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Abstract

Relation extraction (RE) is an important natu-
ral language processing task that predicts the
relation between two given entities, where a
good understanding of the contextual infor-
mation is essential to achieve an outstanding
model performance. Among different types
of contextual information, the auto-generated
syntactic information (namely, word depen-
dencies) has shown its effectiveness for the
task. However, most existing studies require
modifications to the existing baseline archi-
tectures (e.g., adding new components, such
as GCN, on the top of an encoder) to lever-
age the syntactic information. To offer an
alternative solution, we propose to leverage
syntactic information to improve RE by train-
ing a syntax-induced encoder on auto-parsed
data through dependency masking. Specifi-
cally, the syntax-induced encoder is trained
by recovering the masked dependency connec-
tions and types in first, second, and third or-
ders, which significantly differs from existing
studies that train language models or word
embeddings by predicting the context words
along the dependency paths. Experimental
results on two English benchmark datasets,
namely, ACE2005EN and SemEval 2010 Task
8 datasets, demonstrate the effectiveness of our
approach for RE, where our approach outper-
forms strong baselines and achieve state-of-
the-art results on both datasets.!

1 Introduction

Relation extraction (RE) provides deep analyses of
the input text by extracting the relation between two
given entities in the input. Therefore, it is an im-
portant task in natural language processing (NLP)
and is widely used in many downstream NLP appli-
cations such as summarization (Wang and Cardie,
2012), question answering systems (Xu et al., 2016)
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and text mining (Distiawan et al., 2019). To cor-
rectly extract the relation between two entities, it
normally requires a good modeling and analysis of
the input text. Recent models such as LSTM, Trans-
formers (Vaswani et al., 2017), and pre-trained lan-
guage models (e.g., BERT (Devlin et al., 2019)
and XLNet (Yang et al., 2019)) have significantly
improved the performance of RE models with an
important reason of their encoding power on con-
textual information. However, such models still
reach a bottleneck because it is hard for them to
capture structural information of the running text
(which is essential for RE) by modeling the text
as a linear sequence of words. To deal with this
situation, extra knowledge and features (e.g., syn-
tactic knowledge) are used in many studies, while
of all choices, the dependency parses have been
widely used and demonstrated to be effective (Xu
et al., 2015; Zhang et al., 2018; Guo et al., 2019;
Mandya et al., 2020; Sun et al., 2020; Yu et al.,
2020b; Tian et al., 2021), for the reason that the
dependency trees are able to provide long-distance
word-word relations which are important structural
complement to existing models for RE.

To leverage dependency information, most ex-
isting approaches in NLP either treat it as extra
input features (Prokopidis and Papageorgiou, 2014;
Kiperwasser and Goldberg, 2015; Yu and Bohnet,
2017), which requires heavy feature engineering,
or use complicated architectures (Xu et al., 2015;
Roth and Lapata, 2016; Marcheggiani and Titov,
2017; Zhang et al., 2018; Li et al., 2018; Guo et al.,
2019; Nie et al., 2020; Li et al., 2020a,b; Chen et al.,
2020) to encode it, which suffers from the difficulty
of designing an effective model. In addition, these
approaches normally require dependency trees as
extra input when processing sentences, and thus
potentially suffer from noises from the dependency
trees because of errors from automatic parsing.
Therefore, an alternative is needed to leverage de-
pendency information, especially auto-generated
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Figure 1: An overview of our approach to train a syntax-induced encoder (highlighted in the red box). The left part
shows the process to extract and mask dependencies (connection and type masking, respectively) in first, second,

and third orders, where the word subscript denotes its se

ntential index. The right part illustrates the process to

compute the scores of dependency connections and types in different orders to recover the ones that being masked.

ones, for NLU tasks, so as to overcome the afore-
mentioned issues.

In this paper, we propose to enhance RE through
learning a good encoder equipped with dependency
information, where the learning is carried out by
a dependency-guided process. In detail, a depen-
dency masking approach is designed to introduce
such information, where we firstly apply an off-
the-shelf dependency parser to large raw data and
extract the dependency connections and types from
the auto-parsed dependency trees, and then mask
these connections and types so as to pre-train a
syntax-induced encoder by recovering (predicting)
them, which significantly differs from that of train-
ing word embeddings (Levy and Goldberg, 2014;
Komninos and Manandhar, 2016) by predicting
the context words along the dependency relations.
In doing so, the dependency information weakly
supervises the encoder and the pre-training on de-
pendency masking ensures a selective learning pro-
cess on those frequent and important dependency
relations, which is more flexible than taking depen-
dency parses (with noises) as fixed knowledge. In

addition, by noting that higher order dependency
information is beneficial in many cases (Coppola
and Steedman, 2013; Kamigaito et al., 2018; Li
et al., 2020b), we further enhance our approach by
pre-training with masking second and third order
word dependencies rather than just doing it on the
first order. Once pre-trained, the resulted encoder
is applied with ordinary fine-tune procedure for RE.
Experimental results on two English benchmark
datasets, namely, English ACE2005EN? and Se-
mEval 2010 Task 8 (Hendrickx et al., 2010), for
RE demonstrate the effectiveness of our approach,
which outperforms strong baselines and achieves
state-of-the-art results on both of the datasets.

2 The Approach

To learn a text encoder with important structural
information for RE, we propose to pre-train it with
masking and recovering word-word dependency
connections and types that are auto-analyzed from

https://catalog.ldc.upenn.edu/
LDC2006T06
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existing parsers. The resulted syntax-induced en-
coder is thus weakly supervised by such informa-
tion and provided with necessary syntax integration.
In doing so, the dependency information is intro-
duced during pre-training the encoder, thus no extra
input is required in applying it to real applications,
avoiding particular design of models to leverage
such information during inference. Figure 1 illus-
trates the architecture of our approach to learn from
an input sentence X' = wyxo- - Tj Ty
with n words and its dependency tree Ty, so that
the masking and recovering can be formalized by

Yz = DM(DE(Tx)) (1)

and

Yu = F(EN(X)) 2)

respectively, where Y); is the set of all masked
dependency connections and types obtained by de-
pendency extraction (DE) and dependency mask-
ing (DM), and f the process (with pre-training on
it) to recover (predict) Yy to }A/M with the base en-
coder EN trained accordingly during the process.
In the following text, we firstly illustrate depen-
dency extraction, then the process to integrate syn-
tax information into the encoder with dependency
masking, and finally the steps to apply the resulted
syntax-induced encoder to RE.

2.1 Dependency Extraction

To extract dependency information form the input
text, we firstly apply an off-the-shelf dependency
parser to the input and obtain its dependency tree
Tx. Then, we extract first, second, and third or-
der’ dependency information from 7 and repre-
sent them in the form of tuple, i.e., (z;, z;, type),
where there is a connection between x; and x; and
the dependency type (which is directional) of x;
towards x; is type. Specifically, for the first or-
der dependencies, we directly use the dependency
connections and types in 7x, where we construct
a directed connection between z; and x; (denoted
by (z;,2;)) if z; is the head of z; and the depen-
dency type between them is the syntactic role (e.g.,
nominal subject) of z; with respect to z;. For the
second order dependencies, we construct a second
order dependency connection between z; and x;
if there is a word 2’ that connects to both x; and

*Most previous studies (Coppola and Steedman, 2013;
Ji et al., 2019; Li et al., 2020b) use second or third order
dependencies and some (Kamigaito et al., 2018) try higher
orders yet show comparable performance.
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Figure 2: An illustration of the three second-order (a)
and four third-order (b) dependency types between x
and x;, based on their positions in the parse tree.

x; by two connections (z;,2’) and (2/, z;) in Tx.
In the second order case, we define three types for
their connections namely, ancestor, sister, and de-
scendant, according to the position of z; and x;
in the dependency tree Tx, which are illustrated
in (I), (II), and (III) in Figure 2 (a), respectively.4
Similarly, for third order dependencies, we extend
the types to four ones, namely, ancestor, uncle,
nephew, and descendant, which are illustrated in
(D-(IV) in Figure 2 (b).

2.2 Dependency Masking and Prediction

Previous studies leveraging dependency informa-
tion by pre-training mainly focused on predicting
the context words associated through dependency
connections. Compared with these approaches,
ours focuses on a different direction to leverage
auto-parsed dependency information through learn-
ing word-word associations (i.e., dependency con-
nections) and their dependency types. In doing
s0, we propose a weakly supervised learning task,
namely, dependency masking (DM) with masked
dependency prediction (MDP), to enhance text en-
coder pre-training, where they are paired processes
that DM masks all connections and dependency
types associated with each z; (the masked connec-
tions and relations are denoted by (z;, [MASK])
and (z;,z;, [MASK]) in Figure I, respectively)
and MDP aims to recover them during training.

*One can directly combine the dependency types of the
connections (z;,z’) and (z', x;) to represent such type for
this scenario, but there will be huge numbers of combinations
of syntactic roles, potentially leading to overfitting.
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Figure 3: The architecture of our model for RE with
the syntax-induced encoder (highlighted in red color)
pre-trained on auto-parsed data through DMP.

Specifically, to recover the masked dependency
connections and types, we firstly pass the input
X into the base encoder (shown in the red box in
Figure 1) that can be initialized in different ways
(e.g., by a pre-trained language model) and obtain
the hidden vector h; of the word x;. Then, we
use three modules with the same architecture to
recover masked dependency connections and types
from first, second, and third order dependencies.
Taking the first order dependencies as examples,
we compute the connection score s¢°"~! and type

2%
scores sf:yjp “-! for each pair of z; and z; by
it =hj - W{" - hy 3)
sl = W - (h; @ ;) 4)
where @ denotes vector concatenation; W{°"* and
Wiyp ® are trainable matrices. Herein, sff’j”—l isa
scalar and sﬁyjp “- is a vector with the values repre-

senting the scores for all possible types between x;
and z;. Similarly, we use the same procedure to
obtain the connection scores sf:’j"—z, sf’oj"—?’ and the
type score vectors sﬁf’jp -2 sff’f “-3 for second and
third order dependencies, respectively. Based on
the connection and type scores of the first, second,
and third order dependencies, our model recovers
the masked connection by treating it as a binary

classification using sigmoid function and pre-

dicts the masked type by applying softmax to
the type score vectors. As a result, dependency
information in different orders is implicitly intro-
duced into the base encoder by the gradients back-
propagated from the MDP process.

2.3 RE with Syntax-induced Encoder

Once the encoder is trained, we extract the ob-
tianed syntax-induced encoder and fine-tune it on
RE tasks, where the goal of our RE model is to pre-
dict the relation j € R (R is the set for all relation
types) between two given entities £ and Fs in the
input X, which is formally expressed by

y =argmax s (rel| (X, E1, E2)) 5)
rel€R

where s(-) computes the score s™ for a particular
relation type rel € R with the given input X' and
entities (i.e., £1 and E5). In doing so, we firstly
fed X into the pre-trained syntax-induced encoder
and obtain the hidden vectors h; for each ;. Next,
we apply the max pooling operation to the hid-
den vectors of the words in each entity and obtain
the vector representations, namely, e; and e, of
FE; and Es. Then, we apply bi-affine attentions
(Vaswani et al., 2017) to e; and es to compute the
score 5" for the particular relationship rel. Specif-
ically, bi-affine attentions pass e; and e into two
different multi-layer perceptrons (MLP), namely,
MLP; and MLPs, and use a trainable relationship
matrix W7 to compute s™ via

e} = MLPy(e;) ©)
e, = MLP(e») @)
sl = (e, @ [I)T - W (ehd[l]) (@8

where [1] is a one-dimensional unit vector which
is the bias term for €/ and €. Afterwards, we
compute the scores 5" for all types of relations
and predict the one with the highest score.

3 Experimental Settings

3.1 Datasets

We use the newest English Wikipedia dump (Wiki)
as the raw data to train the syntax-induced encoder
through masked dependency prediction (MDP). We
filter out sentences whose lengths are fewer than
10 words and obtain the resulting corpus with 92M
sentences and 2,380M tokens. In obtaining depen-
dency relations, we use Berkeley Neural Parser’

SWe obtain their models from https://github.com/
nikitakit/self-attentive-parser.
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Datasets | Sent.# Token# Instance #
Train 7K 145K 5K

ACEO5 Dev 2K 36K 1K
Test 2K 31K 1K

SemEval Train 8K 141K 8K
V& | Test 3K 48K 3K

Table 1: The statistics of the two English benchmark
datasets used in our experiments for relation extraction,
where the number of sentence, tokens, and instances
(i.e., entity pairs) are reported.

(Kitaev and Klein, 2018) trained on English Penn
Treebank (PTB)® (Marcus et al., 1993) to automat-
ically parse the Wiki data into constituency trees
and then convert them into dependency trees by
Stanford Dependency converter’ (Manning et al.,
2014). For relation extraction, we use English
ACE2005EN (ACE05)® and SemEval 2010 Task
8 (SemEval)’ (Hendrickx et al., 2010) with the
standard train/dev/test splits'® and follow previ-
ous studies (Christopoulou et al., 2018; Ye et al.,
2019; Zhang et al., 2017; Soares et al., 2019) to
process them. The statistics, namely, the number
of sentences and tokens, as well as the number of
instances (i.e., entity pairs), of both datasets are
reported in Table 1.

3.2 Implementation Details

Since a good text representation plays an important
role in achieving outstanding performance in many
NLP tasks (Song and Shi, 2018; Devlin et al., 2019;
Yang et al., 2019; Liu et al., 2019; Lewis et al.,
2020; Song et al., 2021; Sun et al., 2021), in the
experiments, we use pre-trained language models,
i.e., BERT (Devlin et al., 2019) and XLNet (Yang
et al., 2019) that have demonstrate their effective-
ness in many NLP tasks (Yan et al., 2020; Tian
et al., 2020; Ke et al., 2021; Shi et al., 2020; Du
et al., 2020; Qin et al., 2021a) as the base encoder
for syntax inducing (pre-training) with dependency
masking. For both BERT and XLNet, we try their
base and large version following the default hyper-
parameter settings, where their base version uses
12 layers of self-attentions with 768 dimensional

°https ://catalog.ldc.upenn.edu/
LDC99T42.

"We use the converter of version 3.3.0 from https://
stanfordnlp.github.io/CoreNLP/index.html.

8We obtain the official data (LDC2006T06) from https
//catalog.ldc.upenn.edu/LDC2006T06.

The data is downloaded from http: //docs . google.
com/View?docid=dfvxd49s_36c28vIpmw.

0There is no official development set for ACEOS.

Pre-training Step | 700K, 1,400K, 2,100K, 2,800K

Learning Rate le-5, 5e-5
Warmup Rate 0.08,0.1,0.2
Batch Size 16, 32

Table 2: The hyper-parameters tested in tuning our
models for relation extraction. The best ones used in
our final experiments are highlighted in boldface.

hidden vectors and the large version uses 24 layers
of self-attentions with 1024 dimensional hidden
vectors for their large version.!!

For syntax inducing, we train the model on the
auto-parsed English Wiki for 700K steps'? with
the batch size set to 32. It is worth noting that,
since English Wiki is used as a part of the data
to train BERT and XLNet, it could be considered
that we do not use additional data in experiments.
For the process of fine-tuning the final RE model,
we use the obtained syntax-induced encoder with
randomly initialized bi-affine attentions. For other
hyper-parameters, Table 2 reports the ones tested
in training our models for training the relation ex-
traction models. We test all combinations of them
for each model and use the one achieving the high-
est results (i.e., F1 scores) on the development set.
For evaluation, we follow previous studies to use
the micro-F1 scores for ACEO5 and use the official
evaluation script'? for SemEval.

4 Results and Analyses
4.1 Opverall Results

Table 3 reports the results of our approach on the
test set of ACEOS and SemEval with different en-
coders trained on first, second, and third order of
dependencies (e.g., “+ DM (2nd)” denotes our ap-
proach with induced first and second order depen-
dencies), as well as their corresponding baselines
with only using the initial encoders (e.g., BERT and
XLNet). We also run baselines with the standard
graph convolutional networks (GCN) and the stan-
dard graph attentive networks (GAT) (Velickovi¢
etal., 2017) to leverage the auto-parsed dependency
trees obtained in the same process as we obtain the
auto-parsed Wiki (i.e., parsing and converting).

""'We download the cased version of BERT from https:
//github.com/google-research/bert and XLNet
from https://github.com/zihangdai/x1lnet.

"2Syntax-induced encoder trained for 700K steps on the
auto-parsed data achieves the optimal performance in most
cases of the experiments (see more analyses in Section 4.4).

BWe download the evaluation script from
http://semeval2. fbk.eu/scorers/task08/
SemEval2010_task8_scorer-vl.2.zip.
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Models | ACEO5 SemEval

BERT-Base 73.31 88.41
+ GCN 73.53 88.51
+ GAT 73.61 88.59
+ DM (1st) 73.62 88.65
+DM (2nd) | 73.76 88.60
+DM (3rd) | 73.65 88.74

BERT-Large 73.94 89.03
+ GCN 74.16 89.23
+ GAT 74.30 89.37
+DM (Ist) | 74.34 89.42
+ DM (2nd) | 74.47 89.65
+DM (3rd) | 74.29 89.37

(a) BERT-based Models

Models | ACEO5 SemEval

XLNet-Base 73.42 88.78
+ GCN 73.55 88.84
+ GAT 73.67 88.90
+ DM (Ist) 73.74 88.93
+ DM (2nd) | 73.86 89.11
+DM (3rd) | 73.68 89.02

XLNet-Large | 74.26 89.47
+ GCN 74.33 89.56
+ GAT 74.45 89.62
+ DM (1st) 74.41 89.60
+ DM (2nd) | 74.60 89.90
+DM (3rd) | 74.51 89.76

(b) XLNet-based Models

Table 3: Experimental results of different models using base and large version of BERT and XLNet on the test
set of ACEO5 and SemEval. “+ GCN” and “+ GAT” refer to the models with the standard graph convolutional
network and standard graph attentive networks, respectively. “+ DM” denotes our approaches with based encoder
trained through dependency masking (DM) on word dependencies of different orders (“2nd” means both first and
second order dependencies are masked and learnt, the same for “3rd”).

There are several observations. First, our ap-
proach works well with different pre-trained lan-
guage models (i.e., base and large BERT and XL-
Net), where the models with syntax-induced en-
coder outperform the vanilla BERT and XL Net
baselines on both datasets, even though the base-
line models have already achieved desirable per-
formance. Second, compared with baseline mod-
els with standard GCN and GAT to leverage auto-
parsed dependencies, our approach with different
orders of dependency information consistently out-
performs those baselines, which further confirms
the effectiveness of our approach to leverage auto-
parsed dependency information. Third, among
models that leveraging dependency information
in different orders, the ones with second order de-
pendencies (i.e., "+ DM (2nd)") achieve the best
performance in most cases. This observation con-
firms that RE models can benefit from high-order
word dependencies since they provide association
information among words with longer syntactic
relations so as leading to better structure-aware un-
derstanding towards a sentence. However, it is still
worth noting that, incorporating further higher or-
der word dependencies (e.g., third order) may intro-
duce noise or task-irrelevant information to the en-
coder since they are provided with auto-generated
parses, which results in inferior performance com-
paring to using the second order dependencies.

4.2 Comparison with Previous Studies

We further compare our best performing model
with previous studies on the test set of ACEOS and
SemEval and report the results in Table 4. It is ob-
served that, our approach outperforms all previous
studies with different settings and encoders and
achieves state-of-the-art scores on both datasets,
which further confirms the effectiveness of our ap-
proach. Particularly, compared with previous stud-
ies (Zhang et al., 2018; Guo et al., 2019; Mandya
et al., 2020; Sun et al., 2020; Yu et al., 2020b)
that leverage the auto-parsed dependency tree of
the input sentence through a particular module
(e.g., Guo et al. (2019) proposed an graph-based
approach with attentions to leverage dependency
connections), where such dependency trees are re-
quired as extra input in inference, our approach
uses an encoder to learn the dependency informa-
tion through DMP and then fine-tune the obtained
syntax-induced encoder on RE task. Such design in
our approach allows our final RE model to be used
without requiring the dependency tree of the sen-
tence as the extra input in inference, which allows
our model to run faster than previous approaches.

4.3 The Effect of Encoder Initialization

To explore the effect of encoder initialization with
our approach, we run experiments by training our
encoder starting from Transformer that uses the
same architecture as BERT-base (i.e., 12 layers of



Models | ACE05 | SemEval
Socher et al. (2012) - 82.4
Zeng et al. (2014) - 82.7
Zhang and Wang (2015) - 79.6
Xu et al. (2015) - 83.7
Wang et al. (2016) - 88.0
Zhou et al. (2016) - 84.0
tZhang et al. (2018) - 84.8
Wu and He (2019) - 89.2
Christopoulou et al. (2018) 64.2 -
Ye et al. (2019) 68.9 -
TGuo et al. (2019) - 85.4
Baldini Soares et al. (2019) - 89.5
tMandya et al. (2020) - 85.9
+Sun et al. (2020) - 86.0
tYu et al. (2020a) - 86.4
Wang et al. (2020) 66.7 -
Wang and Lu (2020) 67.6 -
Wang et al. (2021) 66.0 -
1Ours (BERT) 74.47 89.65
1Ours (XLNet) 74.60 89.90

Table 4: The comparison of F1 scores between previ-
ous studies and our best model with BERT-large on
the test sets of ACEO5 and SemEval. Previous stud-
ies that leverage syntactic information (e.g., the depen-
dency tree of the input sentence) are marked by “t”.

multi-head attentions with 768 dimensional hid-
den vectors) with random initialization (without
using parameters from pre-trained language mod-
els or word embeddings). Table 5 reports the re-
sults of our approach when using different orders
of dependency information, as well as the baseline
results from the Transformer. As demonstrated,
our approach significantly improves the baseline
Transformer on both datasets, where around 30%
absolute boost is observed on both ACEQS and Se-
mkEval datasets. This observation further confirms
not only the effectiveness of our approach in im-
proving base encoder with leveraging dependency
information, but also its robustness of being applied
to a randomly initialized base encoder.

4.4 The Effect of Training Steps

To analyze the performance change of the learned
syntax-induced encoder on RE along with the
increasing of training steps, we investigate the
learned encoder (randomly initialized by a vanilla
Transformer or pre-trained BERT-base model) with
second order dependencies obtained from differ-
ent training steps by fine-tuning it on ACEOS5 and
SemEval. The test results (i.e., F1 scores) of our

Models | ACEO5 SemEval

Transformer ‘ 31.85 54.62
+ DM (1st) 66.79 79.37
+DM (2nd) | 66.67 80.02
+ DM (3rd) 64.54 79.95

Table 5: Comparisons of RE results from vanilla Trans-
former and our approach that being applied to a ran-
domly initialized Transformer (without pre-trained lan-
guage models or word embeddings).

approach based on the vanilla Transformer and the
BERT-base model with respect to the training steps
(in 100 thousands) are illustrated in Figure 4 (a)
and (b), respectively, and the performance of BERT-
base baseline on different datasets is illustrated in
dashed lines in different colors'* in Figure 4 (b). In
addition, we also evaluate the performance of the
learned encoders (i.e., vanilla Transformer and the
BERT-base model) trained by MDP on the test set
of PTB for dependency parsing to illustrate how
intensive of dependency information is introduced
during the pre-training process'>, where the labeled
attachment score (LAS) curves are presented in Fig-
ure 4 (c) for reference.

It is shown that, when the Transformer is used,
consistent improvements are observed with more
training steps for both datasets. When a pre-trained
language model (i.e., BERT-base) is used, it is
observed that RE benefits much at the beginning
of the pre-training (where the noisy auto-parsed
dependency information is not intensively learn-
ing) and reach the peak (i.e., 74.11% for ACEOS5
and 89.02% for SemEval) when the training step
reaches around 1,000K (where the syntax-induced
encoder does not hurt by the noise in the dependen-
cies). This phenomenon confirms the observations
in previous studies (Xu et al., 2015; Zhang et al.,
2018; Yu et al., 2020b; Sachan et al., 2021) that
intensively leverage dependency information may
introduce noise and confusion to relation classifi-
cation, so that effective dependency pruning and
introduce is of great importance. It also shows
the effectiveness of our approach to address the
noise by controlling the intensity of dependency
information learning during pre-training.

14The performance on ACEO5 and SemEval are illustrated
in green and orange colors, respectively.

SHerein, the higher the performance of learned encoders
on dependency parsing, the more intensive the dependency
information is introduced in pre-training.
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Figure 4: Curves of fine-tuning different base encoders
(Transformer (a) and BERT-base (b)) on ACEO5 and
SemEval with respect to the number of training steps
(in 100K). For reference, (c) shows the dependency
parsing performance (LAS) of the learned encoders
(Transformer and BERT-base) on the test set of English
Penn Treebank (PTB) against its pre-training steps,
where higher scores suggest that more intensive intro-
duction of dependency information.

4.5 The Effect of Learned Representations

In previous results and analysis, we already show
that the syntax-induced encoder outperforms base-
lines on RE with implicit integration of dependency
information. Therefore, it is interesting to analyze
the encoded word representations by qualitatively
investigating their relations, which is similar to
what has been done for word embeddings. In do-
ing so, we collect word representations from the
last layer of the trained syntax-induced encoder
(XLNet-large). Then, for each word, we average
its representation vectors under different contexts
and use the resulting vector as its final represen-
tations. Figure 5 visualizes (by t-SNE) the rep-
resentations of some example words, where the
distance between two words indicates their simi-
larity (closer distances indicate more relevant re-
lations). It is observed that words with relevant
syntactic properties (e.g., similar form or part-of-
speech role) and semantic meanings are grouped
into the same cluster (words in different clusters are
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Figure 5: Visualizations of the learned representations
through the syntax-induced encoder for some exam-
ple words. The distance between any two words illus-
trates their similarity in terms of syntax and semantics.
Words are presented in clusters and those in the same
cluster are represented in the identical color.

represented in different colors). For example, all
plural nouns of job names, e.g., “teachers”, “jour-
nalists”, “publisher”, “librarians”, “‘shipowners”,
and “supporters”, are in the same cluster (repre-
sented in red color), while they are far away from
irrelevant words, e.g., “praying”. This finding is in-
spiring since such representations are automatically
generated so that the MDP process shows its valid-
ity in learning syntax-aware word representations
and ensuring that their relevance in syntax and se-
mantics are appropriately modeled, which allows

our model to achieve promising performance.

5 Related Work

Relation extraction is an important task in NLP and
it requires deep understanding of the input text to
achieve model performance. Therefore, in addi-
tion to leveraging advanced text encoders (e.g., bi-
LSTM, Transformer (Vaswani et al., 2017), BERT
(Devlin et al., 2019)) to capture contextual infor-
mation, structural information, namely, the depen-
dency information, of the running text has been
widely used as an effective resource to improve
RE (Xu et al., 2015; Zhang et al., 2018; Guo et al.,
2019; Yu et al., 2020b; Chen et al., 2021). In most
recent studies in NLP, the dependency information
is leveraged either as extra input features (Proko-
pidis and Papageorgiou, 2014; Kiperwasser and
Goldberg, 2015; Yu and Bohnet, 2017) or modeled
by complicated graph-based architectures, such as
convolutions neural networks (Marcheggiani and
Titov, 2017; Zhang et al., 2018) and tree LSTMs
(Peng et al., 2017; Li et al., 2018). Previous stud-
ies also tried to use attention mechanism to weight
different dependency features (Guo et al., 2019; Yu
et al., 2020b; Qin et al., 2021b) and LSTM to en-



code linearized dependency path (Xu et al., 2015;
Roth and Lapata, 2016). In addition to model-
ing dependency information, there is another track
to leverage it by pre-training dependency-based
word embeddings through predicting the context
words in auto-parsed dependency trees (Levy and
Goldberg, 2014; Komninos and Manandhar, 2016)
or designing an auxiliary module to learn the de-
pendency information by treating the dependen-
cies as additional input during pre-training (Xu
et al., 2021). This research follows the pre-training
paradigm and offers an alternative way to do so.
Specifically, compared with existing studies, our
approach leverages the dependency information
by inducing it to the pre-training process through
masked dependency prediction, whose object is
to predict the masked dependencies rather than
directly using it as extra fixed input along with
the input sentence through an additional module.
Also, since the dependency information is learnt
by the syntax-induced encoder and the encoder is
further fine-tuned on the training data in the same
way as general RE model, our approach neither
requires any additional input features nor needs
complicated architectures to encode them, which
allows our model to be efficient in inference.

6 Conclusion

In this paper, we propose to use dependency mask-
ing and recovering to improve the text encoder and
thus enhance RE that requires deep understanding
of the running text, where the encoder is trained on
large scaled auto-parsed data. Specifically, we try
such masking on first, second, and third order word
dependencies from the auto-parsed data, and train a
base encoder that is able to recover all the masked
dependencies. In doing so, the resulted syntax-
induced encoder is integrated with dependency in-
formation in a dynamic and flexible manner and
it can be directly applied to different downstream
tasks requiring no extra input or particular design
to accommodate dependency information. Experi-
mental results and analyses on two English bench-
mark datasets (i.e., ACEO5 and SemEval) for RE
show the effectiveness of our approach, where our
approach outperforms strong baselines and achieve
state-of-the-art on both datasets.
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