfer learning with large pretrained multilin-
gual Transformer-based language models (LMs)
such as mBERT (Devlin et al., 2019) and XLM-
R (Conneau et al., 2020a) has demonstrated cur-
rently unmatched performance in many NLU tasks
(Liang et al., 2020; Hu et al., 2020; Ponti et al.,
2020; Ruder et al., 2021), including intent clas-
sification and slot labelling (Zhang et al., 2019;
Liu et al., 2020). Fine-tuning a large multilin-
gual LM has become a standard for multilingual
NLU (Zhang et al., 2019; Xu et al., 2019; Kul-
shreshtha et al., 2020). However, the excessively
high data annotation costs for multiple domains
and languages still hinder progress in multilingual
dialogue (Razumovskaia et al., 2021). In this pa-
per, unlike prior work, we propose to use external
unannotated data to mine and automatically label
in-domain in-language examples which aid learn-
ing in low-data regimes across multiple languages.

Data Augmentation in Multilingual NLU, as
well as data augmentation methods in NLP in gen-
eral, aim to produce additional training data au-
tomatically, without the need to manually label
it. In monolingual English-only settings, English
NLU data has been augmented by generating ad-
ditional data with a large monolingual language
model (Peng et al., 2020) such as BERT (Devlin
et al., 2019) or GPT-2 (Radford et al., 2019), or
from atomic templates (Zhao et al., 2019). In mul-
tilingual settings, data augmentation methods for
NLU include simple text span substitution and syn-
tactic structure manipulation (Louvan and Magnini,
2020c,b). Recently, code switching (Krishnan et al.,
2021) and generating translations through a pivot
language (Kaliamoorthi et al., 2021) have also been
proposed as data augmentation methods.

The previous work relies on (i) additional com-
ponents such as syntactic parsers or POS taggers,
or (ii) parallel and code-switched data. However,
they might be unavailable or of low-quality for
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many (low-resource) languages. In contrast, Multi-
SentAugment relies on the cheapest and largest
resource available: monolingual Web-crawled data;
it disposes of any dependency parsers and taggers,
which makes it more widely applicable. Mining
knowledge from Web-scale data was shown effec-
tive in various (non-dialogue) text classification
tasks (Du et al., 2021) and in MT (Wu et al., 2019).

Layer Aggregation in Pretrained LMs. A stan-
dard practice is to use the output of the final/top
layer of a pretrained LM as input into task-specific
classifiers (Devlin et al., 2019; Sun et al., 2019).
At the same time, prior work shows that most of
(decontextualised) lexical information (Ethayarajh,
2019; Vuli¢ et al., 2020) and word-order informa-
tion (Lin et al., 2019) is localised in lower layers
of BERT. Middle layers usually encode syntactic
information (Hewitt and Manning, 2019; Jawahar
et al., 2019) while (contextual) semantic informa-
tion is spread across all the layers of a pretrained
LM (Tenney et al., 2019), with higher layers cap-
turing increasingly abstract language phenomena
(Lin et al., 2019; Rogers et al., 2020; Tenney et al.,
2019). Kondratyuk and Straka (2019) showed that
using a weighted combination of all layers works
well in cross-lingual settings for a syntactic task of
dependency parsing. In addition, they proposed to
use layer dropout to redistribute how the informa-
tion is localised in a fine-tuned BERT model.

In order to "unlock’ additional semantic knowl-
edge from other layers, we propose an additional
Transformer encoder with cross-layer attention as
a layer aggregation mechanism. We hypothesise
that relying only on the representations from the
top layer dilutes mBERT’s lexical and semantic
information. Moreover, we expect lexically and
semantically richer representations to be especially
useful for zero-shot settings: aggregated (contex-
tualised) semantic information from lower layers
could help correctly identify the intent of the sen-
tence, while lexical information could help identify
the slot tag for different languages.?

3 Methodology

We assume a standard state-of-the-art approach to
dialogue NLU in multiple languages (Xu et al.,

"Unlike Du et al. (2021), we do not tune pretrained lan-
guage models to sentence similarity, but use off-the-shelf pre-
trained multilingual sentence encoders (Artetxe and Schwenk,
2019; Feng et al., 2020; Litschko et al., 2021).

2For instance, 710.07.2021 will be typically identified as
date in many languages.

2020), based on fine-tuning pretrained multilingual
LMs on the tasks of intent detection and slot la-
belling. Following Xu et al. (2020), we fine-tune
the pretrained LM in a standard supervised fashion,
with task-specific linear layers stacked on top.

Separate NLU Models. The multilingual encoder
for each NLU task is fine-tuned separately, and
there is no knowledge exchange (but also no noise
or destructive inference) between the two tasks. We
adopt a standard task-specific fine-tuning setup (Xu
et al., 2020; Siddhant et al., 2020).

Joint NLU Model. Another line of recent work
pursued joint modelling of the two tasks, moti-
vated by the intuitive correlation between them.’
In this work, we follow a standard joint modelling
procedure (Xu et al., 2020; Hardalov et al., 2020;
Krishnan et al., 2021), where the model consists
of a shared multilingual encoder followed by task-
specific linear layers for intent classification and
slot labelling. The loss is then simply a sum of two
task-dedicated losses. In our experiments, we use
mBERT (Devlin et al., 2019) and XLM-R (Con-
neau et al., 2020a) as the encoder.
Multi-SentAugment (§3.1) and LayerAgg (§3.2)
are then applied to the joint NLU model, while we
also provide detailed comparisons to the separate
NLU models as baselines in zero-shot setups.

3.1 Multi-SentAugment

Large Web-crawled datasets have been proven use-
ful for extracting additional data for classification
tasks in English (Du et al., 2021). We adapt the ap-
proach of Du et al. (2021) to multilingual dialogue
NLU, that is, we propose to use large Web-crawled
corpora to obtain additional in-domain data for dia-
logue NLU tasks in multiple languages.

For each language [ we are given: 1) some an-
notated training data D; which consists of | D]
sentences 1, ..., |p,|, each labelled with intent
class and slot labels (see Figure 1); 2) a large Web-
crawled corpus U; consisting of |U;| sentences
81, .-, 8|75 3) off-the-shelf multilingual sentence
encoder [ fine-tuned towards semantic sentence
similarity, that is, to produce semantic embeddings
of input sentences (Reimers and Gurevych, 2020).
The data augmentation process then consists of 1)
unsupervised data retrieval and 2) self-training.

3Information about the slots in an utterance could be infor-
mative of its intent, and vice versa. For instance, an utterance
containing temperature unit slotis more likely to be-
long to intent find_weather than to intent set_alarm.
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Figure 2: Illustration of the LayerAgg method.

The aim of unsupervised data retrieval is to con-
struct an in-domain unannotated set of sentences
by filtering the sentences from U;. The process is
formulated by the following equations:

X = F(-:Ul? .. 7x|Dl|>7U = IE‘(817""$|Ul‘);
Ux’ S0
0O = —=——r ;
OHIX]|

6 is a similarity threshold for sentence filtering: a
sentence s; will be added into the in-domain dataset
if there is an annotated sentence x; € D; such that
0;,; > 0. As aresult of data retrieval, we obtain a
set of in-domain unannotated sentences which are
similar to annotated training data D;.

At self-training, we first fine-tune a joint NLU
model on annotated D; data. We then use this
model to annotate the retrieved in-domain sen-
tences. As our final NLU model, we fine-tune a
new joint NLU model on the full dataset, combin-
ing the D; set and filtered and annotated sentences.

3.2 LayerAgg

To ensure the propagation and use of lexical and
semantic information from lower layers, we pro-
pose a simple layer aggregation technique based on
cross-layer attention (Vaswani et al., 2017), illus-
trated in Figure 2. In short, let w;; be a representa-
tion of a word (or WordPiece; Devlin et al. (2019))
at position i at layer j, 7 = 1,..., N;, where N}
is the number of layers in the pretrained LM (e.g.,
N; = 12 for mBERT). Layer-aggregated represen-
tation w; of the input w; is computed as follows:

w; = T(w; 1.n,), (D

where w; ;.n, is a sequence comprising all (or-
dered) w; per-layer representations, and T is a
cross-layer Transformer encoder. In essence, T ef-
fectively always operates over a sequence of length

Dataset Languages Utterances Intents  Slots
de, en, es,
zh, ja, fr, 5871 18 84
MultiATIS++ pt
tr 1353 17 71
hi 2493 17 75
en 43605
ar, da, de,
xSID de-st (st), id, it, 13 16
kk, nl, sr, 800
tr, zh
ja 400

Table 1: Dataset statistics for MultiATIS++ and xSID.
Language codes are available in the Appendix.

Nj: it outputs the representations from all layers,
but which have now been self-attended. We then
feed the last item (i.e., N;-th item) of the sequence
representation output by the Transformer T into
the task-specific classifiers. Relying on the N;-th
output representation, the model is forced to incor-
porate the information from all layers into the final
representation of the input token w;. The parame-
ters of T are also updated during fine-tuning.

4 Experimental Setup

Evaluation Datasets comprise two standard mul-
tilingual dialogue NLU datasets: MultiATIS++ (Xu
et al., 2020) and xSID (van der Goot et al., 2021),
created by translating monolingual labelled English
data into target languages. MultiATIS++ is a single
domain (airline) dataset while xSID covers 7 do-
mains including alarm, weather, music, events and
reminder. xSID is an evaluation only dataset, i.e., it
contains training data only for English. The statis-
tics of the datasets are presented in Table 1. The
datasets consist of sentences each labelled with an
intent class and BIO slot tags/labels, see Figure 1.

Large (Multilingual) Sentence Banks. We use
the CC-100 dataset (Conneau et al., 2020a; Wen-
zek et al., 2020), which comprises monolingual
CommonCrawl data in 116 languages. For compu-
tational tractability with resources at our disposal,
we rely on the smaller CC-100-100M dataset, a
random sample from the full CC-100* spanning
100M sentences in each language. CC-100 covers
multiple domains, language styles and variations.

Multi-SentAugment: Setup. Unless noted other-
wise, we use the LASER multilingual sentence en-
coder (Artetxe and Schwenk, 2019), pretrained on

*http://data.statmt.org/cc-100/
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93 languages with a sentence similarity objective
on parallel data. The similarity threshold @ is set
to 0.8. Besides the basic setup, (i) we also analyse
the impact of the sentence encoder by running ex-
periments with another SotA multilingual encoder:
LaBSE (Feng et al., 2020; Litschko et al., 2021);
(i1) we apply an additional filtering step based on
the intent confidence of the teacher model, retain-
ing only high-confidence examples.’

LayerAgg. The aggregator Transformer T con-
tains a single 512-dimensional layer with 4 atten-
tion heads. Here, we remind the reader that the
N;-th item of T’s output sequence is fed to the task-
specific layers; see again §3.2). LayerAgg adds up
to 2 million additional parameters, which is ~ 1%
of the total number of trainable parameters in the
baseline model. In addition, we present an exten-
sive comparison with a standard layer aggregation
method of Kondratyuk (2019), which is based on
cross-layer attention.

Fine-Tuning Setup. 1) In the zero-shot setup, we
train the model on the English training data and
evaluate on other (target) languages. 2) In the
few-shot setup, unless stated otherwise, we add
10 target-language examples (i.e., shots) per intent
to the English training data. 3) In the full-data
setup, we use the entire training set of the target
language (without any English data). For unsuper-
vised sentence retrieval in few-shot and full-data
setups, we only use the examples in the target lan-
guage as our query set D; (see §3.1). In all experi-
ments, we evaluate on the validation set after each
epoch, and train for 20 epochs with a patience of 5
epochs, with Adam (Kingma and Ba, 2015) as the
optimiser, batches of 32; the learning rate is 5e — 5,
and the warm-up rate is 0.1. We experiment with
mBERT Base and XLM-R Base as multilingual en-
coders. The hyperparameters were set to the values
corresponding to those in Xu et al. (2020).

5 Results and Discussion

Joint vs Separate NLU. We first establish the per-
formance of joint versus separate baseline NLU
models. The main results, provided in Tables 2
and 3, indicate that joint NLU training performs
better on intent classification while separate task-
specific NLU models are more beneficial on slot

>In practice, when we label extracted sentences with the
teacher model, we only retain the sentences where the teacher
model is confident in its prediction, that is, it assigns the intent
class probability p > 0.95.

labelling. Our results corroborate the findings from
prior work (Schuster et al., 2019; He et al., 2020;
Weld et al., 2021). We suspect that joint training
works better for intent classification as sentence-
level representations are enriched with lexical in-
formation through the additional slot-labelling loss.
At the same time, separate training attains stronger
performance in slot labelling as it retains more task-
specific representations for each token.

Impact of LayerAgg. The motivation behind Lay-
erAgg is to combine the strengths of both joint
and separate training, that is, having sentence-level
representations enriched with lexical information
while keeping token representations specified. The
benefits of LayerAgg in both tasks in zero-shot se-
tups are indicated by the results in Tables 2-3. We
observe large improvements with LayerAgg, both
on average and for the large number of individual
target languages. It is worth noting that LayerAgg
provides gains also with both underlying multilin-
gual encoders. Besides that, adding LayerAgg also
yields more stable performance of the joint model
in general (e.g., compare the scores on Japanese
and Turkish slot labelling without and with Lay-
erAgg). The gains with LayerAgg also persist in
few-shot and full-data setups, as shown in Figure 3.

+LayerAgg versus +Attn. Table 2 also presents a
comparison of two layer aggregation techniques:
cross-layer attention from Kondratyuk and Straka
(2019) (+Attn), now adapted to dialogue NLU
tasks, and LayerAgg. While both methods pro-
duce gains over the Joint baseline in several target
languages, LayerAgg yields much more substantial
gains, and is more robust across different model
configurations and tasks. While the Attn aggrega-
tion simply provides a weighted sum of information
encoded across Transformer layers based on its im-
portance to the final prediction, LayerAgg has the
capability to analyse and aggregate the information
as it evolves between layers (Voita et al., 2019).

Impact of Multi-SentAugment. The results in
Figure 3 suggest that Multi-SentAugment is indeed
useful as data augmentation for the two NLU tasks,
both in few-shot and full-data scenarios, and for
different target languages.® Achieving slight gains
in full-data scenarios implies that mining additional
monolingual data is beneficial even when a large
in-domain dataset in the target language is avail-

®We suspect that a slight performance drop in few-shot

setups for zh and ja mostly stems from some discrepancy in
tokenization between MultiATIS++ and CC-100.
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Target language de en es fr hi ja pt tr zh AVG
Intent classification (Accuracy x 100)

Separate mBERT 8925 9866 90.71 9171 _ 7423 7727 9183 6454 8219 8272
Joint mBERT 86.45 98.54 87.79 93.39 75.71 76.71 91.83 70.78 84.55 83.40
+Attn 85.67 98.66 88.91 87.57 76.63 80.52 91.04 69.65 84.21 83.02
+LayerAgg 90.03 98.54 93.28 94.51 74.92 77.27 92.95 70.21 81.52 84.34

“Joint XLM-R =~ 9142 ~ 9845 9120 9142 ~ 8099 8096 9247 ~ 7194 8441 = 85.60
+Attn 91.12 98.88 90.41 91.12 78.01 82.16 94.79 70.56 83.32 85.19
+LayerAgg 94.81 98.73 91.97 93.58 78.28 84.25 92.68 68.41 86.15 86.27

Slot labelling (Slot F1 x 100)
Separate mBERT  70.41 95.20 73.31 66.66 39.13 56.54 63.00 49.31 56.65 59.38

" Joint mBERT =~ = ~ 7052 ~ "95.54° ~ 7020 6720 = 41.00° 4820 © 6320 = 41.17 5648 = 5725
+Attn 70.14 95.44 70.48 68.30 44.46 52.89 64.64 48.20 56.46 59.46
+LayerAgg 69.15 95.26 73.58 68.26 43.59 58.05 64.55 48.08 55.62 60.11

" Joint XEM-R =~~~ 81.57 ~ 95.58 ~ 8I1.05 7324 ~ 3371 4822 " 7565 ~ 3892 6527 < 62.20
+Attn 79.88 95.58 80.40 70.50 33.20 46.45 75.33 38.60 65.62 61.25
+LayerAgg 80.93 95.91 81.11 74.02 34.06 57.88 77.06 38.94 72.62 64.58

Table 2: Zero-shot results on MultiATIS++ (English is the source language in all experiments). The average is
computed across target languages (excluding English). Highest scores in each task for every encoder per column
in bold. The results are averaged across 5 random seeds. +Attn refers to using standard cross-layer attention as
layer aggregation, as done in prior work (Kondratyuk and Straka, 2019).

Target language ar da de st en id it ja kk nl Ny tr zh AVG
Intent classification (Accuracy x 100)

Joint mBERT 46.13 74.07 62.67 47.07 98.80 68.00 58.47 35.47 40.07 65.87 58.13 47.60 72.61 56.35
+LayerAgg 51.13 7293 63.00 49.47 98.67 69.00 62.20 39.33 47.53 65.73 61.73 50.80 69.64 58.54
" Joint XLM-R ~ ~ 51.07 86.40 70.73 4820 98.73 §1.87 69.13 39.60 45.53 79.20 70.07 72.00 77.60 65.95
+LayerAgg 57.40 86.60 73.00 53.33 98.80 83.27 73.07 46.67 48.80 80.27 72.33 75.93 85.60 69.69
Slot labelling (Slot F1 x 100)

Joint mBERT 19.98 34.66 35.86 17.39 9537 29.45 34.63 23.28 33.58 38.37 25.74 3290 63.80 32.47
+LayerAgg 21.00 36.21 37.97 18.51 94.27 28.74 35.50 30.19 35.58 38.91 25.79 35.32 62.00 33.77

" Joint XLM-R ~ 3240 68.81 53772 20.68 94.97 6431 56.93 25.45 28.97 71.57 48.96 46.18 56.42 4791

+LayerAgg

35.36

68.50 52.16 21.24 95.67 66.21 56.78 23.68 28.60 68.10 50.57 47.91 56.96 48.01

Table 3: Zero-shot results on xSID. The average is computed across target languages (excluding English). Highest
scores in each task for every encoder per column in bold. The results are averaged across 5 random seeds.
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Figure 3: Few-shot and full-data results on MultiATIS++. BASE = joint training baseline; MSA = +Multi-
SentAugment; MSA FILT = +Multi-SentAugment filtered by teacher model confidence; LA = +LayerAgg; LA
MSA = +LayerAgg +Multi-SentAugment; LA MSA FILT = +LayerAgg +Multi-SentAugment filtered by teacher
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able. Notably, we observe larger gains for Turk-
ish and Hindi in Figure 3d: it is expected due to
the fact that MutiATIS++ contains a smaller num-
ber of sentences for t r and hi than for the other
target languages. Finally, the impact of filtering
by teacher confidence (see §3.1) is inconsistent
for intent classification (i.e., it seems to be target
language-dependent) while it improves the results
for slot labelling on average. Encouraged by these
insights, we will investigate more sophisticated in-
domain sentence mining methods in future work.

Combining Multi-SentAugment and LayerAgg
results in a synergistic effect, based on the addi-
tional slight gains observed in Figure 3 (the full
results are available in the Appendix C, including
the MultiSentAugment results in 5-shot and 20-
shot setups in the Appendix D). This is expected
as the two methods offer distinct enhancements of
the base joint NLU model: (i) Multi-SentAugment
includes more diverse sentences and lexical infor-
mation into the training data (i.e., enhancement at
the input level), while (ii) LayerAgg aims to select
and combine semantic information spread across
mBERT’s layers (i.e., feature-level enhancement).

Zero-Shot vs Few-Shot. As discussed before, us-
ing Multi-SentAugment and LayerAgg seems to
benefit the base NLU model both in low-data and
full-data setups; we observe gains also in 5-shot
and 20-shot setups (see Appendix D). Similar to
other NLP tasks (e.g., named entity recognition,
parsing, QA) (Lauscher et al., 2020), few-shot se-
tups (e.g., even having only 5 examples per intent or
~80 annotated sentences in total) yield huge bene-
fits over zero-shot setups (see Table 4; compare the
results in Table 2 and Figure 3). Our results provide
another empirical proof calling for more modelling
effort in more realistic few-shot cross-lingual trans-
fer setups (Lauscher et al., 2020; Zhao et al., 2021)
in future work. We also observe that the results
in 10-shot setups when both Multi-SentAugment
and LayerAgg are used are mostly on par with the
results in 20-shot setups with the base NLU model.
In general, this finding validates that the proposed
methods can indeed reduce the manual annotation
effort.

6 Analysis and Further Discussion

Target Language Analysis. While both Multi-
SentAugment and LayerAgg are language-agnostic
techniques per se, the actual transfer results also de-
pend on the linguistic properties of the source and

Shots (# of sentences) Intent classification  Slot labelling
0(0) 83.41 57.25
5(81) 84.63 75.08
10 (153) 88.53 79.51
20 (270) 89.37 81.24
Full (4488) 94.43 85.42

Table 4: Impact of the amount of annotated examples
in the target language. The results are averages across
8 target languages on MultiATIS++ (Xu et al., 2020)
with the baseline Joint NLU model (with mBERT as
the multilingual encoder).

Data setup Task Method SYN FAM GEO

Intent
classification

Slot
labelling

LayerAgg 09356 -05252 -0.6849

Zero-shot

LayerAgg 0.6787  0.5392  -0.0509

-0.1970
0.2433

-0.2830
0.0497

-0.1556
-0.5229

LayerAgg
Multi-SentAugment
LayerAgg

+ 0.5274
Multi-SentAugment

Intent
classification

Few-shot

0.0192  -0.1298

-0.4227
-0.0032

-0.3112
0.4203

-0.9544
0.3934

LayerAgg
Multi-SentAugment
LayerAgg
+ 0.1525
Multi-SentAugment

Slot
labelling

-0.1367  -0.6525

Table 5: Correlation between performance gains pro-
vided by each method (LayerAgg, Multi-SentAugment,
and their combination) on MultiATIS++ and language
distance scores between English as the source language
and target languages, based on different typological fea-
tures from URIEL (SYN, FAM, GEO).

de en es fr hi pt tr AVG

Joint 86.96 86.03 75.12 9231 90.0 86.64 53.69 81.54
+LayerAgg 97.83 97.53 83.19 9533 91.16 8948 5849 87.57

Table 6: F} scores in a lexical probe of detecting the
1,000 most frequent words on MultiATIS++.

target languages. We thus aim to answer the follow-
ing question: Which languages benefit most from
Multi-SentAugment and LayerAgg? To this end, we
study the correlations between zero-shot and few-
shot transfer performance (i.e., gains over the joint
baseline when using the two methods) and source-
to-target language distance, which is based on the
language vectors obtained from the URIEL typo-
logical database (Littell et al., 2017). Following
Lauscher et al. (2020), we consider the following
linguistic features: syntax (SYN), encoding syntac-
tic properties; language family memberships (FAM)
and geographic locations (GEO).

The results are shown in Table 5. SYN simi-
larity has the highest correlation with zero-shot
performance gains in both NLU tasks. We sus-
pect that this might stem from LayerAgg’s prop-
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erty to selectively aggregate information from mul-
tiple layers, which is easier to learn if the input
sequences have similar syntactic structures. In sim-
ple words, LayerAgg might benefit more if similar
information is found at similar places in the input
sentences. FAM and GEO similarities are more cor-
related with gains in few-shot settings. This might
be due to the fact that languages which are simi-
lar genealogically (FAM) and geographically (GEO)
have more common lexical stems. It means that
Multi-SentAugment extracts sentences with lexi-
cally similar words which unlock the generalisation
abilities of the model.

Does LayerAgg Enrich Semantic Content?
While the task results seem to suggest this, we
design a probing experiment which aims to answer
the following question: Do the representations ob-
tained with LayerAgg really capture more semantic
information? To this end, we first obtain repre-
sentations of the 1,000 most frequent words (Con-
neau et al., 2018; Mehri and Eric, 2021) in Multi-
ATIS++7 in each sentence using a frozen mBERT
task-tuned on English, with and without LayerAgg.
We then aim to identify which word was encoded
by training a simple linear classifier. The rationale
is that by storing more lexical information in the
representations, similar words will obtain similar
representations: consequently, the classifier should
more easily identify the correct word.

The micro-averaged Fj scores are shown in Ta-
ble 6. The same positive trend with large gains
in the classification score is observed in all lan-
guages, confirming our hypothesis. We note that
the large gains are reported not only for English
(which was used for task fine-tuning), but also in
other languages, suggesting the benefits of Layer-
Agg in boosting cross-lingual lexical capabilities
of multilingual encoders in transfer scenarios.

Cross-lingual Similarity in LayerAgg. We now
assess how LayerAgg captures cross-lingual rep-
resentation similarity by comparing self-attention
maps for different languages emerging from Trans-
former T. We analyse the similarity of represen-
tations of the source language (en) with each tar-
get language in MultiATIS++ and xSID using lin-
ear Centered Kernel Alignment (1-CKA, Kornblith
et al. 2019), a standard tool for such analyses in
Transformer-based models (Conneau et al., 2020b;
Glavas and Vulié, 2021). Linear CKA is a repre-

"For a word tokenised into more than 1 WordPiece, we ob-
tain its vector by averaging its constituent WordPiece vectors.

1.0

0.51 0.65 0.09 0.16 FO. 7" 0.14

0.6 0.59 021 0.29 0.62 0.27

0.74 0.38 0.37 [0.69 0.19

2 0.18 0.26

0.38 0.32.0.27 021 0.13

9 037 0.18 0.27.0.13 0.05 [0. N
) . 021 0.13 . 031 025
0.19 026 0.13 0.05 0.31.005 0
0.38 028 0.19 0.58 025 o.os.

de en e fr hi ja pt tr zh

Figure 4: 1-CKA similarities of mean-pooled represen-
tations of slots between different languages in Multi-
ATIS++. For a similar plot for xSID see the Appendix.

sentation similarity metric for representations ob-
tained from neural networks. L-CKA is invariant
to orthogonal transformation and isotopic scaling
(Glavas and Vuli¢, 2021). More formally, it is de-
fined as follows:

1Y X[7
A = X T
where X, Y are input matrices.

We measure 1) cross-lingual correspondence for
slots where 1-CKA is computed between the repre-
sentations of the same slot® in different languages;
2) the correlation between the 1-CKA scores and
transfer performance.

The I-CKA scores for MultiATIS++ in Figure 4
reveal high similarities between self-attention maps
for similar languages. For instance, the scores
are high between Romance languages in Multi-
ATIS++ and Germanic languages in XSID. At the
same time, the scores are low between ja and Ro-
mance languages and between tr and all other,
non-Turkic languages. Spearman’s p correlation
scores between the I-CKA scores and zero-shot
transfer performance are also very strong. For
MultiATIS++, p = 0.95 (intent classification) and
p = 0.92 (slot labelling), while for xSID: p = 0.77
(intent classification) and p = 0.59 (slot labelling).

Another Multilingual Sentence Encoder? Intu-
itively, the effectiveness of Multi-SentAugment de-
pends on the underlying multilingual sentence en-
coder F. We now analyse how much performance

8Slot representation is the average of attention maps of
tokens labelled with that slot. We cannot compare attention
maps for each word/WordPiece directly: we lack alignments
between the words across sentences in different languages.
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Datasize [ hi ja tr AVG

Intent classification (Accuracy x 100)

Few-shot LASER 81.76 79.28 78.87 79.97
LaBSE 86.43 77.16 69.36 77.65
Full-data LASER 88.71 96.42 8241 89.18
LaBSE 89.28 96.42 84.54 90.08
Slot labelling (Slot F1 x 100)
Few-shot LASER 73.34 81.92 63.11 74.46
LaBSE 69.88 81.19 70.28 73.78
Full-data LASER 80.45 88.35 73.32 80.71
LaBSE 83.32 91.79 71.86 82.32

Table 7: A comparison of LASER and LaBSE as under-
lying encoders for Multi-SentAugment. A model vari-
ant without LayerAgg used; very similar trends are ob-
served with the +LayerAgg variant (see the Appendix).

differs if we replace one state-of-the-art encoder
(i.e., LASER) with another: LaBSE (Feng et al.,
2020), running Multi-SentAugment with LaBSE
in 3 languages from 3 different language families
that also use different scripts — Turkish, Hindi and
Japanese. The results in Table 7 do indicate some
performance variance across tasks and languages:
LaBSE is slightly better in full-data scenarios while
LASER performs better in few-shot scenarios. In
future work on Multi-SentAugment, we will inves-
tigate encoder ensembles, and we plan to make the
mining process more scalable and quicker.

7 Conclusion and Future Work

We presented 1) LayerAgg, a layer aggregation
method which learns to effectively combine use-
ful semantic information from multiple layers of a
pretrained multilingual Transformer, and 2) Multi-
SentAugment, a data augmentation approach that
leverages unannotated Web-scale monolingual cor-
pora to reduce manual annotation efforts. Our re-
sults suggest that both methods, applied with state-
of-the-art multilingual dialogue NLU models, yield
performance benefits both for intent classification
and for slot labelling. The methods obtain con-
sistent gains in zero-shot, few-shot and full-data
setups on 2 multilingual NLU datasets spanning
16 languages. In future work, we will investi-
gate further applications of Multi-SentAugment
in cross-lingual settings (e.g., by mining sen-
tences in languages from the same language fam-
ily). We will also extend the methods towards
truly low-resource languages. The code is avail-
able online at: github.com/cambridgeltl/
MultiSentAugment_LayerAgg.
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A Language Codes

en English
“ar  Arabic
da Danish
de German
South Tyrolean
de-st German dialect
es Spanish
fr French
hi Hindi
id Indonesian
it Italian
ja Japanese
kk Kazakh
nl Dutch
pt Portuguese
sSr Serbian
tr Turkish
zh Chinese
th Thai

Table 8: Language codes used in the paper.

B Training Hyperparameters

Hyperparameter Value
Optimizer Adam
Learning Rate Se-5
Batch Size 32
BERT model BERT base:

multilingual cased
XLM-R model XLM-R base

Table 9: Training hyperparameters.
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C Full Results for Full-Data and 10-shot Setups

Target language de es fr hi ja pt tr zh AVG
Intent classification (Accuracy x 100)

Joint 96.08 95.07 98.99 79.13 78.12 90.59 73.19 97.09 88.53

+MSA 97.09 96.86 97.42 81.76 79.28 95.74 78.87 94.18 90.15

+MSA FILT 97.31 96.64 98.21 78.56 82.53 94.40 79.15 92.61 89.93

+LA 98.10 95.07 97.20 83.20 79.13 95.96 71.49 95.52 89.46

+LA +MSA 92.95 96.75 97.42 84.38 79.73 96.87 72.34 95.97 89.55

+LA +MSA FILT 97.87 91.94 97.47 84.84 79.73 95.63 78.87 96.08 90.30
Slot labelling (Slot F1 x 100)

Joint 85.41 80.52 82.16 74.12 78.63 83.34 71.65 80.22 79.51
+MSA 82.95 80.70 82.41 73.34 81.92 84.10 68.11 80.85 79.30
+MSA FILT 86.19 81.90 82.79 76.02 82.55 83.62 66.82 76.18 79.51
+LA 85.50 82.13 82.62 73.80 75.64 84.37 71.92 73.40 78.67
+LA +MSA 85.48 83.10 82.97 72.87 80.99 84.46 68.46 76.30 79.33

+LA +MSA FILT 85.89 80.38 81.45 76.71 77.92 85.00 74.24 76.34 79.74

Table 10: Few-shot results on MultiATIS++. Acronyms: +MSA = +Multi-SentAugment; +MSA FILT = +Multi-
SentAugment filtered by teacher model confidence; +LA = +LayerAgg; +LA +MSA = +LayerAgg +Multi-
SentAugment; +LA +MSA FILT = +LayerAgg +Multi-SentAugment filtered by teacher model confidence. High-
est scores in each task per column in bold. The underlying multilingual model is mBERT.

Target language de es fr hi ja pt tr zh AVG
Intent classification (Accuracy x 100)

Joint 98.65 97.76 97.87 88.26 95.97 97.98 84.26 94.66 94.43

+MSA 98.54 97.54 98.21 88.71 96.42 97.09 82.41 94.49 94.18

+MSA FILT 98.43 96.64 97.87 88.94 96.75 97.65 85.82 94.83 94.62

+LA 98.88 96.65 98.54 91.67 96.64 97.42 83.97 96.98 95.09

+LA +MSA 98.77 97.54 98.54 88.72 96.64 98.10 84.40 96.86 94.95

+LA +MSA FILT 98.66 97.31 97.65 91.76 96.75 97.42 82.84 96.98 94.92
Slot labelling (Slot F1 x 100)

Joint 94.02 85.37 88.26 78.11 91.01 91.05 64.14 91.41 85.42
+MSA 94.02 85.05 89.39 80.45 88.35 91.06 73.32 90.93 86.57
+MSA FILT 93.65 85.12 88.77 80.78 90.56 90.99 67.41 91.67 86.12
+LA 94.26 85.73 89.02 80.92 92.03 90.77 71.09 92.33 87.02
+LA +MSA 93.16 85.69 89.10 81.97 92.24 91.36 70.14 91.59 86.91

+LA +MSA FILT 93.86 85.96 88.68 80.82 91.81 90.87 69.29 92.52 86.72

Table 11: Full-data results on MultiATIS++. Acronyms: +MSA = +Multi-SentAugment; +MSA FILT = +Multi-
SentAugment filtered by teacher model confidence; +LA = +LayerAgg; +LA +MSA = +LayerAgg +Multi-
SentAugment; +LA +MSA FILT = +LayerAgg +Multi-SentAugment filtered by teacher model confidence. High-
est scores in each task per column in bold. The underlying multilingual model is mBERT.
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D S5-shot and 20-shot Results with Multi-SentAugment

Target language de es fr hi ja pt tr zh AVG
Intent classification (Accuracy x 100)
Joint 96.19 94.63 96.08 63.74 78.28 95.07 60.00 93.06 84.63
+MSA 92.72 92.50 94.40 69.90 81.64 93.62 64.26 89.14 84.77
+MSA FILT 97.20 96.87 97.31 71.77 79.28 95.19 61.14 90.37 86.89
Slot labelling (Slot F1 x 100)
Joint 83.31 77.66 79.95 67.00 72.32 82.5 62.66 75.19 75.08
+MSA 80.12 75.81 79.24 69.64 65.86 82.72 62.81 74.46 73.83
+MSA FILT 83.16 79.25 78.62 70.49 74.30 81.22 62.39 72.08 75.19

Table 12: 5-shot results of Multi-SentAugment on MultiATIS++. Acronyms: +MSA = +Multi-SentAugment;
+MSA FILT = +Multi-SentAugment filtered by teacher model confidence. Highest scores in each task per column
in bold. The underlying multilingual model is mBERT.

Target language de es fr hi ja pt tr zh AVG
Intent classification (Accuracy x 100)
Joint 97.54 89.81 97.65 84.38 88.80 92.05 77.30 87.46 89.37
+MSA 97.65 95.97 98.43 80.96 84.43 95.41 76.03 93.62 90.31
+MSA FILT 97.09 91.15 98.10 87.57 85.14 96.53 78.30 84.99 89.86
Slot labelling (Slot F1 x 100)
Joint 88.93 84.03 85.63 73.15 82.12 85.09 72.88 78.05 81.24
+MSA 87.99 82.41 84.03 74.99 82.38 85.37 71.91 83.59 81.58
+MSA FILT 88.94 81.79 84.00 76.56 81.83 83.74 72.08 84.13 81.63

Table 13: 20-shot results of Multi-SentAugment on MultiATIS++. Acronyms: +MSA = +Multi-SentAugment;
+MSA FILT = +Multi-SentAugment filtered by teacher model confidence. Highest scores in each task per column
in bold. The underlying multilingual model is mBERT.
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E Impact of Sentence Encoder

(+LayerAgg Variant)

Model F hi ja tr AVG

Intent classification (Acc times 100)

Full-data LASER 88.71 96.64 84.40 89.92
LaBSE 90.08 9698 83.55 90.2

Few-shot LASER 84.28 79.73 72.34 78.78
LaBSE 7993 77.72 77.73 78.46

Slot labelling (Slot F1 times 100)

Full-data LASER 8197 9224 70.14 8145
LaBSE 82.85 9140 69.62 81.29

Few-shot LASER 72.87 80.99 6846 74.11
LaBSE 72.68 76.78 72.72 74.06

Table 14: Impact of the chosen multilingual sentence
encoder: LASER (Artetxe and Schwenk, 2019) versus
LaBSE (Feng et al., 2020) in full-data and few-shot sce-
narios for intent classification and slot labelling, for the
LayerAgg model variant.
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1-CKA Similarities on xSID
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Figure 5: 1-CKA similarities of mean-pooled represen-
tations of slots between different languages in xSID.
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