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Abstract
Training giant models from scratch for each
complex task is resource- and data-inefficient.
To help develop models that can leverage ex-
isting systems, we propose a new challenge:
Learning to solve complex tasks by communi-
cating with existing agents (or models) in nat-
ural language. We design a synthetic bench-
mark, COMMAQA, with three complex reason-
ing tasks (explicit, implicit, numeric) designed
to be solved by communicating with existing
QA agents. For instance, using text and table
QA agents to answer questions such as "Who
had the longest javelin throw from USA?". We
show that black-box models struggle to learn
this task from scratch (accuracy under 50%)
even with access to each agent’s knowledge
and gold facts supervision. In contrast, mod-
els that learn to communicate with agents out-
perform black-box models, reaching scores of
100% when given gold decomposition supervi-
sion. However, we show that the challenge of
learning to solve complex tasks by communi-
cating with existing agents without relying on
any auxiliary supervision or data still remains
highly elusive. We release COMMAQA, along
with a compositional generalization test split,
to advance research in this direction.1

1 Introduction

A common research avenue pursued these days is to
train monolithic language models with billions of
parameters (Radford et al., 2019; Raffel et al., 2020;
Brown et al., 2020) to solve every language un-
derstanding and reasoning challenge (Wang et al.,
2018, 2019). In contrast, humans often tackle com-
plex tasks by breaking them down into simpler sub-
tasks, and solving these by interacting with other
people or automated agents whose skill-sets we are
familiar with. This approach allows us to learn to
solve new complex tasks quickly and effectively,
by building upon what’s already known. Can AI
systems learn to do the same?

1https://github.com/allenai/commaqa
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Alexa, Buy the book "Harry Potter
and the Sorcerer’s Stone"

Hey Google, which book series has a
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Figure 1: Motivating example for a setup where a sys-
tem is expected to learn to accomplish goals by inter-
acting with agents via a natural language interface.

To facilitate research in this direction, we pro-
pose a new reasoning challenge and a benchmark
called COMMAQA where, in addition to the usual
end-task supervision, one has access to a set of pre-
defined AI agents with examples of their natural
language inputs. Importantly, the target end-task
is designed to be too difficult for current models
to learn based only on end-task supervision. The
goal is instead to build models that learn to solve
the target task by decomposing it into sub-tasks
solvable by these agents, and interacting with these
agents in natural language to do so.

As a motivating example, consider the interac-
tion depicted in Figure 1 where a system is asked
to buy a book series with a certain property. The
system breaks this goal down, using agent-1 (here
Google Assistant) to identify the referenced book
series as well as the list of books in that series, and
then using agent-2 (here Amazon Alexa) to make
the purchase. While both of these agents inter-
act with the system in natural language, they have
different and complementary skill sets,2 rely on
privately held knowledge sources, and have been

2but not necessarily mutually exclusive skills
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built at an enormous cost. At the same time, neither
agent by itself can accomplish the original goal.

An alternative to building such a system that in-
teracts with existing agents is to teach all requisite
sub-tasks and skills to a large black-box system,
say via multi-task learning (Khashabi et al., 2020;
Gupta et al., 2021). This, however, not only wastes
time and resources, but is often also infeasible. For
example, agents such as Google Assistant and Ope-
nAI GPT-3 use private knowledge resources and
are computationally expensive to train even once.
It would thus be nearly impossible to build a single
system with the capabilities of both of these agents.

We note that agents need not be sophisticated
AI assistants. An agent may simply be a previ-
ously developed question-answering (QA) model,
a math module, a function of textual input, an im-
age captioning system—anything the community
already knows how to build. The goal is to learn to
leverage existing agents for more complex tasks.

To enable the development of general systems
for this task, we identify the minimal inputs that
must be assumed for the task to be learnable—
training data for the complex task, existing agents
that together can solve the complex task, and ex-
amples of valid questions that can be asked of
these agents (capturing the agents’ capabilities).
We build a new synthetic benchmark dataset called
COMMAQA (Communicating with agents for QA),
containing three complex multihop QA tasks (in-
volving Explicit, Implicit, and Numeric reasoning)
and four input QA agents that can solve these tasks.

COMMAQA is not yet another multi-hop reading
comprehension dataset. It is designed to facilitate
the development of a new family of techniques that
teach systems to communicate with a wide variety
of agents to solve different types of complex tasks.

We demonstrate that black-box models struggle
on COMMAQA even when provided with auxil-
iary data, such as domain-relevant agent knowl-
edge. On the other hand, a model that leverages
the agents (Khot et al., 2021) can achieve very high
accuracy but relies on auxiliary supervision (de-
composition annotations). While it is possible to
identify valid decompositions using just the end-
task labels, the search space is extremely large and
naïve approaches, as we show, help only with one
of the datasets. COMMAQA thus serves as a new
challenge for the NLP community.

Contributions: We (1) propose a new challenge
of learning to solve complex tasks by communicat-

ing with agents; (2) develop a synthetic multi-hop
QA dataset COMMAQA with three reasoning types;
(3) provide auxiliary training data and a composi-
tional generalization test set; (4) demonstrate the
challenging nature of COMMAQA for black-box
models; and (5) show the promise of compositional
models that learn to communicate with agents.

2 Related Work

Multi-hop QA (Khashabi et al., 2018; Mihaylov
et al., 2018; Khot et al., 2020; Geva et al., 2021) fo-
cuses on reasoning with multiple facts. Some multi-
hop datasets (Yang et al., 2018; Dua et al., 2019)
have been used to develop modular approaches
such as TMNs (Khot et al., 2021), which are a
step towards our goal—they try to solve complex
questions by leveraging agents such as single-hop
QA models. However, these approaches have had
limited success because current datasets are insuffi-
cient for the development of such models, for two
reasons. First, prevalent single-hop shortcuts (Min
et al., 2019a; Trivedi et al., 2020) incentivize mod-
els trained on answer supervision alone to learn
to exploit these shortcuts rather than learn to com-
positionally communicate with agents. E.g., they
learn to answer a multi-hop question by just asking
one single-hop question (Min et al., 2019b). Sec-
ond, these datasets often contain sub-problems not
solvable by existing models/agents, such as produc-
ing structured output (e.g., outputting a list of all
touchdowns mentioned in the context).3

Semantic Parsing typically focuses on mapping
language problems to executable symbolic repre-
sentation based on a pre-defined grammar (Krish-
namurthy et al., 2017; Chen et al., 2020). Similar
ideas are also found in the area of program syn-
thesis (Gulwani, 2011; Desai et al., 2016). These
goals, like ours, seek to simplify complex prob-
lems into simpler executable forms, without relying
on explicit intermediate annotation (Clarke et al.,
2010; Berant et al., 2013). We, however, diverge
from this line by seeking agent communication in
free-form language, not bound to any pre-specified
set of operations or domain specific languages.

Question Decomposition is used to solve multi-

3For instance, 65% of the errors of the ModularQA sys-
tem (Khot et al., 2021) on HotpotQA were due to questions
unanswerable by existing agents. Hence these datasets don’t
satisfy the basic task requirement of being solvable using ex-
isting agents. This makes the learning-to-communicate task
ill-defined over these datasets and meaningful progress infea-
sible.
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hop QA but the resulting models (Talmor and Be-
rant, 2018; Min et al., 2019b; Perez et al., 2020;
Khot et al., 2021) are often dataset-specific, rely on
decomposition annotations, and limited to one or
two QA agents. To address these limitations, our
proposed challenge covers three dataset types and
four agents. Additionally, models are expected to
learn to decompose the task by interacting with the
agents, rather than relying on human annotations.

Synthetic Reasoning Challenges have recently
been proposed (Lake and Baroni, 2018; Sinha
et al., 2019; Clark et al., 2020; Betz and Richard-
son, 2021) to help systematically identify the
weaknesses of existing models and inspire mod-
eling innovation (Liu et al., 2021). Our new
tasks are unique and focus on simulating complex
agent interaction to motivate the development of
decomposition-based modeling approaches.

Text-Based Games, similar to our work, in-
volve interacting in plain text in order to accom-
plish a goal (Yuan et al., 2019, 2020; Hausknecht
et al., 2020; Ammanabrolu et al., 2021; Jansen,
2021). This is typically done in a physical envi-
ronment, which acts as an “agent” in our setting.
Unlike many works in this area, we focus on dif-
ferent classes of compositional questions (e.g, im-
plicit, numerical) and formulate a challenge that
makes minimal assumptions about having access
to agents’ internal information or input language.

3 Challenge Task Definition

We formalize the new challenge task of learning to
talk with agents to solve complex tasks. To ensure
generality of solutions, we identify minimal inputs
for the task to be well-defined and learnable.

First we must define {fi}mi=1, the agents or mod-
els that solve simpler sub-tasks.4 Minimally, we
need to define the space of valid inputs Li for each
agent fi, i.e., how can they be invoked. For a sys-
tem to identify the appropriate agent for each sub-
task, we also need to define the capabilities of each
agent. Since these agents are often defined for natu-
ral language tasks, the space of inputs captures the
capabilities of these agents too. For instance, "Buy
the book ‘Harry Potter and the Sorcerer’s Stone’"
captures the Alexa agent’s capability of buying
books. Instead of complex formal specifications
of the agent’s capabilities, we use natural language

4As mentioned earlier, we use agents to refer interchange-
ably to models, assistants, or functions that take free-text as
input and produce free-text as output.

inputs as a rich and convenient representation.
Next, we need a target task T that can be solved

via a composition of the capabilities of various fi.5

Finally, to pose this as a machine learning problem,
we need training data D = {(xk, yk)}Nk=1 for T .
Since collecting annotations for complex tasks can
be difficult, D is expected to be relatively small.
Models must therefore use the available agents,
instead of learning the complex task from scratch.

Given these pre-requisites, we can define the
challenge task as follows:
Challenge: Learn a model to solve a complex
task T , given only:
- Training dataset D = {(xk, yk)}Nk=1 for T ;
- Agents {f1, . . . , fm} that can help solve T ;
- Examples from the space Li of valid inputs for
each agent fi that captures its capabilities.

One example of this challenge is answering
multi-hop questions given two agents: an open-
domain TextQA agent f1 and an open-domain
TableQA agent f2. Agent f1 can use large textual
corpora to answer questions such as "Who directed
Kill Bill?". Agent f2 can use tables (e.g., Filmog-
raphy tables) to answer questions such as "List the
movies directed by Quentin Tarantino". Finally, the
training data T for the complex task would contain
examples such as ("What movies has the director
of Kill Bill appeared in?", ["Reservoir Dogs", ...,]).

4 Dataset: COMMAQA Benchmark

We next propose a new benchmark dataset COM-
MAQA that enables the development of models
that can learn to communicate with existing agents.
Specifically, we provide a collection of three syn-
thetic datasets where each question is answerable
by talking to simple QA agents. Note that we are
not proposing a new class of questions but a new
dataset for the proposed challenge task. A high-
level overview of this dataset is shown in Fig. 2.

We choose QA as the underlying task and
use QA agents for this challenge because the
question-answer format can capture a broad range
of tasks (Gardner et al., 2019) while also naturally
surfacing the capability of each agent. For instance,
the question "What are the key frames in v?" de-
scribes a capability of the invoked agent (namely,
identifying key frames), in addition to the specific
inputs. We next describe our framework for build-

5Existing datasets lack this requirement, making it impos-
sible to focus only on the agent communication aspect.
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Pludgel, Dessication

Hey TableQA, Which awards were given to Pneumodendron?

Q: What awards have movies written by
people born in 1905 won? 
A: [“Pludgel”, “Dessication”, “Pianogram”]

Q: What awards have movies written by
people born in 1905 won? 
A: [“Pludgel”, “Dessication”, “Pianogram”]

What movies has Alpinista written?
Which awards were given to Vitrilateral? 
Which movies were released in 1957? 
...

Who is from the country Schelpla? 
Which awards were given to Fidelice? 
Who were born in the year 1923?
...

Training Examples
Q: What awards have movies written by
people born in 1905 won? 
A: [“Pludgel”, “Dessication”, “Pianogram”]

Examples of Valid InputsAgents

TextQA

TableQA

Given To Do
Learn to Solve Complex Task by
Communicating with Agents

Hey TextQA, Who were born in the year 1905?

Gigafuna

Hey TableQA, What movies has Gigafuna written?

Pneumodendron, Pipesia, Riften

Hey TableQA, Which awards were given to Pneumodendron?

What awards have movies written by people born in 1905 won?

Pludgel, Dessication

A: "Pludgel”, “Dessication”, “Pianogram”

Figure 2: High-level overview of the task, with examples from COMMAQA-E. Given the agents, their valid inputs,
and training examples for a complex task, the goal is to learn to solve this task by communicating with the agents.

ing COMMAQA, which we believe can be extended
to other complex tasks, e.g., video summarization.

4.1 Agent Definition

To define the i-th agent, we build a knowledge
base that captures its internal knowledge resource
Ki. We use natural language question templates
to define the set of questions that this agent can
answer over this internal knowledge. For example,
given a KB with relations such as "directed(x, y)",
the agent would answer questions based on the
template: "Who directed the movie __?"

Knowledge Base, Ki. To build the knowledge
base, we define a KB schema as a set of binary
relations between entity types, e.g., director(movie,
person). We build a list of entity names that belong
to each entity type. To avoid potential conflicts
with the LM’s pre-training knowledge, all entity
names are generated non-existent words.6

Rather than building a static and very large KB,
we sample a possible world independently for each
question, by sub-sampling entities for each entity
type and then randomly assigning the KB relations
between these entities. This prevents memorization
of facts across the train and test splits, which in the
past has led to over-estimation of QA model perfor-
mance (Lewis et al., 2021). This also encourages
models to learn proper multi-hop reasoning using
the agents, rather than memorizing answers.

Examples of Valid Inputs. To define the space
of valid inputs for each agent fi, we define a set
of question templates that can be answered by it
over Kik (e.g., Who directed __?). We construct
questions corresponding to a relation in both direc-
tions, e.g., "Who all directed __?" and "For which
movies was __ a director?". To emulate diversity

6https://www.thisworddoesnotexist.com

in natural language, we specify multiple phrasings
for the same question. We use these templates to
generate examples of valid inputs in Li by ground-
ing them with entities of the appropriate entity type
(e.g., Who directed Kill Bill?).

To ensure generalization to a broad set of tasks,
we do not limit the questions to only single span
answers. Depending on the question, the agent can
produce answers as a single string (span, boolean
or a number), a list of strings (e.g., "Which movies
did Spielberg direct?"), or a map (e.g., "What are
the states and their capitals in USA?").

Implementation. To answer the question, agents
convert questions into queries against their internal
knowledge (based on the templates) which we im-
plement as a symbolic function (written in Python),
instead of a model. While a language model might
be able to generalize to out-of-distribution varia-
tions in language, its behavior can be often unpre-
dictable. By implementing the agents as pattern-
based functions, we ensure that the resulting sys-
tems would stay within the language constraints
of each agent and generalize to restricted language
models. Additionally, this enables faster develop-
ment of approaches without spending resources on
running a large-scale LM for each agent.

4.2 Complex Task Definition

Given the space of valid input questions for each
agent, we construct training examples for the
complex task using templated theories. These
theories consist of a complex question template
and a composition rule expressed as a sequence of
questions asked to appropriate agents. For example,
"What movies have the directors from $1 directed?"

#1 = [textqa] "Who is from the country $1?"

#2 = [tableqa] "Which movies has #1 directed?"
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Operator Pseudo-code Example

select return fi(q(a)) #1=[23, 35]   q="Which is largest value in #1?"  fi= mathqa           → 35

project return [(x, fi(q(x))) for x in a] #1=[Jordan, Johnson]  q="What were the lengths of throw by #1?" fi= textqa         
           → [(Jordan, [23, 34]), (Johnson, [45, 56])]

projectValues return [(k, fi(q(v))) for (k, v) in a] #1=[(Jordan, [23, 34]), (Johnson, [45, 56])]  q="Which is largest value in #1?"  
fi= mathqa       → [(Jordan, 34), (Johnson, 56)]

filter return [x for x in a if  fi(q(x))] #1=[23, 34, 56]   q="Is #1 greater than 50?"  fi= mathqa     → [56]

filterValues return [(k, v) for (k, v) in a if fi(q(v))] #1=[(Jordan, 34), (Johnson, 56)]  q="Is #1 greater than 50?"  fi= mathqa  
           → [(Johnson, 56)]

Table 1: Compositional Operators used in this work to transform structured answers into queries answerable by an
agent. The operator takes the agent fi, a structured answer a (we use the answer index, e.g., #1, to refer to any
answer), and a query with a placeholder as inputs and executes the pseudo-code shown here.

Composition Operators. While this simple the-
ory would work for single span answers, these
agents often return list or map answers. Even
within this simple example, there can be multiple
directors from a given country and this list cannot
be directly fed to the tableqa model, i.e., "Which
movies has [...] directed?". This problem gets even
more challenging with complex structures. E.g.,
maintaining a map structure while operating on the
values of the map (see 3rd row in Table 1).

To handle the different answer structures, we
define a special set of compositional operators in
Table 1. These operators take agent fi, a structured
answer a, and a query with a placeholder as in-
puts, and execute a set of queries (as defined by the
pseudo-code in Table 1) against fi. These opera-
tors are inspired by QDMR (Wolfson et al., 2020),
but modified to be actually executable. E.g., the
"project" operator in QDMR: "return directors of
#1?" does not specify how to execute this query
whereas our operation (project) [textqa] "Who are
the directors of #1?" specifies how to use the Tex-
tQA model and #1 to generate a map.

We also define a set of agent-independent data
structure transformations in Table 2, e.g., con-
vert a map into a list of its keys. Since longer
chains of reasoning are prone to more errors (Fried
et al., 2015; Khashabi et al., 2019), we don’t model
these simple transformations as additional reason-
ing steps. Instead, we concatenate compositional
operators with transformations to create about 20
new, combined operators such that transformations
can be applied after an operation in a single step,
e.g., project_Values operation performs the project
operation followed by the Values transformation.

Given these operators, the final theory
for the above example would look like:

"What movies have the directors from $1 directed?"

#1 = (select) [textqa] "Who is from the country $1?"

#2 = (project_values_flat_unique) [tableqa] "Which movies

has #1 directed?"

Transf. Procedure
FLAT Flatten list of lists into a single list
UNIQUE Return the unique items from a list
KEYS Return the list of keys from a map
VALUES Return the list of values from a map

Table 2: Simple transformations that modify the output
data structure. These transformations can be chained
together with an operation, e.g., PROJECT_VALUES.

Building Examples. Given a KB schema, ques-
tion templates for each agent, and theories, we can
now build examples for the complex task (Fig. 3).
We first sample a possible world based on the KB
schema. We assign each relation to one of the
agents based on which agents are likely to answer
such questions, i.e., only this agent would answer
questions about this relation. This captures multi-
modality of knowledge, e.g., movie awards might
be described in text or a table, but a person’s birth
date is likely described in text. When a relation can
be captured by knowledge in multiple modalities,
it is assigned to one of them per KB. This emulates
the challenging setting where a model must interact
with multiple agents to find the answer.7 We use
the templated theories to construct questions by
grounding placeholders. We select m valid ques-
tions8 for each KB such that each theory has the
same number of examples across the dataset.

4.3 Auxiliary Information
In addition to the basic task definition, we also con-
sider auxiliary information that may be available

7With real questions and agents, models may be able to
avoid this by just memorizing the agents.

8has a non-empty answer and up to five answer spans
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Theory 
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the country $1 acted in? 
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#2:[project] <table> what
movies has #1 acted in?

Examples 
Q: What movies have
people from the country
Dentalogy acted in? 
A: Honeybean, Nohit
  ...

Complex Task

Figure 3: High-level schema of our dataset construction process. We use a list of entities and a KB schema to
generate a list of facts. The QA agents operate over these facts to answer a set of pre-determined questions that
form the examples of valid inputs from Li. We define multiple complex question templates and a corresponding
theory that can be used to answer them. We then ground these question templates (i.e. sample $1) to create complex
questions and use the agents to generate the answers.

in some cases. The main goal of this information
is to (a) provide stepping stones for development
of methods towards the final goal of learning to
communicate with agents using answer supervi-
sion only, and (b) evaluate the abilities of current
state-of-the-art assuming access to this additional
information. We emphasize that such auxiliary in-
formation may not always be available (e.g., when
using a proprietary agents such as Alexa).

We consider two kinds of such information—
auxiliary supervision for the complex task’s train-
ing examples (xk, yk) ∈ D, and auxiliary data
about the agents {fi} themselves (not tied to D).
This is summarized in Table 3.

Auxiliary Supervision for (xk, yk) ∈ D:
- Gold Decomposition Dk for xk
- Gold Knowledge Fk for xk

Auxiliary Data for agents {fi}:
- Training data Df i = {(uij , vij)}

M
j=1 for agent

fi, where uij ∈ Li and vij = fi(uij)
- Complete knowledge resource Ki used by fi, or
a manageable subset Kik ⊂ Ki containing Fk

Table 3: Auxiliary information as stepping stones to-
wards the full COMMAQA task.

For auxiliary supervision, we consider having
access to annotated decompositionDk of a complex
task training input xk into valid inputs for various
agents. We also consider annotated gold facts Fk

that could be used to answer xk.
For auxiliary data, we consider having access to

the training data used to build the agents, or the
underlying knowledge base Ki used by them (and
possibly even a question-specific relevant subset
Kik). For example, Ki would be equivalent to the
entire text and table corpora used by TextQA and
TableQA agents, and Kik could be the texts and ta-

bles relevant to the question domain (e.g., movies).
Such information can be used to train a stronger
black-box model on the end-task, e.g., fine-tuning
on the agent’s training data first or using the gold
facts to identify relevant context. These approaches
that circumvent the agents are not the target of our
dataset, but we nevertheless evaluate them to high-
light their limits.

Building Auxiliary Information. We generate
the gold decomposition Dk for each example xk
using the same language as the theories (see Fig. 4).
We verbalize each relation to create the underlying
knowledge resource Kik used by the agent fi (e.g.,
relation director(M, P) is converted into "M was a
movie directed by P" or "movie: M ; director: P"
depending on the agent assigned to this relation).
While our KB and resulting facts are intentionally
simple to show the limitations of black-box models,
such verbalization may not always be possible with
larger KBs and hence should not be relied upon.
For each training example, we collect the facts used
by each agent in the decomposition and treat these
as gold facts Fk.

4.4 COMMAQA Dataset
We use the above framework to build three datasets
capturing three challenges in multi-hop reasoning.

COMMAQA-E: Explicit Decomposition. This
dataset consists of multi-hop questions from the
movie domain where the reasoning needed to an-
swer the question is Explicitly described in the
question itself (Yang et al., 2018; Ho et al., 2020;
Trivedi et al., 2021). For example, "What awards
have the movies directed by Spielberg won?". We
use a TextQA and TableQA agent where certain
relations can either be expressed in text or table
(more details in App. Fig. 6).

COMMAQA-I: Implicit Decomposition. This
dataset consists of multi-hop questions where the
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What awards have movies written by people born in 1905 won?  
   (select) [text] Who were born in the year 1905?        A: ["Gigafuna"]  
   (project_values_flat_unique) [table] What movies has #1 written?       A: ["Pneumodendron", "Pipesia", "Riften"]  
   (project_values_flat_unique) [table] Which awards were given to #2?  A: ["Pludgel", "Dessication", "Pianogram"]

What objects has Calcid helped to make?  
  (select) [text] Calcid is the founder of which companies?      A: ["Duflerate"]  
  (project_values_flat_unique) [text] #1 produces which materials?    A: ["comander"]  
  (project_values_flat_unique) [text] Which objects use #2 as a material?   A: ["chickenpot", "yaki"] 

Who threw discuses shorter than 51.8? 
  (select) [text] Who threw discus?                 A: ["Lobsteroid", "Karfman", "Terbaryan", ...]  
  (project) [text] What were the lengths of the discus throws by #1?     A: [["Lobsteroid", ["65.6", "46.0"]], ["Karfman", ...]  
  (projectValues) [math_special] What is the smallest value among #2?  A: [["Lobsteroid", 46.0], ["Karfman", 51.8], ...]  
  (filterValues_keys) [math_special] Is #3 less in value than 51.8?   A: ["Lobsteroid", ...] 

CommaQA-E

CommaQA-I

CommaQA-N

Figure 4: Sample Decomposition Annotations for example questions in COMMAQA. We denote the composition
operators using the format (operation) [agent] "question".

reasoning needed is Implicit (Khot et al., 2020;
Geva et al., 2021), for example, "Did Aristotle use
a laptop?". Inspired by such questions in Strate-
gyQA (Geva et al., 2021), we create this dataset
using three agents(TextQA, KBQA and MathQA)
with just two question styles: (1) "What objects
has __ likely used?" and (2) "What objects has __
helped make?". However each question has three
possible strategies depending on the context (see
App. Fig. 7 for more details). This is a deliber-
ate choice as similar sounding questions can have
very different strategies in a real world setting, e.g.,
"Did Steve Jobs help develop an Iphone?" vs. "Did
Edison help develop the television?".

COMMAQA-N: Numeric Decomposition.
This dataset consists of Numeric (also referred to
as discrete) reasoning questions (Dua et al., 2019;
Amini et al., 2019) requiring some mathematical
operation, in addition to standard reasoning.
For example, "Who threw javelins longer than
5 yards?". We create this dataset in the sports
domain with TextQA, TableQA and MathQA
agents (more details in App. Fig. 8).

Dataset Statistics. The final dataset9 consists of
the three QA sub-datasets described above, key
statistics summarized in Table 4.

There are 10K total examples in each dataset
with 80%/10%/10% train/dev/test split. To pre-
vent models from guessing answer spans, we in-
troduce more distractors by sampling a large num-
ber of facts for COMMAQA-E and COMMAQA-
I. This results in a larger number of facts in the
KB (∼170) and larger length of the KB in these
two datasets(∼2500 tokens). Since COMMAQA-N
can have derived answers from numeric reasoning
and has longer chains (avg #steps 4.7 vs. 2.7 in
COMMAQA-E), we do not need a large number of

9released under CC BY license

COMMAQA
E I N

#questions 10K 10K 10K
#theories 6 6 6
#steps per theory 2.7 3.2 4.7
#entity types 7 13 5
#relations 11 16 4
#templates in Li 42 68 30
#entities per answer 3.21 3.29 1.36
#KB facts per KB 169.4 175.7 80
#T5tokens per KB 2252.9 2540.9 1513.4
#Gold facts per qn 7.5 6.9 15.4

Table 4: Statistics of COMMAQA. All per-question and
per-KB statistics are averages.

distractor facts (80 facts/KB).

Metrics. The answer yk to each question xk in
COMMAQA is an unordered list of single-word
entities.10 By the design of the dataset, a model
that performs the desired reasoning should be able
to output yk correctly, barring entity permutation.
Hence, we use exact match accuracy as the met-
ric.11 (see appendix for a softer metric, F1 score)

5 Experiments

We evaluate various models on COMMAQA, in-
cluding a baseline model (with no auxiliary infor-
mation) for the task and state-of-the-art models that
have access to auxiliary information.

5.1 Models

5.1.1 COMMAQA Baseline Model
We develop a baseline approach that directly targets
the challenge task without relying on any auxiliary
information. Specifically, we use the Text Modu-
lar Network (TMN) framework (Khot et al., 2021)
that trains a NextGen model that communicates

10Although not in the current dataset, entities in the un-
ordered list yk may be repeated, i.e., we have a multi-set.

11Our implementation uses "exact match" in the DROP
multi-span evaluator, which accounts for entity reordering.
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with the agents. This model is trained to produce
the next question (including operation and agent)
in a decomposition chain, given the questions and
answers so far, which is then executed against the
agent to produce the answer for the current step.
Additionally this framework samples multiple ques-
tions at each step of the chain to search12 for the
most likely chain of reasoning.

We generate the training data for NextGen via
distant supervision. Specifically, we perform a
naïve brute-force search where we sample l ques-
tions at each step for up to o steps.13 The operations
are chosen randomly but we only consider the ap-
plicable operations (e.g., "select" for the first step).
We use lexical overlap between the questions in the
examples of valid inputs and the complex question
to avoid wasteful random sampling.14 We assume
all chains that lead to the gold answer15 represent
valid decompositions, and use them to build the
training dataset for TMNs. We refer to the model
as TMN-Sl (see App. B for details).

5.1.2 Auxiliary Supervision Models
We next present models that depend on auxiliary
information and hence target a simpler variant of
the task: (1) a model trained to communicate with
agents using gold decomposition supervision, D;
(2) a black-box model trained to answer questions
given all the agents’ knowledge, Ki; and (3) a two-
stage model that first identifies the most-relevant
context (using gold knowledge supervision Fi) and
uses this shorter context to answer the question.

Models with Decomposition Supervision:
Given decomposition supervision, we can directly
use this gold data to train the NextGen model.
We refer to this model as TMN-S when we use this
search and TMN-G when we greedily select the
most likely question at each step.

Models with Access to Agent Knowledge:
Given access to the facts associated with each (train
or test) question xk, i.e., each agent’s domain-
relevant knowledge Kik, the facts can be concate-
nated to create a context and frame the challenge
as a reading comprehension (RC) task.16 We train

12Score is the sum log likelihood of the generated questions.
13o is set based on the length of the rules in each dataset,

i.e., o = 3 for COMMAQA-E, o = 4 for I, o = 7 for N.
14We also found random generally performed worse.
15We use exact match since the correct decomposition with

our error-free agents should lead to exactly the gold answer.
16We reiterate that it is often unreasonable to expect ac-

cess to Ki and especially Kik. This model tries to solve
COMMAQA without invoking agents, which deviates from the

Model Aux. Info E I N Avg.
TMN-S5 0.0 0.0* 0.0 0.0
TMN-S10 17.0 0.0* 0.0 5.7
Auxiliary Supervision Models

T5-L {Kik} 0.9 10.2 35.4 15.5
UQA-L {Kik} 1.0 10.2 39.0 16.7
T5-L Fk, {Kik} 42.2 49.4 44.7 45.4
UQA-L Fk,{Kik} 40.1 49.7 43.4 44.4
T5-3B Fk, {Kik} 42.3 49.9 43.4 46.2
TMN-G Dk 75.4 36.0 100.0 70.5
TMN-S Dk 100.0 100.0 100.0 100.0

Table 5: Accuracy of models trained and tested sepa-
rately on the 3 datasets. Last column reports average
accuracy across the datasets (weighed equally). TOP
highlighted rows: Target models for COMMAQA that
try solve the task using no auxiliary supervision by
communicating with agents. Naive search is able to
generate some training data for COMMAQA-E but does
not result in any valid decomposition (indicated by ∗)
on COMMAQA-I. BOTTOM rows: Models that rely
on auxiliary supervision. Black-box models struggle
even when given the domain-relevant KB Kik. Using
the additional fact supervision Fk helps these models,
but their accuracy remains below 50%. TMN models
with auxiliary decomposition supervisionDk can solve
all tasks with search ("TMN-S") indicating that the task
is solvable by communicating with agents.

two standard black-box models, T5-L (Raffel et al.,
2020) and UnifiedQA-L (Khashabi et al., 2020),17

to generate answers18 given a question and context.
Models with Fact Supervision: If, in addition

to access to the underlying knowledgeKik, we also
have the auxiliary supervision for the gold facts
Fk, we can use this annotation to train a model to
first retrieve a small subset of relevant facts from
Kik (see App. D.1 for details). Since the context is
shorter, we also train a T5-3B model19 on this task.

5.2 Results
Table 5 reports the accuracy of these four classes
of models on the COMMAQA dataset.

Baseline model has near-zero accuracy: The
top two rows represent baseline models that use
brute-force search to generate training data for
TMNs. For COMMAQA-I, we don’t find even
a single chain leading to the gold answer, and
hence no training data. With COMMAQA-E and
COMMAQA-N, we do find valid decompositions

purpose of our benchmark dataset. Nevertheless, we conduct
experiments in this setting for completeness.

17We use T5 models as they can handle longer contexts.
18We alphabetically sort answers for a deterministic order.
19T5-11B performed worse than or same as the 3B model.
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for a subset of the questions (see statistics in Table 8
of Appendix), but not enough to train an effective
NextGen model. Expanding the search to l=20
helps achieve ∼100% accuracy on COMMAQA-E
(with ∼700K agent calls). However, we don’t ob-
serve any gains on COMMAQA-I and COMMAQA-
N with even 2M agent calls (see App. C).

Black-box models struggle even with access
to agent knowledge : Due to the large number of
distractors, black-box models —even with access
to agent knowledge at both train and test time—
struggle to learn the task across all three datasets
with average accuracy below 20. The extremely
low performance on COMMAQA-E is especially
notable, given that the reasoning needed for each
question is explicitly described. While these mod-
els are able to solve similar datasets (Yang et al.,
2018), the low scores on our synthetic dataset with
more distractors indicates that they are still unable
to truly learn this kind of reasoning.

Fact annotations help but are insufficient:
Models trained on shorter context (obtained by re-
lying on gold fact training annotation) are able to
take advantage of the reduced number of distrac-
tors, improving their score to about 45 pts across all
datasets. However, even with the larger 3B model,
there is no noticeable improvement, indicating 45
pts being roughly a ceiling for these models.

COMMAQA is solvable by talking to the
agents: The TMN model, if given gold decom-
position annotation for training, can solve this task
(bottom two rows). This experiment is an oracle
setting that shows that COMMAQA is noise-free,
unambiguous, and solvable by a model that learns
to talk to the agents (as designed). Note that greed-
ily selecting the next question results in much lower
performance on the two datasets (E and I) that have
multiple decompositions for the same question.

5.3 Compositional Generalization

We also design compositional generalization test
sets COMMAQA-ECG and COMMAQA-NCG.
Specifically we create questions using novel com-
position of queries that have been seen during train-
ing but never together in this form. For instance,
we create a new question "What awards have the di-
rectors of the __ winning movies received?", given
that the model was trained on questions such as
"What awards have the actors of the __ winning
movies received?", "What movies have the direc-
tors from __ directed?", and "What movies have

Model Aux. Info ECG NCG

TMN-S10 16.2 0.0
Auxiliary Supervision Models

T5-L Fk, {Kik} 37.0 2.0
T5-3B Fk, {Kik} 39.2 23.8
TMN-S Dk 79.4 97.6

Table 6: Lower accuracy on compositional generaliza-
tion test sets. TMN-S with decomposition supervision
still outperforms other models.

people from the country __ acted in?".
As shown in Table 6, all models exhibit a drop in

accuracy relative to their score in Table 5, but the
compositional model trained on gold decomposi-
tion still outperforms black-box models. Our error
analysis of TMN-S on COMMAQA-E identified
this key issue: While TMN-S learns to generalize,
it generates questions outside the space of valid
agent inputs (e.g., "Who are the directors in the
movie __?" vs. "Which movies has __ directed?").

6 Closing Remarks

We motivated a new challenge of solving complex
tasks by communicating with existing AI agents.
This challenge, we believe, will help develop more
generalizable and efficient models. We introduced
a new benchmark dataset COMMAQA with three
multi-hop reasoning challenges, all solvable by
composing four QA agents. State-of-the-art lan-
guage models struggle to solve COMMAQA, even
when provided with agents’ internal knowledge.
In contrast, a model that is able to learn to com-
municate with the agents, albeit using annotated
decompositions, is able to solve this task. These
results point to the need for and the potential of
such approaches, but without reliance on auxiliary
annotations, to solve complex tasks.

COMMAQA is only one instantiation of our over-
all framework. One can extend it in many ways,
such as using LMs to enrich lexical diversity, emu-
lating the behavior of imperfect real-world agents
that even attempt to answer out-of-scope ques-
tions, diversifying to other reasoning types such as
Boolean questions where using distant supervision
is even harder (Dasigi et al., 2019), and extending
the generalization dataset to include new examples
of valid inputs as well as new agents.
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A Multiple Answers in a Question

If a question refers to multiple answers, e.g. "Is #3
a part of #2?", the operator execution is unclear. To
handle such cases, the operator must specify the
answer to operate over as a parameter. E.g. (fil-
ter(#3)) [mathqa] "Is #3 a part of #2?" would filter
the answers in #3 whereas (filter(#2)) [mathqa] "Is
#3 a part of #2?" would filter the answers in #2.

B Search Approach Details

We describe in more detail the approach used to
build the training data D̂ using the simple search
technique. To generate the space of possible decom-
positions, for each question, we first select f oper-
ations from the list of valid operations in Table 7.
We only consider these operations as these are the
only operators needed for COMMAQA. Note that
even with this restricted set of operators, models
struggle on COMMAQA-I and COMMAQA-N. Ad-
ditionally, we only consider the select operation for
the first step. For all subsequent steps, we only con-
sider replacements of __ with a previous answer
index.

To select the questions, we first simplify the
space of inputs by converting the questions into
Fill-In-The-Blank (FITB) questions by removing
the named entities. E.g "Who was born in 1991?"
is changed to "Who was born in __?". This is also a
necessary step as the operators need questions with
placeholders to handle structured answers. At every
step, we expand this pool of questions by replacing
the blanks with entities in the complex question
and any answer index from the previous steps (e.g.
#1, #2 in the third step of a decomposition). To
avoid wasteful sampling, we use lexical overlap
between questions in this expanded question pool
and the input question to identify the top g most
relevant questions. The agent associated with each
question is tracked throughout this process.

In the end, we consider the cross product be-
tween the f operations and g questions to produce
l = f × g total questions at each steps. These l
questions are then executed using the appropriate
agent and only the successful questions (i.e. an-
swered by the agent) are considered for the next
step. This is the key reason why the search space
is much smaller than lo for o reasoning steps.

Table 8 presents the overall statistics of the
search approach.

select
filter
filterValues_keys
filter(__)
filterValues(__)_keys
project
projectValues
projectValues_flat
projectValues_flat_unique
project_values_flat
project_values_flat_unique

Table 7: Set of operations considered in the search ap-
proach. __ can be replaced by any of the answer indices
from the previous steps to create a new operation.

Table 8: Statistic of the search-based approach for dif-
ferent values of l (NumQs/Step). While we get few +ve
chains for COMMAQA-N, it is not sufficient to train an
effective model.

Table 9: EM / F1 scores on the test set using the base-
line approaches.
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Figure 5: With an order of magnitude increase in
search space, we can achieve close to 100% accu-
racy on COMMAQA-E. However COMMAQA-I and
COMMAQA-N need smarter search strategies to gen-
erate useful training supervision.

C Search Cost vs Accuracy

One could always exhaustively search for all possi-
ble decompositions to reproduce the gold decom-
positions for all the questions. But this would be
computationally highly expensive as each call to
the agent would often invoke a large-scale LM or
a complex AI assistant. To characterize the com-
putational cost of these approaches, we extend the
search parameter to include l=15 and l=20 (capped
at 5M agent calls) and compute the accuracy of
the TMN-S model trained on the resulting dataset
(shown in Fig. 5). We can achieve close to 100%
accuracy on COMMAQA-E where the search is
sufficiently exhaustive(about 700K model calls)
mainly due to the shorter rules and the lexical sig-
nal. COMMAQA-I and COMMAQA-N, on the
other hand, even with an order of magnitude in-
crease in the number of agent calls, we don’t ob-
serve any increase in the model accuracy.

D Black-Box Models

We train the T5 models on each of the
three datasets to generate the answer given
the question and facts. We format the in-
put sequence as <concatenated facts> Q:
<question> A:. Since many of the answers
can be multiple spans, we sort20 and concatenate
them into a single string with ‘+’ as the separa-
tor. As noted in Table 4, the verbalized facts
can result in a context over 2K tokens long. We
trained T5-Large models on A100 80G GPUs and
RTX8000s to train on such a long context. Trans-
formers designed for longer documents (Beltagy

20To ensure a deterministic order, we sort the answers in
alphabetical order.

et al., 2020; Zaheer et al., 2020) would be able to
handle such contexts more efficiently but generally
under-perform due to sparse attention. Hence we
don’t evaluate them here.

For all T5-based models, model tuning was stan-
dardly performed using a random hyper-parameter
search in the style of Devlin et al. (2019) using
the public huggingface implementation (Wolf et al.,
2020); model selection was done based on the high-
est EM accuracy on the development sets. We
specifically experimented with learning rates in the
range of (1e-3f to 5e-5f ) using both Adam and
Adagrad optimizers and generally found the set-
tings comparable to the original T5 pre-training pa-
rameters (Raffel et al., 2020) to be optimal (Adafac-
tor, lr=0.001, 10 epochs, 0-1000 warmup steps, gra-
dient accumulation was used extensively in place
of batching to fit long sequences into GPU mem-
ory). The optimal T5-3B models and T5-L for
full context on COMMAQA-E were trained with
lr=5e-5. All other models were trained with a lr of
1e-3. We will release the complete list of optimal
hyper-parameters along with the code.

D.1 Models with Fact Supervision

To select the relevant facts, we train a RoBERTa-
Large (Liu et al., 2019) model on the gold facts and
select the top-scoring facts to produce a shorter con-
text that fits in 512 tokens. The RoBERTa model
was training using the AllenNLP library (Gardner
et al., 2017) with the standard parameters used for
RoBERTa – learning rate of 2e-5, triangular LR
scheduler with 10% warmup steps, gradient clip-
ping at 1.0, batch size of 16, 5 epochs of training
with patience of 3 epochs. We didn’t observe a
noticeable difference in score with a random pa-
rameter search, so kept these parameters constant.
The model was trained to score each fact indepen-
dently on the train set and the best model was se-
lected based on the accuracy on the dev set. The
model was then evaluated on the facts from the
train, dev and test set to produce the shorter context
for all three sets. The facts were sorted based on
the model’s scores and the top-scoring facts were
added to the context till the number of tokens did
not exceed 512 tokens (white-space splitting).

E Text Modular Networks: Training

To train the NextGen model for TMNs, we use
the same parameters as the prior work (Khot et al.,
2021). We train a T5-Large model as the NextGen
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Text KB
directed(movie, person)
acted(movie, person)
wrote(movie, person)
produced(movie, person)
paward(person, p_award)
birth(person, year)
nationality(person, nation)

Knowledge Base

Table KB
directed(movie, person)
acted(movie, person)
wrote(movie, person)
produced(movie, person)
paward(person, p_award)
maward(movie, m_award)
released(movie, year)

Theory 1: What movies have people from the 
country $1 acted in?
A1:select(textqa, _, “Who are from $1?”)
A2:project_keys_flat_unique(textqa/tableqa, A1, 
“Which movies has {} been an actor in?")

Theory 2: What movies have the directors from $1 
directed?
A1:select(textqa, _, “Who is from the country $1?”)
A2:project_keys_flat_unique(textqa/tableqa, A1, 
“Which movies has {} directed?”)

Theory 3: What awards have movies produced by 
people born in $1 won?
A1:select(textqa, _, “Who were born in the year 
$1?”)
A2:project_keys_flat_unique(textqa/tableqa, A1, 
“For which movies was {} the producer?”)
A3:project_keys_flat_unique(tableqa, A2, “Which 
awards did the movie {} win?”)

Theory 4: What awards have movies written by people born in 
$1 won?
A1:select(textqa, _, “Who were born in the year $1?”)
A2:project_keys_flat_unique(textqa/tableqa, A1, “What movies 
has {} written?”)
A3:project_keys_flat_unique(tableqa, A2, “Which awards were 
given to {}?”)

Theory 5: What awards did the movies directed by the $1 
winners receive?
A1:select(textqa/tableqa, _, “Who have won the $1 award?”)
A2:project_keys_flat_unique(textqa/tableqa, A1, “What movies 
has {} been the director of?”)
A3:project_keys_flat_unique(tableqa, A2, “Which awards did 
the movie {} win?”)

Theory 6: What awards have the actors of the $1 winning 
movies received?
A1:select(/tableqa, _, “The award $1 has been awarded to 
which movies?”)
A2:project_keys_flat_unique(textqa/tableqa, A1, “Who are the 
actors in the movie {}?”)
A3:project_keys_flat_unique(tableqa, A2, “{} has been awarded 
which awards?”)

TheoryValid Inputs
TextQA Agent
Who is from the country Schelpla?
From which country is Magainitis?
Where is Alpinista from?
From which country is Gigabut?
Who is from the country Spanulum?
Which awards were given to Fidelice?
Alpinista produced which movies?
Who is from the country Moulminer?
Who all produced the movie Hoopdoodle?

TableQA Agent
Which movies were given the Trummer award?
Who are the writers of the movie Misgendery?
Which writers wrote Vitrilateral?
Which movies were released in 1957?
Who are the writers of the movie Chickenpot?
Which year was the movie Compresse released 
in?
Who are the writers of the movie Misgendery?
Which movies were given the Pompasole award?

Entities
movie: {“Vitrilateral”, …}
person: {“Alpinista”, …}
m_award: {“Trummer”, …}
...

Figure 6: Example KB, space of valid inputs, and the theory used to construct COMMAQA-E.

model using a batch size of 64, lr of 5e-6, 5 epochs
and warmup of 1000 steps in all our experiments.
We used the public huggingface implementation
(Wolf et al., 2020) to train this model. During in-
ference, we use a beam size of 10 and select 5
questions at each step. We use nucleus sampling
with p=0.95 and k=10. For greedy search, we use
the same parameters but select one question at each
step. We use the sum log likelihood of each gener-
ated question as the score of the reasoning chain.
(see released code for the exact settings)
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studied(occupation2, field) 
graduate(field2, occupation) 
isa(device, obj)

dob(person, year) 
dod(person, year) 
occupation(person,
occupation) 
field(person, field) 
invent(obj, year) 
usedo(obj, occupation2) 
usedf(obj, field2) 
founded(person, company) 
invented(person, tech) 
developed(company, device) 
manufactures(company,
material) 
usedin(tech, device) 
contains(material, obj)

(Airpipe ; Isa ; haystone).
(Working as kreuse ; HasPrerequisite ; Studying googolome).
(Misigram ; Isa ; chikor).
(Misigram device ; Isa ; pistarmen object).
(Study metatoun ; MotivatedByGoal ; Work as kreuse). 

When studying kinneticket, saltcoat would be used.
todou material is needed to make vetto.
stretchwork is often used by people working as bartery. 
Carpoon device was developed based on the vout
technology.
Triclops studied chasmogon in college.
flawpack was first invented in the year 1943.
gambilla was invented in 2005.
Kapod studied duriel in college. 
noosecutter is commonly used in the field of blaubrudin.
Chaudelaire died in 1980.
chickenshaw was invented in 1940. 
Dentalogy works as a scritigraphy.
flawpack was first invented in the year 1989.
Stoptite was born in 1937.
chickenspaw material is needed to make stretchwork.
Terbaryan was developed by the Coathanger company.

KB Facts

Which company produces the material topboard?
Who have founded the company Moderexample? 
Monocyteotyping is the founder of which companies?
What is Loisy's occupation? 
When was cursaire invented?
Which year was teeplemole invented?
Which technologies has Kapod developed?
Polyhoney is the inventor of which technologies? 
Which materials does Gutskin produce?
What would be the occupation of someone using demiplane? 
What does Teinteen work as?
What is Triclops's field of study?
Which company produces the material enovasion?
Who have developed the technology coule? 
herbalife is used by people in which field of study?

What occupation do people who study scampot work in?
What would be the field of study for someone working as a
matularch?
Which field have people working as zorgion graduated from?
What devices are types of teeplemole?
What is the device Pomorpha a type of? 
Which devices are of the type gastrat? 
What object is Pludgel a type of?

Valid Inputs for Agents

 QC: What objects has Loisy likely used?
   [select] <text> What is Loisy's field of study? A: ["cougarism", "nightslash"]
   [project_flat_unique] <kb> What is the occupation of people who study #1? A: ["nephewskin", "skirtsicine"]
   [project_flat_unique] <text> Which objects are used by a #2? A: ["cannolium", "microallocation", "tenderstiltskin", "monovacuum"]

 QC: What objects has Triclops helped to make? 
   [select] <text> Triclops is the founder of which companies? A: ["Mechanicism"]
   [project_flat_unique] <text> Which devices has #1 developed? A: ["Terbaryan"]
   [project_flat_unique] <kb> What object is #2 a type of? A: ["vetto"]

 QC: What objects has Stoptite helped to make? 
   [select] <text> Which technologies has Stoptite developed? A: ["thralline"]
   [project_flat_unique] <text> #1 technology is used in which devices? A: ["Cabaretillonite"]
   [project_flat_unique] <kb> What object is #2 a type of? A: ["cavata", "piperfish"]

 QC: What objects has Kapod helped to make? 
   [select] <text> Which companies has Kapod founded? A: ["Superglitch"]
   [project_flat_unique] <text> #1 produces which materials? A: ["fannyxist"]
   [project_flat_unique] <text> Which objects use #2 as a material? A: ["epicanoine"]

 QC: What objects has Minimiseries likely used?
   [select] <text> What does Minimiseries work as? A: ["infiling", "glodome"]
   [project_flat_unique] <kb> Which field have people working as #1 graduated from? A: ["kernwood", "kinneticket"]
   [project_flat_unique] <text> What objects are used in the study of #2? A: ["pistarmen", "dactylin", "pilefork", "enableness"]

 QC: What objects has Duriel likely used? 
   [select] <text> When did Duriel die? A: ["1928"]
   [select] <text> Which invented objects are mentioned? A: ["legault", "stoptite", "stridery", "hydrallium", ...,  "waxbox"] 
   [project] <text> Which year was #2 invented? A: [["legault", ["1997"]], ["stoptite", ["1991"]], ["stridery", ["1921"]], ["hydrallium", ["1993"]], ...,
["waxbox", ["1971"]]] 
   [filterValues(#3)_keys] <math_special> Is #3 smaller than #1? A: ["stridery", "pistarmen"] 

Complex Questions (and Theory)
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Figure 7: Example KB, space of valid inputs, and the theory used to construct COMMAQA-I.
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nation(personj, nation) 
nation(persond, nation)

threwj(personj, lengthj) 
threwd(persond, lengthd

Athlete: Gigabut ; Nation: Besprit; Sport: Javelin.
athlete: Fidelice ; country: Coathanger; sport: Javelin Throw.
Athlete: Jimayo ; Nation: Tremolophore; Sport: Discus.
athlete: Jungdowda ; country: Epicuratorion; sport: Discus
Throw.

Mossia hurled the javelin to a distance of 87.2.
Insimetry registered a throw of 85.6 in the javelin event.
Undercabin registered a discus throw of 50.0. 
Diaqum registered a throw of 88.4 in the javelin event.
Darecline registered a discus throw of 48.4.
Vitule hurled the javelin to a distance of 66.4.
Karmacogram threw the discus to a distance of 69.6.
Sequinodactyl hurled the javelin to a distance of 70.2.

KB Facts

What were the lengths of the javelin throws by Predigime?
Who was a discus thrower for 55.0?
Who threw the discus for 67.6? 
Who threw the javelin for 67.2?
Who was a javelin thrower for 93.0? 
Who was a discus thrower for 60.0?
Who threw the javelin for 67.2?
Who performed discus throws?

Which country does Metrix play for? 
Who are the discus throwers from Premercy?
Which country is Entine from?
Who are the discus throwers from Waxseer? 
Which country does Thym play for?
Which country is Queness from? 

Valid Inputs for Agents

QC: Who threw javelins longer than 89.6?
   [select] <text> Who performed javelin throws? A: ["Jungdowda", "Prostigma", "Biopsie", "Thym", "Coacheship", "Knebbit", "Lowrise", "Sealt",
"Seeper", "Entine", "Queness", "Cutthrough"]
   [project_zip] <text> What lengths were #1's javelin throws? A: [["Jungdowda", ["71.2", "66.0", "73.6"]], ["Prostigma", ["64.6"]], ["Biopsie", ["77.6",
"93.0"]], ["Thym", ["87.0", "89.4", "86.8"]], ["Coacheship", ["92.2", "72.2"]], ["Knebbit", ["71.8", "84.0", "64.8", "75.8"]], ["Lowrise", ["64.0", "82.8"]],
["Sealt", ["68.6"]], ["Seeper", ["65.6"]], ["Entine", ["67.0"]], ["Queness", ["91.2"]], ["Cutthrough", ["80.8", "89.6", "79.4"]]]
   [project_values] <math_special> max(#2) A: [["Jungdowda", 73.6], ["Prostigma", 64.6], ["Biopsie", 93.0], ["Thym", 89.4], ["Coacheship", 92.2],
["Knebbit", 84.0], ["Lowrise", 82.8], ["Sealt", 68.6], ["Seeper", 65.6], ["Entine", 67.0], ["Queness", 91.2], ["Cutthrough", 89.6]]
   [filter_keys(#3)] <math_special> is_greater(#3 | 89.6) A: ["Biopsie", "Coacheship", "Queness"]

 QC: How many discus throws were shorter than 48.0?
   [select] <text> Who threw discus? A: ["Zayage", "Endography", "Dewbar", "Skullard", "Cabaretillonite", "Terbaryan", "Siligar", "Triclops",
"Polypartity", "Cheapnose", "Flumph"]
   [project_flat] <text> What lengths were #1's discus throws? A: ["72.4", "54.4", "55.8", "66.8", "46.0", "70.8", "50.0", "59.4", "51.6", "70.0", "48.0",
"45.0", "72.2", "66.2", "58.0", "65.6", "48.4", "61.8", "66.6", "44.0", "56.4", "50.2", "68.2", "47.2"]
   [filter(#2)] <math_special> is_smaller(#2 | 48.0) A: ["46.0", "45.0", "44.0", "47.2"]
   [select] <math_special> count(#3) A: 4

 QC: Who threw discuses shorter than 45.0?
   [select] <text> Who threw discus? A: ["Dewbar", "Biscus", "Whime", "Dumasite", "Blumen", "Colorectomy", "Guazepam", "Metatoun", "Siligar",
"Lechpin", "Sahaki", "Barbrauch", "Noosecutter", "Pompasole"]
   [project_zip] <text> What were the lengths of the discus throws by #1? A: [["Dewbar", ["65.2", "44.0", "72.0"]], ["Biscus", ["72.4", "73.6"]], ["Whime",
["44.8", "65.0"]], ["Dumasite", ["58.8"]], ["Blumen", ["44.4", "54.6"]], ["Colorectomy", ["53.6", "60.0"]], ["Guazepam", ["52.8", "65.8"]], ["Metatoun",
["46.8", "54.4", "51.4"]], ["Siligar", ["59.4"]], ["Lechpin", ["62.6"]], ["Sahaki", ["48.6"]], ["Barbrauch", ["45.0", "52.6"]], ["Noosecutter", ["69.6"]],
["Pompasole", ["64.0"]]]
   [project_values] <math_special> min(#2) A: [["Dewbar", 44.0], ["Biscus", 72.4], ["Whime", 44.8], ["Dumasite", 58.8], ["Blumen", 44.4],
["Colorectomy", 53.6], ["Guazepam", 52.8], ["Metatoun", 46.8], ["Siligar", 59.4], ["Lechpin", 62.6], ["Sahaki", 48.6], ["Barbrauch", 45.0], ["Noosecutter",
69.6], ["Pompasole", 64.0]]
   [filter_keys(#3)] <math_special> is_smaller(#3 | 45.0) A: ["Dewbar", "Whime", "Blumen"]

 QC: What was the gap between the longest and shortest discus throws by Honeywax?
   [select] <text> What lengths were Honeywax's discus throws? A: ["48.0", "59.8", "50.6"]
   [select] <math_special> max(#1) A: 59.8
   [select] <math_special> min(#1) A: 48.0
   [select] <math_special> diff(#2 | #3) A: 11.8
 

 QC: What was the gap between the longest and shortest javelin throws by athletes from Misapportionment?
   [select] <table> Who are the javelin throwers from Misapportionment? A: ["Zekkobe", "Featsaw", "Tantor"]
   [project_flat] <text> What lengths were #1's javelin throws? A: ["79.0", "67.8", "89.6", "80.4", "89.4", "79.6", "87.8"]
   [select] <math_special> max(#2) A: 89.6
   [select] <math_special> min(#2) A: 67.8
   [select] <math_special> diff(#3 | #4) A: 21.8

 QC: What was the gap between the best javelin throws from Haystone and Pistarmen?
   [select] <table> Which javelin throwers are from the country Haystone? A: ["Modiparity", "Polyacrylate", "Sequinodactyl"]
   [project_flat] <text> What lengths were #1's javelin throws? A: ["89.6", "75.2", "85.4", "67.8", "76.4", "68.4"]
   [select] <math_special> max(#2) A: 89.6
   [select] <table> Who are the javelin throwers from Pistarmen? A: ["Crowdstrike"]
   [project_flat] <text> What were the lengths of the javelin throws by #4? A: ["66.0", "85.6"]
   [select] <math_special> max(#5) A: 85.6
   [select] <math_special> diff(#3 | #6) A: 4.0

Complex Questions (and Theory)
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Figure 8: Example KB, space of valid inputs, and the theory used to construct COMMAQA-N.
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