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Abstract

Interactive robots navigating photo-realistic en-
vironments need to be trained to effectively
leverage and handle the dynamic nature of dia-
logue in addition to the challenges underlying
vision-and-language navigation (VLN). In this
paper, we present VISITRON, a multi-modal
Transformer-based navigator better suited to
the interactive regime inherent to Cooperative
Vision-and-Dialog Navigation (CVDN). VIS-
ITRON is trained to: i) identify and associate
object-level concepts and semantics between
the environment and dialogue history, ii) iden-
tify when to interact vs. navigate via imitation
learning of a binary classification head. We
perform extensive pre-training and fine-tuning
ablations with VISITRON to gain empirical in-
sights and improve performance on CVDN.
VISITRON’s ability to identify when to interact
leads to a natural generalization of the game-
play mode introduced by Roman et al. (2020)
for enabling the use of such models in differ-
ent environments. VISITRON is competitive
with models on the static CVDN leaderboard
and attains state-of-the-art performance on the
Success weighted by Path Length (SPL) metric.

1 Introduction

Large pre-trained Transformer-based language
models (Vaswani et al., 2017) are ubiquitous in
natural language processing (NLP) and have per-
formed very well in interactive settings such as
open-domain (Gopalakrishnan et al., 2019; Huang
et al., 2020) and task-oriented dialogue (Kim et al.,
2020). The success of Transformers and the pre-
train/fine-tune paradigm in NLP has also inspired
their adoption in vision-and-language research,
with cross-modal representations being learned (Li
et al., 2020) and utilized towards tasks like image
and object captioning, visual question answering,
visual commonsense reasoning and visual dialogue.

∗ Work done as an intern at Amazon Alexa AI. Code
available at: www.github.com/alexa/visitron
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Figure 1: Cooperative Vision-and-Dialog Navigation
(CVDN) with Dynamic Question-Asking

Vision-and-language navigation (VLN) is a chal-
lenging cross-modal research task in which agents
need to learn to navigate in response to natural
language instructions in simulated photo-realistic
environments. VLN has been studied extensively
with the advent of the Room-to-Room (R2R)
dataset (Anderson et al., 2018b) and there has
been growing interest recently in pushing the
pre-train/fine-tune paradigm towards VLN, with
work on leveraging disembodied corpora (Majum-
dar et al., 2020) to learn cross-modal pre-trained
representations that can improve embodied VLN
performance. As depicted in Figure 1, the Co-
operative Vision-and-Dialog Navigation (CVDN)
dataset (Thomason et al., 2020) allows for dialogue
with a guide during navigation: a navigator can
ask natural language questions to a guide when it
needs assistance and the guide responds in natu-
ral language by using privileged knowledge of the
environment accessible only to it, thus expanding
beyond the traditional VLN task towards deploy-
able interactive agents that are more robust and
generalizable. But preliminary navigator modeling
using CVDN is still VLN-style via the Navigation
from Dialog History (NDH) task, treating the dia-
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logue history as a static instruction.
In this paper, we present work on training VIS-

ITRON, a multi-modal Transformer-based naviga-
tor with a focus on tackling challenges unique to
CVDN: i) moving beyond rote memorization to
associative learning in order to learn to identify
and acquire visio-linguistic concepts and seman-
tics while interacting in new environments, and ii)
learning when to ask questions (Chi et al., 2020).
VISITRON builds off the recent cross-modal object-
semantics aligned pre-training (OSCAR) strategy
and uses object-tags as explicit anchor points
during training to learn to associate the environ-
ment’s visual semantics with the textual dialogue
history, thus allowing for interaction/experience-
grounded (Bisk et al., 2020) visio-linguistic con-
cepts and semantics identification and acquisition.
VISITRON is trained in a data-driven fashion to
identify when to engage in dialogue, i.e., ask ques-
tions, vs. when to navigate, thus providing the
first known empirical baselines for this task. We
also present empirical results from various first-
principles modeling ablations performed with VIS-
ITRON. We demonstrate that for CVDN, panoramic
viewpoint selection is a better formulation than dis-
crete turn-based action prediction, akin to what
has been seen on VLN with R2R (Fried et al.,
2018). We observe that multi-task learning with
long-trajectory VLN datasets leads to significant
CVDN performance gains relative to training on
CVDN alone. VISITRON is competitive with mod-
els on the leaderboard for the static NDH task on
EvalAI (Yadav et al., 2019), attaining state-of-the-
art performance on the Success weighted by Path
Length (SPL) metric. Given VISITRON’s design
and ability to identify when to engage in dialogue,
we also propose a generalization of the game-play
mode introduced by Roman et al. (2020) for jointly
fine-tuning and evaluating VISITRON and future
such models with pre-trained guides to help them
easily adapt to their guides’ capabilities.

2 Background

2.1 Vision-and-Language Navigation

The Vision-and-Language Navigation (VLN) task
requires an agent spawned in an indoor environ-
ment at a starting position s0 to follow natural
language instructions x and navigate to a target
position sgoal. This can also be seen as a Par-
tially Observable Markov Decision Process M =
⟨S,A, Ps, r⟩ where S is the visual state space, A

is the discrete action space, Ps is the unknown en-
vironment distribution from which the next state
is drawn and r ∈ R is the reward function (Hao
et al., 2020). At a given time step t, the agent re-
ceives an RGB image observation obs(st), where
st ∈ S. Based on the observation, the agent takes
an action at ∈ A, transitions into the next state
st+1 drawn as follows: st+1 ∼ Ps(·|st,at), and
receives a new image observation obs(st+1). To
end the episode, the agent must select the special
STOP action. A T -step trajectory can be repre-
sented as τ = [s0,a0, s1,a1, . . . , sT ,aT ]. The
episode is considered successful if the agent stops
within ϵ distance of the goal, i.e., |sT − sgoal| ≤ ϵ.
Using a training dataset D = {(τ ,x)} consisting
of expert trajectory τ and instructions x pairs, the
goal is to train a policy πθ(τ |x) with θ parame-
ters that maximizes the log-likelihood of the target
trajectory given instructions x:

max
(τ ,x)∼D

Lθ(τ ,x) = log πθ(τ |x)

=

T∑
t=0

log πθ(at|st,x)
(1)

Several datasets have been released for VLN
based on Matterport3D (Chang et al., 2017), a
large-scale RGB-D dataset containing ∼10000
panoramic views from ∼194000 RGB-D images
of 90 building-scale scenes. The most popular
VLN dataset based on Matterport3D is the Room-
to-Room (R2R) dataset (Anderson et al., 2018b),
containing ∼7200 trajectories and 3 natural lan-
guage instructions per trajectory. For validation
and test sets, seen and unseen splits are created
to easily evaluate how well an agent generalizes.
Room-4-Room (R4R) (Jain et al., 2019) is an aug-
mentation of R2R wherein existing short trajecto-
ries in R2R are joined to form longer, challenging
trajectories. Room-across-Room (RxR) (Ku et al.,
2020) is a newly introduced dataset with several
properties, including but not limited to multilin-
gual instructions, larger scale (for each language,
∼14000 trajectories with 3 instructions per trajec-
tory), fine-grained spatio-temporal grounding and
follower demonstrations.

A navigating agent’s actions typically belong in
a pre-defined discrete set comprising options such
as FORWARD, LEFT, RIGHT, etc. Predicting the
next best action from this low-level visuomotor
space (Fried et al., 2018) of actions is referred to
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as turn-based action prediction. Given the nature
of the aforementioned VLN datasets, it is also pos-
sible to have a navigating agent’s actions belong
in the panoramic space, wherein the agent selects
the next best viewpoint in the navigation graph
from the panoramic space visible to it at its current
location. This is referred to as viewpoint selection.

2.2 Cooperative Vision-and-Dialog Navigation

Cooperative Vision-and-Dialog Navigation
(CVDN) is a recently introduced dataset (Thoma-
son et al., 2020) collected by partnering
crowd-workers in simulated photo-realistic
environments. One worker acts as a NAVIGATOR,
seeking to navigate to a goal and interacting in
natural language with a GUIDE along the way if
it needs assistance. The other worker acts as a
GUIDE, answering the NAVIGATOR’s questions
while having privileged access to the best next
steps the NAVIGATOR should take according
to an ORACLE full-state shortest path planner.
The collection of each CVDN instance begins
with the state (S, TO, s0, G), where S is the
environment in which the agents are placed, s0
is the start location of the NAVIGATOR, G is
the goal region and TO is the initial hint given
to both agents about the goal region containing
object O. At any time step t, the NAVIGATOR

can make one of three choices: i) take a sequence
of kt navigation steps Nt = [n1

t , n
2
t , . . . , n

kt
t ], ii)

ask a question Qt to the GUIDE, iii) declare its
current position as the goal region. If a question is
asked, the GUIDE looks at l next steps along the
shortest path to the goal and replies with an answer
At. The instance ends when the NAVIGATOR

reaches G. Thus, a CVDN instance comprises[
(S, TO, so, G), ⟨N0, Q1, A1, N1, Q2, A2, N2, . . . ,
Qm, Am, Nm⟩

]
, where m is the number of dia-

logue exchanges between the NAVIGATOR and
GUIDE, and N0 is the sequence of navigation steps
before the 1st exchange.

2.2.1 Navigation from Dialog History (NDH)
With the CVDN dataset, the NDH task for the NAV-
IGATOR was introduced (Thomason et al., 2020), in
which the NAVIGATOR needs to navigate towards
a goal given a dialogue history. Specifically, the
NAVIGATOR is spawned at the terminal position of
Nt−1 (or s0 in the case of N0) in environment S
and is given (TO, Q1:t, A1:t). The task is to predict
the navigation steps that bring the agent closer to
the goal region G. To train a NAVIGATOR agent

for this task, the navigation steps needed for super-
vision from the dataset can be provided in any of
the three forms: i) human NAVIGATOR steps, Nt:
the navigation steps that were taken by the human
NAVIGATOR after the dialogue exchange at time
step t, ii) ORACLE steps, Ot: the shortest path steps
accessible to the GUIDE when it gave the answer
At, iii) MIXED: a mix of both human NAVIGATOR

and ORACLE supervision where the supervision
path is Nt when e(Ot) ∈ Nt, and Ot otherwise,
where e(·) represents the terminal position of a se-
quence of navigation steps. The agent NAVIGATOR

is trained VLN-style using Equation 1 on NDH
instances extracted as described above from the
CVDN instances, and evaluated on NDH instances
using VLN metrics such as Goal Progress and Suc-
cess weighted by Path Length (SPL), defined in
Section 4.1. In the CVDN literature, it has been ob-
served that MIXED supervision typically performs
the best, followed by ORACLE and human NAVI-
GATOR supervision respectively. However, for the
purposes of all our experiments, we pick the hu-
man NAVIGATOR supervision mode to establish a
lower-bound on performance for VISITRON.

2.2.2 Gameplay Mode
In the CVDN dataset, a human NAVIGATOR coop-
erates with a human GUIDE to find a goal region
G with target object O. Roman et al. (2020) intro-
duced the game-play mode, which is essentially an
agent-agent replica of this dynamic dataset creation
process wherein the two trained agents consume
each other’s outputs. This mode can be applied
during both fine-tuning and evaluation and helps
understand how well a pre-trained NAVIGATOR

agent adapts to the capabilities of different GUIDE

agents in a dynamic/interactive setting. For the
sake of consistency with game-play mode notation
introduced by Roman et al. (2020), we denote the
role of asking questions that is intrinsic to the NAV-
IGATOR by QUESTIONER. Thus, in a game-play
mode episode, at t = 0 (prior to the first QA ex-
change), the NAVIGATOR takes N0 steps given the
initial hint TO. For time steps t > 0, the QUES-
TIONER generates a question Qt, GUIDE generates
an answer At having access to the next l steps in
the shortest path, and then NAVIGATOR generates
Nt navigation steps of length kt. All agents have
access to the entire visual navigation (N0:t−1) and
dialogue (Q1:t−1A1:t−1) histories in addition to the
initial hint TO. The QUESTIONER asks questions
every 4th time-step, which is a hard-coded heuristic
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by Roman et al. (2020) since their NAVIGATOR

does not know when to ask questions. The episode
ends when the NAVIGATOR declares that the cur-
rent position is in the goal region G or a maximum
number of turns (20) are played. NAVIGATOR’s
performance in game-play mode is measured using
Goal Progress (see Section 4.1). While the focus
of our work is not to train a QUESTIONER, we en-
sure our NAVIGATOR is equipped with the ability
to identify when to ask questions. This leads to
our proposed general game-play mode, wherein
the aforementioned description of a regular game-
play mode episode still holds but the hard-coded
heuristic of asking questions every 4th time-step is
eliminated, i.e., the NAVIGATOR decides when a
question must be asked to continue game-play.

2.3 OSCAR

The OSCAR pre-training strategy (Li et al., 2020)
for cross-modal Transformers uses object tags de-
tected in images as anchor points to ease the learn-
ing of semantic alignments between images and
text. The input is represented as Word-Tag-Image
(w, q,v), where w and q are the sequence of word
embeddings of the text and object tags respectively,
and v is the sequence of region features of the
image. To generate v, Faster R-CNN (Ren et al.,
2015) is used to extract visual semantics of each
region as (v′, z) where v′ ∈ RP (P = 2048) is
the region feature, z ∈ R6 is the region position
represented by the coordinates of the top-right and
bottom-left corners and the height & width. v′ and
z are concatenated to form a position-sensitive re-
gion feature, which is further transformed into v
using a projection layer such that v has the same
dimension as the input token embeddings. It is then
pre-trained with a Masked Token Loss (MTL) and
a Contrastive Loss (CL).

LPre−training = LMTL + LCL

= −E(v,h)∼D log p(hi|h\i,v)

− E(h′,w)∼D log p(y|f(h′,w))

The MTL is akin to that in BERT (Devlin et al.,
2019), masking the input tokens (w, q) with a prob-
ability of 15% and predicting them. The CL is
computed by polluting the object tags q with a
probability of 50% with randomly chosen object
tags from the dataset, and a feed-forward layer
on top of [CLS] predicts whether the input con-
tains the original image representation or a pol-

luted one. In the previous equation, h = [w, q],
h′ = [q,v], h\i are the surrounding tokens of
masked token hi, f(.) denotes the binary classi-
fier where y = 0 if the object tags are polluted and
1 otherwise, and D is the dataset. OSCAR uses a
collection of popular image-text datasets for pre-
training, including but not limited to Conceptual
Captions (Sharma et al., 2018), MS-COCO (Lin
et al., 2014), Flickr30K (Young et al., 2014) and
GQA (Hudson and Manning, 2019). Such datasets
typically have images of objects taken from perfect
angles whereas a navigating agent will see objects
from different vantage points, which also motivates
augmenting OSCAR and performing an additional
phase of navigation-specific pre-training.

3 Approach

The policy for NDH (and VLN) can be decomposed
into an encoder-decoder setup, πθ = fθE ◦ fθD :

• A vision-language encoder fθE : {s1:t,x} →
zt, where s1:t are visual states, x is the dia-
logue history (or instructions for VLN) and zt
is the joint latent representation at time step t.

• An action decoder fθD : {st, zt,at−1} → at,
where at is the next action.

We model πθ by VISITRON, a visio-linguistic
Transformer-based model. VISITRON’s encoder is
structurally similar to OSCAR’s Transformer (Li
et al., 2020). This is by design to enable easy
transfer of visual semantics-aligned representations
learned from disembodied image-text data. We
make navigation-specific modifications to OSCAR,
but they are all structured as augmentations of mod-
ules instead of removal of network components,
thus enabling us to use the pre-trained weights of
OSCAR’s Transformer to initialize large portions
of our encoder. The augmentations are described
in Section 3.1. As with OSCAR, the input to VIS-
ITRON’s encoder is represented as Word-Tag-Image
(w, q,v), where w and q are the sequence of word
embeddings of the text and object tags respectively,
and v is the sequence of region features of the
image. We represent the panorama in 36 views,
extract Faster R-CNN (Ren et al., 2015) region fea-
tures r′ from each view and add positional vector
p, r = (r′, p). To incorporate 3D direction, we
add direction embedding d to the region features,
v = r+d. d is a 128-dimensional orientation vector
represented by repeating [sinϕ; cosϕ; sinω; cosω]
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Figure 2: VISITRON’s Encoder Architecture and Semantics-Aligned Navigation Pre-Training Tasks

32 times where ϕ and ω are heading and elevation
poses. In addition to the standard [CLS] and [SEP],
we also use [TAR], [NAV], [GUI] as delimiter tokens
for the initial target hint, NAVIGATOR’s questions
and the GUIDE’s answers respectively. While this
input structure is dialogue-specific, it is amenable
to instructions-based datasets for multi-tasking.

3.1 VISITRON Pre-Training
We adopt a two-stage pre-training strategy, initial-
izing VISITRON’s encoder with weights from OS-
CAR to begin with web-scale disembodied visio-
linguistic representations, followed by facilitating
a domain shift to navigation and actions by pre-
training on navigation data. For each navigation tra-
jectory, we extract (w, q,v,a) tuples where w is
the dialogue history/instruction, q is the sequence
of object tags from the current panorama, v is the
sequence of region features and a is the direction
in the 360° panoramic space where the next node
in the trajectory is located (Fried et al., 2018). The
pre-training objectives are:

1. Masked Language Modeling: Input word to-
kens are replaced with [MASK] with 15% prob-
ability and the masked token xi is predicted
conditioned on surrounding tokens x\i.

2. Masked Object Tag Prediction: Object tags
are replaced with [MASK] with 15% probabil-
ity. A feed-forward head on top of [MASK]
is used to predict the tag from a distribution
over Faster R-CNN semantic classes. This
provides more fine-grained object supervision
unlike OSCAR’s global masked token loss for
tokens in both object tags and text, since this
computes a distribution over the object de-
tector’s semantic classes instead of over the

entire input vocabulary.

3. Directional Grounding: [CLS] hidden state
goes into a feed-forward head to predict a.

Figure 2 illustrates VISITRON’s encoder archi-
tecture and the pre-training objectives we use, with
an extracted tuple from a sample NDH instance.

3.2 VISITRON Fine-Tuning
After pre-training the encoder, we leverage it
with an attention-based Long Short-Term Memory
(LSTM) action decoder (Hochreiter and Schmid-
huber, 1997), as shown in Figure 3. At time-step
t, the decoder (cell state dt) takes the previous
action at−1, the panoramic ResNet features ex-
tracted from the current location/state and decodes
the next action at, while attending to the VISITRON

encoder’s cross-modal representation of its input.
After this LSTM is fine-tuned, the same stack is
frozen and a randomly initialized two-layer feed-
forward head is added and trained with a binary
cross-entropy loss to learn to classify when to ask
a question. The supervision for this head comes
from the elongated CVDN instances defined in
Section 2.2, with time-steps when a question was
asked serving as positive labels and the remaining
time-steps during which navigation occurs serv-
ing as negative labels. Note that as described in
Section 2.1, the decoder’s actions can belong in
either the panoramic space or the low-level visuo-
motor space (Fried et al., 2018), leading to inde-
pendent formulations for viewpoint selection and
turn-based action prediction.

4 Experiments

In this section, we first describe the evaluation
metrics we adopt. We then describe and discuss
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Table 1: Pre-Training Ablations (Fine-Tuning and Evaluating on NDH)

Semantics-aligned Pre-Training Curriculum
Val Seen Val UnseenStage 1: Web (OSCAR) Stage 2: Navigation

#
Contrastive+
Masked LM

Object
Tags

Masked
LM

Masked Object
Tag Prediction

Directional
Grounding GP (m) ↑ SPL (%) ↑ SR (%) ↑ nDTW (%) ↑ GP (m) ↑ SPL (%) ↑ SR (%) ↑ nDTW (%) ↑

V
IS

IT
R

O
N

1 (No pre-training and no object tags) 4.76 36.56 46.07 30.97 2.09 9.96 22.49 6.50

2 ✓ 4.82 50.73 58.11 47.34 2.67 24.88 34.29 24.21
3 ✓ ✓ 4.38 45.15 52.09 41.14 2.30 13.03 24.81 8.63
4 ✓ ✓ ✓ 5.09 25.92 41.10 17.91 1.90 11.27 23.48 5.62
5 ✓ ✓ ✓ ✓ 4.83 48.22 56.02 47.01 2.70 24.04 32.86 23.46

6 ✓ ✓ ✓ ✓ ✓ 5.34 55.16 61.78 54.83 2.71 24.56 32.52 24.51

[CLS] [TAR] Plant [NAV] Go left ...? [GUI] No, pass the ... [SEP] bed table [SEP] 
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Figure 3: NAVIGATOR predicts navigation actions,
given dialogue history and visual observations. The
same stack decides when to ask the GUIDE a question.
A similar setup can be used for question generation.

our experimental observations from performing
ablations during VISITRON pre-training and fine-
tuning respectively. We present our observations
for question-asking classification for CVDN, es-
tablishing a strong baseline for future models. We
finally present and discuss our observations from
submitting our model checkpoints to the static
EvalAI leaderboard for CVDN.

4.1 Evaluation Metrics
We evaluate VISITRON’s ability to navigate to the
goal with the following metrics:

• Goal Progress (GP) measures the difference
between the distance from the start position
to the final goal and the distance from the
end position to the final goal. It is used to
determine how much progress in meters the
agent has made towards the final goal.

• Success weighted by (Normalized Inverse)
Path Length (SPL) introduced by Anderson

et al. (2018a) provides a measure of success
normalized by the ratio between the length of
the shortest path and the selected path.

• Success Rate (SR) measures the success of an
episode. If the agent stops within 3 meters of
the goal, it is considered a success.

• Normalized Dynamic Time Warping (nDTW)
introduced by Ilharco et al. (2019) helps mea-
sure a navigator agent’s fidelity to the dialogue
history/instruction by softly penalizing devia-
tions from the reference path.

We evaluate the question-asking classification
head by computing accuracy and balanced accu-
racy (Brodersen et al., 2010). The latter accounts
for the natural class imbalance of more naviga-
tion time-steps than question-asking time-steps ex-
pected in dialogue-based navigation by computing
the average of recall obtained on each class.

4.2 Pre-Training Ablations

Using NDH and R2R trajectories, we pre-train VIS-
ITRON as described in Section 3.1. We begin ex-
perimenting with cumulative addition of each pre-
training stage and objective to obtain an ablative
understanding of their effect on the downstream
NDH task. Results are shown in Table 1. We see
that our pre-training strategy helps: the best per-
formance on Val Seen (as measured by all metrics)
is obtained when using all pre-training stages and
objectives. We also see that Goal Progress (GP) is
highest on Val Unseen in this setting (an absolute
increase of 0.62 relative to no pre-training). Rows
3-4 demonstrate the efficacy of our second-stage
masked language modeling (MLM) task, helping
improve Val Seen GP from 4.38 to 5.09. Rows 4-5
demonstrate the efficacy of our newly introduced
masked object tag prediction task as a means to-
wards experience-driven concepts and semantics
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Table 2: Fine-Tuning Ablations

Action
Space

Multi-Task
Fine-Tuning

NDH+

Val Seen Val Unseen

# GP (m) ↑ SPL (%) ↑ SR (%) ↑ nDTW (%) ↑ GP (m) ↑ SPL (%) ↑ SR (%) ↑ nDTW (%) ↑

V
IS

IT
R

O
N 1 Turn-based

Action Prediction
✗ 1.15 9.66 11.78 26.86 1.60 13.02 14.77 29.28

2 ✓(RxR) 1.50 12.30 15.18 19.95 0.97 11.52 15.44 20.49

3 Viewpoint
Selection

✗ 5.34 55.16 61.78 54.83 2.71 24.56 32.52 24.51
4 ✓(RxR) 5.11 12.33 25.65 4.66 3.25 10.74 27.34 3.78

identification and acquisition, with significant in-
creases in all metrics across both validation seen
and unseen splits. Rows 5-6 show that our direc-
tional grounding task for pre-training the encoder
plays a particularly important role: the increase in
both GP and nDTW suggest that this task improves
VISITRON’s ability to navigate closer to the goal
while ensuring that dialogue fidelity is maintained
in the process by aligning encoder representations
in the direction along the reference path.

4.3 Fine-Tuning Ablations

Next, we perform ablations during fine-tuning,
leveraging all objectives from Table 1 since our
previous analysis demonstrated their effectiveness.
For VLN agents, it has been shown that viewpoint
selection in the panoramic space is a better for-
mulation than turn-based action prediction in the
low-level visuomotor space (Fried et al., 2018).
However, it is not immediately obvious or known
whether this can be extrapolated to dialogue-based
navigation as in CVDN. So we experiment with
both formulations for our NAVIGATOR. Given the
sparsity of NDH instances (∼ 4k) for fine-tuning,
we also study if multi-task fine-tuning with the
RxR dataset helps boost performance. Table 2
presents the fine-tuning ablation results. Row 1 and
3 demonstrate that panoramic viewpoint selection
is a better formulation than turn-based action
prediction for CVDN, with all metrics increasing
significantly when switching to viewpoint selection.
Further, we see in rows 3 and 4 that multi-task
fine-tuning leads to better CVDN generalization,
with Val Unseen GP increasing from 2.71 to 3.25
when multi-tasking with viewpoint selection. How-
ever, we see this increase in GP occurs alongside
a decrease in nDTW, SPL and SR. This decrease
can be attributed to the fact that the RxR dataset
has very long trajectories, which prime the model
to take long paths to the final CVDN goal (which
GP cares about), well-beyond the next 5 GUIDE

steps in the NDH instance that nDTW, SPL and SR

evaluate against.

4.4 Question-Asking Classification and
Leaderboard Evaluation

We pick the VISITRON model checkpoint with the
highest GP in Table 2 (row 4), and perform imita-
tion learning of the question-asking classification
head as described in Section 3.2. We evaluate the
classification head by creating elongated CVDN in-
stances from the validation sets as described in Sec-
tion 2.2, akin to how supervision was provided dur-
ing training: time-steps when a question was asked
serve as positive instances and the remaining time-
steps during which navigation occurs serve as neg-
ative instances. As seen in Table 3, our approach to
identifying when to ask questions vs. when to navi-
gate establishes a strong baseline for future work
on identifying when to ask questions with CVDN,
as measured by accuracy and balanced accuracy on
Val Unseen. It is important to note that our design
choice of adding and training a separate head for
this task while keeping the navigator stack frozen
ensures that there is no direct impact on naviga-
tion performance itself. This is unlike approaches
that perform direct navigation action space aug-
mentation with a special action for question-asking,
where navigation actions themselves are affected
by the presence of an additional competing variable
for shared total probability mass.

Table 3: Question-Asking Classification Performance

Metric (%) Val Seen Val Unseen

Accuracy 68.05 67.87
Balanced Accuracy 63.33 61.09

We submitted this model checkpoint to the
CVDN leaderboard aimed at the static NDH task.
We observe in Table 4 that this model checkpoint’s
performance is competitive with state-of-the-art
models with a hidden test GP of 3.11. However,
the low hidden test SPL of 12 indicates the impact
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that multi-task fine-tuning with long RxR paths had
on this checkpoint’s ability to take short paths to
the goal, like we discussed earlier in Section 4.3.
Given this expected decrease in SPL when utiliz-
ing such long trajectories, we also created a model
checkpoint by multi-task fine-tuning VISITRON on
NDH, R2R and R4R. We observe that this model
checkpoint obtains state-of-the-art SPL of 25 along-
side an associated decrease in GP to 2.40.

Table 4: NDH Hidden Test Set Performance

# Method GP (m) ↑ SPL (%) ↑

1 MT-RCM + EnvAg (Wang et al., 2020) 3.91 17
2 BabyWalk (Zhu et al., 2020b) 3.65 11
3 VISITRON 3.11 12
4 Cross-modal Memory Network (Zhu et al., 2020c) 2.95 14
5 PREVALENT (Hao et al., 2020) 2.44 24
6 VISITRON (Best SPL) 2.40 25

5 Related Work

Vision-and-language pre-training (Tan et al., 2019;
Lu et al., 2019; Sun et al., 2019; Chen et al., 2020;
Zhou et al., 2020) has grown to become a popular
area of research, primarily aimed at solving down-
stream tasks such as image captioning, visual ques-
tion answering and image retrieval. This line of
work typically involves learning cross-modal repre-
sentations using self-supervised objectives with a
co-attention Transformer that fuses the two modal-
ities represented by input token embeddings and
visual region features, where the latter is typically
sourced from Faster R-CNN (Ren et al., 2015).

Research in vision-and-language navigation
(VLN) has also seen tremendous progress (Fried
et al., 2018; Ke et al., 2019; Anderson et al., 2019;
Tan et al., 2019; Zhu et al., 2020a) since the advent
of the Room-to-Room (R2R) dataset (Anderson
et al., 2018b) based on Matterport3D (Chang et al.,
2017), with scope for further advances only in-
creasing with the recent release of the much larger,
densely annotated and multilingual Room-across-
Room (RxR) dataset (Ku et al., 2020). As an exten-
sion to VLN, the recent Cooperative Vision-and-
Dialog Navigation (CVDN) dataset (Thomason
et al., 2020) allows for training interactive navi-
gator and guide agents. The dominant focus of re-
search with CVDN so far has been the Navigation
from Dialog History (NDH) task introduced with
CVDN, which is equivalent to treating the dialogue
history as a VLN-style fixed instruction. The NDH
formulation allows for easy transfer and multi-task
learning (Hao et al., 2020; Wang et al., 2020; Zhang

et al., 2020) with VLN. However, state-of-the-art
VLN models such as VLN-BERT (Majumdar et al.,
2020) rely on the fully-observable setting when
framing the task as ahead-of-time path selection,
which is fundamentally at odds with the need for di-
alogue in CVDN: dialogue is aimed at enabling the
navigating agent to succeed while it makes naviga-
tion decisions and decides it needs assistance. The
recent Recursive Mental Model (RMM) (Roman
et al., 2020) for CVDN attempts to address this by
introducing a simulated dialogue game-play mode,
where a trained navigator is fine-tuned jointly with
a pre-trained guide and evaluated in this mode.
However, the RMM navigator does not dynami-
cally ask questions, instead relying on a data-driven
heuristic of asking questions after every 4th naviga-
tion time-step. VISITRON’s design naturally leads
to a generalization of this game-play mode which
eliminates the aforementioned heuristic.

Our work is similar to recent work (Hao et al.,
2020) on leveraging pre-trained cross-modal repre-
sentations for the NDH task. However, our work
takes on added goals of learning when to ask ques-
tions and associative learning of visio-linguistic
concepts and semantics to ensure they can be iden-
tified and acquired when interacting in new en-
vironments, which are key requirements for full
cooperative vision-and-dialogue navigation.

6 Conclusion and Future Work

We presented VISITRON, a Transformer-based
navigator designed to identify and acquire visio-
linguistic concepts and semantics and make deci-
sions, all key traits for interactive navigation in-
herent to CVDN. We demonstrated the efficacy of
our approach via experiments and ablations. We
proposed generalizing the game-play regime intro-
duced with RMM (Roman et al., 2020) to enable
interactive fine-tuning and evaluation of VISITRON-
like models with pre-trained guides. The trade-off
between GP and SPL in dialogue-based navigation,
Sim-to-Real transfer (Anderson et al., 2021) and
robustness in dialogue-based navigation in pres-
ence of speech recognition errors (Gopalakrishnan
et al., 2020) are all important problems that merit
detailed investigation in future work.

7 Societal Impact

The primary dataset of interest for our work on
interactive navigation in photo-realistic indoor en-
vironments: Cooperative Vision-and-Dialog Nav-

1991



igation (CVDN), is an English-only dataset. We
also multi-task with several other datasets, namely
R2R, R4R and RxR, but RxR is the only multilin-
gual dataset and covers English, Hindi and Telugu.
Due to CVDN being English-only, we utilized the
English-portion of the RxR data during multi-task
fine-tuning. There are over 6500 known languages
spoken in the world today and vision-and-dialog
navigation research could, in principle, be deployed
in every home in the world, but due to current data
limitations, it can only be deployed in English-
speaking homes. Our modeling methods should
transfer to other languages given sufficient volume
of data, but ensuring that might not be possible for
low-resource or endangered languages. VISITRON

may benefit from new training schemes and mod-
eling improvements to account for such scenarios.
When deployed in real homes, speech would be the
primary modality for most humans to interact with
such robots. While speech recognition research has
advanced considerably, ensuring accurate speech
recognition across various speaker populations and
accents is still challenging. Errors in speech recog-
nition could impact VISITRON’s ability to navigate
accurately, so making VISITRON robust to speech
recognition errors will be necessary, potentially
via augmentation of the language component of
its training data with synthetic and actual speech
recognition errors (Gopalakrishnan et al., 2020).

During navigation, VISITRON needs access to
neighboring viewpoints to select from. Each envi-
ronment in CVDN contains an underlying naviga-
tion graph which provides this information, which
might not be the case in real unseen environments.
In its absence, additional modules can be added that
generate a local navigation graph based on the sur-
roundings (Anderson et al., 2021). Datasets in the
vision-and-language navigation space such as R2R
and CVDN typically consider the environment to
be static. Obstacle avoidance methods need to be
added to models built using these datasets to avoid
hazardous collisions in a dynamic environment,
such as with moving humans and pets.

Large language models are known to have a
high carbon footprint associated with training
them (Strubell et al., 2019). VISITRON is about
the same size as BERT (Devlin et al., 2019), which
is now ubiquitously used in both academic and in-
dustrial settings and can be trained reasonably fast.
The carbon footprint of this work was maintained
within permissible limits by using a maximum of 8

Tesla V100 GPUs for training.
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