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Abstract

5

Aspect-based sentiment analysis (ABSA) is a
fine-grained sentiment analysis task that aims
to align aspects and corresponding sentiments
for aspect-specific sentiment polarity infer-
ence. It is challenging because a sentence may
contain multiple aspects or complicated (e.g.,
conditional, coordinating, or adversative) rela-
tions. Recently, exploiting dependency syntax
information with graph neural networks has
been the most popular trend. Despite its suc-
cess, methods that heavily rely on the depen-
dency tree pose challenges in accurately mod-
eling the alignment of the aspects and their
words indicative of sentiment, since the de-
pendency tree may provide noisy signals of
unrelated associations (e.g., the “conj” rela-
tion between “grear” and “dreadful” in Fig-
ure 2). In this paper, to alleviate this prob-
lem, we propose a Bi-Syntax aware Graph
Attention Network (BiSyn-GAT+). Specif-
ically, BiSyn-GAT+ fully exploits the syn-
tax information (e.g., phrase segmentation and
hierarchical structure) of the constituent tree
of a sentence to model the sentiment-aware
context of every single aspect (called intra-
context) and the sentiment relations across as-
pects (called inter-context) for learning. Ex-
periments on four benchmark datasets demon-
strate that BiSyn-GAT+ outperforms the state-
of-the-art methods consistently.

1 Introduction

Aspect-based sentiment analysis (ABSA) aims to
identify the sentiment polarity towards a given as-
pect in the sentence. Many previous works (Yang
et al., 2018; Li et al., 2019) mainly focus on ex-
tracting sequence features via Recurrent Neural
Networks (RNNs) or Convolution Neural Networks
(CNNs) with attention mechanisms, which often
assume that words closer to the target aspect are
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(a) The food is great but the service and the environment are dreadful.
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positive neutral
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(b) The food is great but the service and the environment are quite the opposite.

Figure 1: Examples of ABSA task. Each underlined
aspect is classified to corresponding sentiment polarity.
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Figure 2: Dependency tree of “The food is great but the
service and the environment are dreadful”. Two sepa-
rate ellipses encircle its two clauses. The “conj” edge
between “great” and “dreadful” is a noise.

more likely to be related to its sentiment. However,
the assumption might not be valid as exemplified
in Figure 1 (a), “service” is obviously closer to
“great” rather than “dreadful”, and these methods
may assign the irrelevant opinion word “great” to
“service” mistakenly.

To mitigate this problem, there already exists sev-
eral efforts (Wang et al., 2020a; Chen et al., 2020)
dedicated to research on how to effectively leverage
non-sequential information (e.g., syntactic informa-
tion like dependency tree) via Graph Neural Net-
works (GNNs). Generally, a dependency tree (i.e.,
Dep.Tree), linking the aspect terms to the syntacti-
cally related words, stays valid in the long-distance
dependency problem. However, the inherent nature
of Dep.Tree structure may introduce noise like the
unrelated relations across clauses, such as “conj”
relation between “great” and “dreadful” in Figure 2,
which discourages capturing the sentiment-aware
context of each aspect, i.e., intra-context. More-
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Figure 3: Constituent tree of the sentence “The food
is great but the service and the environment are dread-
ful”. Context words are in rectangles and parsed phrase
types are in rounded rectangles.

over, the Dep.Tree structure only reveals relations
between words and, thereby, in most cases, is inca-
pable of modeling complicated (e.g., conditional,
coordinating, or adversative) relations of sentences,
therefore failing to capture sentiment relations be-
tween aspects, i.e., infer-context.

Hence, in this paper, we consider fully exploit-
ing the syntax information of the constituent tree
to tackle the problem. Typically, a constituent tree
(i.e., Con.Tree) often contains precise and discrimi-
native phrase segmentation and hierarchical com-
position structure, which are helpful for correctly
aligning the aspects and their corresponding words
indicative of sentiment. The former can naturally
divide a complicated sentence into multiple clauses,
and the latter can discriminate different relations
among aspects to infer the sentiment relations of
different aspects. We illustrate this with an example
in Figure 3: (1) Clause “The food is great” and the
clause “the service and environment are dreadful”
are segmented by the phrase segmentation term
“but”; (2) In Layer-1, the term “and” indicates the
coordinating relation of “service” and “‘environ-
ment”, while the term “but” in Layer-3 reflects the
adversative relation towards “food” and “service”
(or “environment”).

Thus, to better align aspect terms and corre-
sponding sentiments, we propose a new frame-
work, Bi-Syntax aware Graph Attention Network
(BiSyn-GAT+), to effectively leverage the syntax
information of constituent tree by modeling intra-
context and inter-context information. In partic-
ular, BiSyn-GAT+ employs: 1) a syntax graph
embedding to encode the intra-context of each as-
pect based on the fusion syntax information within
the same clause in a bottom-up way, which com-
bines the phrase-level syntax information of its
constituent tree and the clause-level syntax infor-
mation of its dependency tree. 2) an aspect-context
graph consisting of phrase segmentation terms and
all aspects to model the inter-context of each as-
pect. Specifically, it aggregates the sentiment infor-

mation of other aspects according to the influence
between the current aspect and its neighbor aspects,
which is calculated based on aspect representations
learned from bi-directional relations over the aspect
context graph, respectively.

Our main contributions are as follows:

(1) To the best of our knowledge, this is the
first work to exploit syntax information of con-
stituent tree (e.g., phrase segmentation and hierar-
chical structure) with GNNs for ABSA. Moreover,
it shows superiority in the alignments between as-
pects and corresponding words indicative of senti-
ment.

(2) We propose a framework, Bi-Syntax aware
Graph Attention Network (BiSyn-GAT+), to fully
leverage syntax information of constituent tree (or,
and dependency tree) by modeling the sentiment-
aware context of each single aspect and the senti-
ment relations across aspects.

(3) Extensive experiments on four datasets show
that our proposed model achieves state-of-the-art
performances.

2 Related Work

Sentiment analysis is an important task in the field
of natural language processing (Zhang et al., 2018;
Yang et al., 2020) and can be applied in down-
stream tasks, like emotional chatbot (Wei et al.,
2019; Li et al., 2020a; Lan et al., 2020; Wei et al.,
2021), recommendation system (Zhao et al., 2022;
Wang et al., 2020b), QA system (Wei et al., 2011;
Qiu et al., 2021). Here we focus on a fine-grained
sentiment analysis task — ABSA. Recently, deep
learning methods have been widely adopted for
ABSA task. These works can be divided into two
main categories: methods without syntax informa-
tion (i.e., Syntax-free methods) and methods with
syntax information (i.e., Syntax-based methods).

Syntax-free methods: Neural networks with atten-
tion mechanisms (Wang et al., 2016; Chen et al.,
2017; Song et al., 2019) have been widely used.
Chen et al. (2017) adopts a multiple-attention mech-
anism to capture sentiment features. Song et al.
(2019) uses an attentional encoder network (AEN)
to excavate rich semantic information from word
embeddings.

Syntax-based methods: Recently, utilizing de-
pendency information with GNNs has become
an effective way for ABSA. Zhang et al. (2019)
uses graph convolutional networks (GCN) to learn

1836



node representations from Dep.Tree. Tang et al.
(2020) proposes a dependency graph enhanced
dual-transformer network (DGEDT) by jointly con-
sidering representations from Transformers and cor-
responding dependency graph. Wang et al. (2020a)
constructs aspect-oriented dependency trees and
proposes R-GAT, extending the graph attention net-
work to encode graphs with labeled edges. Li et al.
(2021) proposes a dual graph convolutional net-
works (DualGCN) model, simultaneously consider-
ing syntax structures and semantic correlations. All
above works use syntax information of Dep.Tree,
which may introduce noise, as we said before.
Thus, we exploit syntax information of Con.Tree
with GNNs. Precisely, we follow the Con.Tree
to aggregate information from words within the
same phrases in a bottom-up way and capture in-
tra-context information.

Moreover, some works resort to modeling aspect-
aspect relations. Some (Hazarika et al., 2018; Ma-
jumder et al., 2018) adopt aspect representations
to model relations by RNNs or memory networks,
without utilizing context information. And some
(Fanetal., 2018; Hu et al., 2019) propose alignment
loss or orthogonal attention regulation to constrain
aspect-level interactions, which fail when aspects
have no explicit opinion expressions or multiple as-
pects share same opinion words. Recently, there are
some works utilizing GNNs to model aspect rela-
tions. Liang et al. (2020) constructs an inter-aspect
graph based on relative dependencies between as-
pects. Zhao et al. (2020) constructs a sentiment
graph, where each node represents an aspect, and
each edge represents the sentiment dependency re-
lation. However, these works fail to explicitly use
phrase segmentation information, such as conjunc-
tion words. Thus, we propose an aspect-context
graph consisting of all aspects and phrase segmen-
tation terms to model inter-context information.

GNNs with constituent tree: To our knowledge,
we are the first work to utilize the constituent tree
for ABSA task. But in aspect-category sentiment
analysis task, which predicts sentiment polarity
towards a given predefined category in the text,
Li et al. (2020b) proposes a Sentence Constituent-
Aware Network (SCAN) that generates representa-
tions of the nodes in Con.Tree. Unlike SCAN, we
view parsed phrases as different spans of the input
text instead of individual nodes. So we don’t intro-
duce any inner nodes of Con.Tree (e.g., “NP”,“VP”
of Figure 3) into the representation space, decreas-

ing the computational overhead.

3 Methodology

3.1 Overview

Problem Statement. Lets = {w;}, and A =
{a;},, be a sentence and a predefined aspect set,
where n and m are the number of words in s and the
number of aspects in A, respectively. For each s,
A = {aila; € A, a; € s} denotes the aspects con-
tained in s. We treat each multiple-word aspect as a
single word for simplicity, so a; also means the i-th
word of s. The goal of ABSA is to predict the senti-
ment polarity y; € {positive, negative, neural} for
each aspect a; € Ag.

Architecture. As shown in Figure 4, our proposed
architecture takes the sentence and all aspects that
appear in the text as the input, and outputs the
sentiment predictions of the aspects. It contains
three components: 1) the intra-context module en-
codes the input {w; } to obtain aspect-specific rep-
resentations of the target aspects, which contains
two encoders: a context encoder that outputs con-
textual word representations and a syntax encoder
that utilizes syntax information of the parsed con-
stituent tree (or, and dependency tree). 2) the
inter-context module includes a relation encoder
applied to the constructed aspect-context graph
to output relation-enhanced representations. The
aspect-context graph composes all aspects of the
given sentence and phrase segmentation terms ob-
tained from a designed rule-based map function
applied to the constituent tree. 3) the sentiment
classifier takes output representations of the above
two modules to make predictions.

3.2 Intra-Context Module

In this part, we utilize a context encoder and a
syntax encoder to model the sentiment-aware con-
text of every single aspect and generate aspect-
specific representation for each aspect. Note that
for multi-aspect sentences, we use this module mul-
tiple times, as each time deals with one aspect.

3.2.1 Context Encoder

We use BERT (Devlin et al., 2019) to generate con-
textual word representations. Given target aspect
ay, we follow BERT-SPC (Song et al., 2019) to
construct a BERT-based sequence:

BERT _seq; = [CLS|+{w; }+[SEP]+a;+[SEP] ,
ey
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Figure 4: Overall architecture. It takes the sentence and all aspects as input and outputs sentiment predictions
for all aspects. It has three components: 1) the intra-context module contains two encoders: a context encoder
that outputs contextual word representations and a syntax encoder that utilizes syntax information of the parsed
constituent tree (or, and dependency tree). Output representations from two encoders are fused to generate aspect-
specific representations; 2) the inter-context module includes a relation encoder applied to the constructed aspect-
context graph to obtain relation-enhanced representations. The aspect-context graph includes all aspects and phrase
segmentation terms obtained from a designed rule-based map function applied to the constituent tree. 3) the
sentiment classifier takes the outputs from two modules to make predictions.

Then, the output representation is obtained by,
t t gt t t
Bt = {ho, ST hn/+2+mé} )

where n’ and m’ are lengths of input text and tar-
get aspect a; after BERT tokenizer separately, h,
is “BERT pooling” vector representing the BERT
sequence, h! is the contextual representation of
each token. Note that w; may be split into multiple
sub-words by BERT tokenizer. So we calculate the
contextual representation of w; as follows,

- 1
R - .
' |BertT (w;)| Z k 3)
keBertT (w;)
where BertT(w;) returns an index set of w;’s sub-
words in BERT sequence, and | | returns its length.

3.2.2 Syntax Encoder

The above representations only consider semantic
information, so we propose a syntax encoder to
utilize rich syntax information. Our syntax encoder
is stacked by several designed Hierarchical Graph
ATtention (HGAT) blocks, and each block consists
of multiple graph attention (i.e., GAT) layers that
encode syntax information hierarchically under the
guidance of the constituent tree (or, and the depen-
dency tree). The key point is the construction of
corresponding graphs.

Graph construction. As Figure 4 shows, we fol-
low the syntax structure of Con.Tree in a bottom-
up way. Each layer [ of Con.Tree consists of sev-
eral phrases {ph!,} that compose the input text,
and each phrase represents an individual semantic
unit. e.g., {ph®} in Figure 3 is {The food is great,
but, the service and the environment are dreadful}.
We construct corresponding graphs based on those
phrases. i.e., For layer [ that consists of phrases
{phl,}, we construct the adjacent matrix CA that
shows word connections:

; _ J 1 if w;, wj in same phrase of {phfd}
CA;; =

)

“)

which is exemplified as Con.Graphs in Figure 5.

0 otherwise

HGAT block. A HGAT block aims to encode syn-
tax information into word representations hierarchi-
cally. As Figure 5 shows, a HGAT block is stacked
by several GAT layers that utilize a masked self-
attention mechanism to aggregate information from
neighbors and a fully connected feed forward net-
work to map representations to the same semantic
space. Attention mechanism can handle the diver-
sity of neighbors with higher weights assigned to
more related words. It can be formulated as follows,
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Figure 5: HGAT Block. It is stacked by several GAT
layers, and each GAT layer is applied to the graph ob-
tained from one layer of the constituent tree (or, and the
dependency tree).
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where N!(4) is the set of neighbors of w; in layer [,
g;?’l is the final representation of w; in layer [, F'C'
is fully connected feed forward network. gf-’l is
the representation of w; after masked self-attention
mechanism. || denotes vector concatenation. Z
is the number of attention heads, o is activation
function. Wéz is trainable parameter of the zth
head of layer [. f is a score function that measures
the correlation of two words. Stacked HGAT block
takes the output of previous one as the input, and
the input of the first HGAT block is ht. The output
of syntax encoder is defined as g for simplicity.

With dependency information. We also explore
the fusion of two syntax information. Following
previous works, we consider the Dep.Tree as an
undirected graph and construct adjacent matrix

DA, which is formulated as follows,

DA, . = 1
“ 10 otherwise

if w;, w; link directly in Dep.Tree

(®)

We consider three operations: position-wise

dot, position-wise add, and conditional position-

wise add. Each corresponding adjacent matrix FA
is shown as follows,

A. position-wise dot. For each layer of Con.Tree,
this operation only considers neighbors of the
Dep.Tree that are also in the same phrase.

FA =CA -DA )

B. position-wise add. For each layer of Con.Tree,
this operation considers words in the same phrases
and neighbors of the Dep.Tree. Some edges of
Dep.Tree can shorten paths between aspect words
and relevant opinion words, e.g., “food” and “great”
in Figure 3.

FA = CA + DA (10)
C. conditional position-wise add. This opera-
tion considers phrase-level syntax information of
Con.Tree and clause-level syntax information of
Dep.Tree. Specifically, it first deletes all depen-
dency edges that are across clauses (e.g., the edge
between “great” and “dreadful” in Figure 2) and
then conducts position-wise add operation with
the remaining dependency edges.

FA = CA ¢© DA an

Thus, the output of the intra-context module
contains both contextual information and syntax
information, which is formulated as follows,

vit = [Bf + gl hf) (12)

3.3 Inter-Context Module

The intra-context module ignores the mutual influ-
ence of aspects. Thus, in inter-context module, we
construct an aspect-context graph to model the re-
lations across aspects. This module only works for
multi-aspect sentences, with aspect-specific repre-
sentations of all aspects from intra-context module
as input and outputs relation-enhanced representa-
tion of each aspect.

Phrase segmentation. Aspect relations can be re-
vealed by some phrase segmentation terms, like
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conjunction words. Thus, we design a rule-based
map function P.S that returns phrase segmentation
terms of two aspects: Given two aspects, it first
finds their lowest common ancestor (LCA) in the
Con.Tree, which contains information of two as-
pects and has the least irrelevant context. We call
branches from LCA that between sub-trees which
two aspects are separately in as “inner branches”.
PSS returns all text words in the inner branches if
they exist; else, it returns words between two as-
pects of the input text. It is formulated as follows,

{wk}7
Br(ai,a;),

if |[Br(a;,a;)| =0

otherwise

)

PS(CLz‘, aj) =
(13)

where i < k < j and Br(a;, a;) returns text words
in the inner branches of a; and a;. e.g., in Figure 3,
given aspects food and service, the LCA node is S
of Layer-4 that has three branches, with food in the
first and service in the third. So “but” in the second
branch (inner branch) is the phrase segmentation
term that reflects sentiment relation of two aspects.

Aspect-context graph construction. We notice
that the influence range of one aspect should be
continuous, and the mutual influence of aspects at-
tenuates with distance. Considering all aspect pairs
introduces noise caused by long distance and in-
creases computational overhead. So we only model
relations across neighbor aspects. After extracting
phrase segmentation terms of neighbor aspects by
PSS function, we construct an aspect-context graph
by linking aspects with corresponding phrase seg-
mentation terms to help infer relations. To distin-
guish the bi-directional relations over the aspect-
context graph, we build two corresponding adjacent
matrices. The first handles influence from aspects
in odd-index among all aspects of the sentence,
to neighbor even-index aspects, the second han-

Figure 6: Example of an aspect-context graph and cor-
responding two adjacent matrices for distinguishing the
bi-directional relations.

Dataset Sentence-Level Aspect-Level
Multi-Asp. Single-Asp. All |Pos. Neg. Neu.

Rest- Train 971 1009  1980[2164 807 637
aurant Test 315 284 599 | 727 196 196
Laptop Train 538 916 1454|937 851 455
Test 150 259 409 | 337 128 167

Train| 4297 0 4297|33802764 5042
MAMS valid 500 0 500 | 403 325 604
Test 500 0 500|400 329 607
Twitter Train 0 6051 60511507 1528 3016
Test 0 677 677172 169 336

Table 1: Statistics of datasets. Multi-Asp., Single-Asp.
indicate the number of sentences with multiple or sin-
gle aspect; Pos., Neg., and Neu. show the number of
aspects towards positive, negative and neutral label.

dles the opposite. An example is shown in Figure
6. Then, taking {v{"*,t € Ag} and corresponding
phrase segmentation terms representations encoded
by BERT as the input, the above HGAT blocks are
applied as the relation encoder to obtain relation-
enhanced representation v{® for each aspect a;.

3.4 Training

The outputs of the intra-context module and in-
ter-context module are combined to form the fi-
nal representations, which are later fed to a fully
connected layer (i.e., sentiment classifier) with a
softmax activation function, generating the proba-
bilities over the three sentiment polarities:

(14)
(15)

o = v{® + v,
p(t) = softmaxr(Wpot + bp),

where Wy, by, are parameters of the classifier!.
The loss is defined as the cross-entropy loss be-

tween golden polarity labels and predicted polarity

distributions of all (sentence, aspect) pairs:

L(Q)Sentiment _ Z Z loss(p(t), y(t))7

S at€As
(16)
where a; is the aspect and also the ¢-th word in s,
loss is the standard cross-entropy loss, 8 represents
model parameters.

4 Experiment

4.1 Datasets and Setup

We evaluate our models on four English dataset:
Laptop, Restaurant datasets from SemEval2014
(Task 4) (Pontiki et al., 2014), MAMS (Jiang et al.,
2019), and Twitter (Dong et al., 2014). Laptop and
Restaurant contain both multi-aspect and single-
aspect sentences. Each sentence in MAMS con-
tains at least two aspects with different sentiments.

'In Eq14, v&® is set to zero in single-aspect sentence.
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Dataset

Category Model Restaurant Laptop MAMS Twitter
Acc.(%) Fl.(%) | Acc.(%) Fl.(%) | Acc.(%) Fl1.(%) | Acc.(%) Fl1.(%)
w/o Syn. BERT-SPC 84.46 76.98 78.99 75.03 82.82 81.90 73.55 72.14
AEN-BERT 83.12 73.76 79.93 76.31 - - 74.71 73.13
w/ Syn. R-GAT 86.60 81.35 78.21 74.07 - - 76.15 74.88
RGAT+ 86.68 80.92 80.94 78.20 84.52 83.74 76.28 75.25
DGEDT 86.30 80.00 79.80 75.60 - - 77.90 75.40
DualGCN 87.13 81.16 81.80 78.10 - - 77.40 76.02
SDGCN 83.57 76.47 81.35 78.34 - - - -
InterGCN 87.12 81.02 82.87 79.32 - - - -
Ours BiSyn-GAT 87.49 81.63 82.44 79.15 84.90 84.43 77.99 76.80
BiSyn-GAT+ 87.94 82.43 8291 79.38 85.85 85.49

Table 2: Performance comparison of models on four datasets. The best are in bold, and second-best are underlined.

Dataset
Category Ablation Restaurant Laptop MAMS Twitter

Acc.(%) Fl1.(%) | Acc.(%) Fl1.(%) | Acc.(%) Fl1.(%) | Acc.(%) F1.(%)
w/o AA  w/osyn. & dep.(BERT+) 84.99 78.51 79.11 75.76 82.71 82.22 75.48 74.54
w/o con. 86.42 80.10 80.22 76.42 83.38 82.90 76.51 75.29
w/o dep. 86.60 81.51 81.80 78.48 84.58 84.09 76.81 75.86
con. xdep. 86.86 80.82 80.85 77.27 84.21 83.76 76.51 75.37
con.+dep. 86.86 81.59 82.12 78.93 84.73 84.14 77.40 76.39
con.®dep. (BiSyn-GAT) 87.49 81.63 82.44 79.15 84.90 84.43 77.99 76.80

w/ AA con.+dep. 87.76 82.18 82.75 79.16 85.48 85.05 - -

con.®dep. (BiSyn-GAT+) | 87.94 82.43 82.91 79.38 85.85 85.49 - -

Table 3: Ablation study. Notations “con.” and “dep.” represent syntax information from constituent tree and
dependency tree, respectively. X, 4, @ represent the position-wise dot, position-wise add, conditional position-
wise add operations, respectively, when fusing two syntax information. “AA” represents modeling aspect-aspect

relations. The best performances are in bold, and second-best are underlined.

Twitter contains only one-aspect sentences. Dataset
statistics are shown in Table 1.

We adopt SuPar? as parser. Specifically, we use
CRF constituency parser (Zhang et al., 2020) to
get the constituent tree; and following previous
works (Wang et al., 2020a; Bai et al., 2020), we use
deep Biaffine Parser (Dozat and Manning, 2017)
to get the dependency tree. Our context encoder is
BERT-base-uncased > model. Adam optimizer is
adopted with a learning rate 2 x 107> and a Lo reg-
ulation 10~° for model training. Number of GAT
layers of one HGAT block is 3, and number of
HGAT blocks is in range [1,3] on different datasets.
“Accuracy” and “Macro-Averaged F1” are evalua-
tion metrics. More details are in Appendix A.

4.2 Baselines

We compare our model with the following models:

1) Syntax-free baselines: BERT-SPC (Song
et al., 2019), AEN-BERT (Song et al., 2019);

2) Syntax-based baselines: R-GAT (Wang et al.,
2020a), RGAT+ (Bai et al., 2020), DGEDT (Tang
et al., 2020), DualGCN (Li et al., 2021);

3) Baselines that model aspect-aspect relations:
SDGCN-BERT (Zhao et al., 2020), InterGCN

Zhttps://github.com/yzhangcs/parser
*https://github.com/huggingface/transformers

Dataset

Model Restaurant MAMS

Acc.(%)F1.(%)|Acc.(%)F1.(%)

BiSyn-GAT | 87.49 81.63| 84.90 84.43
aspect-context w/ Bi-relation | 87.94 82.43| 85.85 85.49
graph w/o Bi-relation| 87.85 82.27| 85.10 84.69
adjacent 87.49 81.69| 85.10 84.61
aspect graph  Bi-adjacent | 87.40 81.53| 85.18 84.74

global 87.49 81.70| 85.32 84.88

Table 4: Performance comparison of aspect-context
graph variants on Restaurant and MAMS dataset. The
best performances are in bold.

(Liang et al., 2020);

Ours are also syntax-based, including:

a) BiSyn-GAT+: our full model, which contains
the intra-context module that combines two syntax
information by conditional position-wise add op-
eration, inter-context module, and sentiment classi-
fier to make predictions;

b) BiSyn-GAT: full model without infer-context
module;

Baselines and our models are all BERT-based.

4.3 Main Results

Table 2 shows results of the baselines and our mod-
els. For fairness of comparison, we present the re-
ported results of those baselines. Observations are:
1) Our proposed models outperform most baselines,
and our full model BiSyn-GAT+ achieves state-
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Figure 7: Illustrations of variants when investigating the effects of aspect-context graph.

Model Parser Restaurant MAMS

Acc.(%) F1.(%)|Acc.(%) F1.(%)

Base 84.99 78.51| 82.71 82.22

w/o de Stanford Parser| 86.51 81.34| 84.51 84.06
P- SuPar 86.60 81.51| 84.58 84.09

. Stanford Parser| 86.66 81.56| 84.88 84.31
BiSyn-GAT ""g par | 87.49 81.63| 84.90 8443
BiSvn-GAT+ Stanford Parser| 87.84 82.39| 85.78 85.40
y SuPar 87.94 82.43| 8585 85.49

Table 5: Experiments results with different parsers.

w/o dep. is one variant of BiSyn-GAT, only using con-
stituent information.

of-the-art performances in all datasets, especially
1.27 and 1.75 F1 improvements on Restaurant and
MAMS. 2) Models with syntax information outper-
form those without, which means syntax structure
is helpful. 3) Our models show superiority to those
that only use dependency information, which im-
plies that constituent tree can provide profitable
information. 4) BiSyn-GAT+ shows consistent im-
provement compared to BiSyn-GAT, which means
modeling aspect-aspect relations can improve per-
formance, especially when more multi-aspect sen-
tences are available, e.g., 0.8 and 1.06 F1 improve-
ments on Restaurant and MAMS.

4.4 Ablation Study

We also conduct an ablation study to verify the ef-
fectiveness of our proposed method. The results
are shown in Table 3. We set the context encoder
of our model as the base model, i.e., BERT+. The
observations are that: 1) BERT+ achieves the low-
est performance, which shows syntax information
is helpful in ABSA task. 2) In category w/o AA,
w/o con. is inferior to w/o dep., which means syn-
tax information of Con.Tree is useful. Moreover,
the comparison between w/o con. and con.xdep.
verifies that some dependency edges that cross the
phrases indeed bring noise, as the former considers
all dependency edges and the latter ignores those
across phrases obtained from Con.Tree for each

layer. 3) Fusing two syntax information in the
proper ways can boost performance. In category
w/o AA, con.+dep. and con.®dep. both outper-
form w/o dep. and w/o con. in all datasets. How-
ever, con. xdep. is inferior to w/o dep.. One pos-
sible reason is that the position-wise dot operation
ignores most connections within phrases, causing
the graphs to be more sparse. It also verifies that
words within the same phrases of Con.Tree are
essential for aligning aspects and corresponding
opinions. 4) Modeling aspect-aspect relations is
beneficial from the comparison between w/ AA and
w/o AA, especially in Restaurant and MAMS that
contain more multi-aspect sentences.

5 Effects of Aspect-context graph

We also investigate the effects of our bi-relational
modeling of the proposed aspect-context graph.
Firstly, we use BiSyn-GAT as base model to see
whether the approach modeling aspects relations
improves the performance; Secondly, based on our
proposed aspect-context graph, we consider two
variants: (a) w/ Bi-relation, a directed one that
distinguishes the influence one aspect imposes on
other aspects and is received from other aspects, i.e.,
our full model BiSyn-GAT+; (b) w/o Bi-relation,
an undirected one that ignores the direction of the
influence; Thirdly, inspired by Zhao et al. (2020),
we define the aspect graph as the graph with all
aspects as its nodes, i.e., our aspect-context graph
without any segmentation terms. Based on the as-
pect graph, we propose three variants: (c) adja-
cent aspect graph, an undirected one where neigh-
bor aspects are connected; (d) bi-adjacent aspect
graph, a directed one where neighbor aspects are
connected; (e) global aspect graph, an undirected
one where all aspects are connected; The above five
variants are illustrated in Figure 7. Experimental
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Sentences Aspects BiSyn-GAT | BiSyn-GAT+
it doesn’t look like much on the outsideneg , but the minute outside neu X neg v
you walk inside, it’s a whole other atmospherepos. atmosphere pos v pos v
while the serviceneg and setting,og were average service neg v neg v
, the food0s Was excellent. setting neu X neg v
food pos v pos v
food was average, the appetizers,os were appetizers pos pos v
better than the main coursesney. main courses pos X neu v/’
i have no complaints about the waityos or the servicepos wait neu X pos v
but the pizzaneg Was bit at all something to write home about. service neg X pos v
pizza neg v neg v

Table 6: Predictions from BiSyn-GAT and BiSyn-GAT+. The notations pos, neg, and neu in the table represent
positive, negative, and neutral. For each sentence, the aspects are displayed in bold, with golden sentiment polari-
ties as the subscripts. The phrase segmentation words are shown underline between the corresponding two aspects.
False predictions are marked with Xwhile true predictions are marked with V.

results are shown in Table 4 and we can observe
that: 1) w/ Bi-relation (i.e., BiSyn-GAT+) outper-
forms w/o Bi-relation consistently, which indicates
distinguishing the bi-relational influences is benefi-
cial; 2) Overall, aspect-context graph shows supe-
riority compared with aspect graph, which means
the phrase segmentation terms can help model as-
pects relations; 3) Unlike in aspect-context graph,
bi-adjacent aspect graph does not guarantee per-
formance improvement compared with adjacent as-
pect graph, which reflects the importance of phrase
segmentation terms when modeling aspect-aspect
relations; 4) Overall, global aspect graph performs
better than adjacent aspect graph, which is cor-
related with the results in Zhao et al. (2020); 5)
In Restaurant dataset, adjacent aspect graph and
global aspect graph show comparable performance.
One possible reason is that the number of samples
that contain at least three aspects is very limited,
as shown in Table 8 of Appendix. And adjacent
aspect graph equals global aspect graph when faced
with two aspects.

5.1 Effects of Parsing

We conduct experiments to study the influence
of paring accuracy on model performance. Two
parsers are selected: (a) Stanford Parser (Manning
et al., 2014), a well-known toolkit; it has transition-
based dependency parser (Chen and Manning,
2014) and shift-reduce constituency parser (Zhu
et al., 2013); (b) SuPar, which RGAT+ (Bai et al.,
2020) and our proposed models adopt; it has deep
biaffine dependency parser (Dozat and Manning,
2017) and neural CRF constituency parser (Zhang
et al., 2020). Generally, SuPar has better parsing
performances than Stanford Parser. We use BERT+
as the base model and compare the performance of
model w/o dep, Bisyn-GAT, BiSyn-GAT+ when

using different parsers. The results are shown in
Table 5. Observations are that: 1) With Stanford
Parser, our models can also achieve good perfor-
mance. 2) Models with SuPar perform better than
models with Stanford Parser, which is correlated
with the parsing accuracy of two parsers.

5.2 Case Study

As shown in Figure 6, we present four examples to
help better understand our proposed model, espe-
cially inter-context module when faced with com-
plex sentences. The first is a comparative sentence
with two clauses connected by the conjunction
“but”. Both models make correct predictions for
atmosphere. However, BiSyn-GAT predicts wrong
over outside while BiSyn-GAT+ still makes a cor-
rect prediction, which show the inter-context mod-
ule correctly captures the reversed sentiment rela-
tion between outside and atmosphere by phrase
segmentation terms “, but”. The rest examples all
show that inter-context module can use relations
across aspects to help correct the predictions.

6 Conclusion

In this paper, we propose the BiSyn-GAT+ frame-
work to model the sentiment-aware context of each
aspect and sentiment relations across aspects for
learning by fully exploiting the syntax informa-
tion of the constituent tree. It includes two well-
designed modules: 1) intra-context module that
fuses related semantic and syntax information hi-
erarchically; 2) inter-context module that models
relations across aspects with the constructed aspect-
context graph. To the best of our knowledge, it is
the first work to exploit the constituent tree with
GNNss for the ABSA task. Moreover, our proposed
model achieves state-of-the-art performances on
four benchmark datasets.
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Con. Dataset

Tree |Restaurant| Laptop MAMS Twitter
Depth |Train Test |Train Test|Train Valid Test|Train Test

—

177 68 | 206 84 |208 16 19 (1215 117

369 135 | 724 247(1301 152 1411066 147

462 148 | 936 312|2265 244 261(1186 123

363 108 | 612 2022|2085 276 292| 947 96

311 75 | 429 116(1761 203 194| 677 79

237 40 | 266 73 |1211 141 157|414 57

136 27 | 205 41 |901 99 117|246 23

108 10 | 106 18 | 545 81 65| 145 22

O 00| | O\ | & W D

59 8 43 141380 57 34| 8 8

>10) 60 13 | 81 12529 63 56| 69 5

MAX.| 18 13 | 17 13|19 17 15| 14 11

Table 7: Depth distribution of parsed constituent trees
on four datasets. The maximums are in bold. The last
row lists the max tree depth of each dataset.

Multi. Dataset
Aspect |[Restaurant| Laptop MAMS
Distribution | Train Test |Train Test|Train Valid Test

2 555 192 | 343 101(2568 285 264
3 261 73 | 137 33 (1169 136 173
4 103 31 | 40 9 |364 55 45
5 32 14 9 6 | 126 16 10
6 11 3 5 1| 48 5 5
7 5 1 3 - 13 2 -
8 3 - - - 6 - 1
9 1 - - - 1 - -
10 - - - - 1 1 1
11 - - - - 1 1 1
13 - 1 1 - - -

Table 8: Multi.aspect distribution of three datasets.
A Dataset and Implementation Detail

A.1 Statistics of constituent tree depth

Table 7 shows more detailed statistics about four
benchmark datasets at the aspect level. We define
the “constituent tree depth” as the number of nodes
in the path from the aspect term node to the root
node in the Con.Tree. It means we treat the layer
that the aspect term is in as the bottom layer for
constituent graph construction and drop layers be-
low it. The aspect term has no other neighbors in
those layers and thus fails to update its representa-
tion through the graph encoder. According to the
constituent tree depth statistics, we set the number
of GAT layers of one HGAT block in the syntax
encoder to 3, the most common depth.

A.2 Multi-aspect Distribution of datasets

Table 8 shows the multi-aspect distribution of the
Restaurant, Laptop, and MAMS datasets. This
can explain the improvement of BiSyn-GAT+ com-
pared to BiSyn-GAT on different datasets: MAMS
> Restaurant > Laptop. MAMS contains the most
multi-aspect sentences that our proposed Inter-
context module can fully utilize.

A.3 Training Detail

The numbers of parameters of BiSyn-GAT and
BiSyn-GAT+ are 112M and 233M. Each epoch
takes about 60s or 70s in RTX 2080 Ti. We test
the model that performs best on validation data,
and for datasets without official validation data, we
follow the dataset settings of previous work (Bai
et al., 2020). We use the grid search to find the
best parameters for our model and report the maxi-
mum results. The number of HGAT blocks within
our relation encoder is in range [1,3] on different
datasets and the number of its inner GAT layers is
set to 2; the dropout rate is 0.1 for the input and
output and is in the range [0.2, 0.7] between layers;
In each HGAT block of our syntax encoder, for
samples with fewer constituent tree layers, we only
adopt the same number of GAT layers to encode;
for samples with more constituent tree layers, we
prune them to three layers.

B Discussion about phrase segmentation
term

We firstly provide more cases about the phrase seg-
mentation terms in this section. For each case, the
aspects are displayed in bold and phrase segmenta-
tion words are underlined between the correspond-
ing two aspects:

1) However, we went for lunch and were the
only ones eatting there and yet the service seemed
eager for use to be done and to get out.

2) We were so excited since I was reading
great review of this place, however we were dis-
appointed with the taste of the food.

3) Then the manager gave us lemon juice
instead of ceasar dressing for a ceasar salad which
ruined the salad.

4) The only drawback was slow service, but the
food and ambiance are so nice that your wait is a
) pleasant and b ) worth it.

5) Compared to the soup of average taste, the
rice is better in this restaurant.

The top 4 cases show that our approach can cap-
ture words, such as “and”, “but”, “yet”, “however”,
“instead of™ to help infer aspects relations.

However, we also notice there is a limitation of
our method: it can only find the phrase segmenta-
tion terms within the two aspects, failing to capture
some important words indicative of relations that
appear in other locations. e.g., in case 5), our ap-
proach capture “,” instead of “compared to”, while
only the latter can show the reversed sentiment of
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two aspects. We leave this problem as the future
work, considering that our current approach is sim-
ple and can also achieve good performance.

C Limitations and future work

This section discusses some improvements that can
be made in future work. 1) Our full model adopts
two BERT encoders, one in Intra-context module
for encoding input text and aspects and one in Inter-
context module for encoding the phrase segmenta-
tion terms. The pros are that our Infer-context can
easily generalize to other ABSA models, taking
their output aspect representations and generating
the relation enhanced representations. However,
this causes the parameters of BiSyn-GAT+ up to
233M. We will consider other encoding strategies
instead of simply using another BERT; 2) We no-
tice that the label information from Con.Tree can
also provide valuable information, e.g., NP node
and VP node, which together form the S node, may
contain the aspect term and corresponding opinion
words separately, as shown in Figure 3. It is worth
trying to utilize more information from Con.Tree,
and we will continue to explore it in future work.
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