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Abstract

Recent researches show that multi-criteria re-
sources and n-gram features are beneficial
to Chinese Word Segmentation (CWS). How-
ever, these methods rely heavily on such addi-
tional information mentioned above and focus
less on the model itself. We thus propose a
novel neural framework, named Weighted self
Distillation for Chinese word segmentation
(WeiDC). The framework, which only requires
unigram features, adopts self-distillation tech-
nology with four hand-crafted weight modules
and two teacher models configurations. Ex-
periment results show that WeiDC can make
use of character features to learn contextual
knowledge and successfully achieve state-of-
the-art or competitive performance in terms of
strictly closed test settings on SIGHAN Bake-
off benchmark datasets. Moreover, further ex-
periments and analyses also demonstrate the
robustness of WeiDC. Source codes of this pa-
per are available on Github1.

1 Introduction

Chinese is written without explicit word delim-
iters, while numerous Natural Language Process-
ing (NLP) applications are word-based. Moreover,
CWS is always a fundamental and essential step
for processing most language tasks.

Following the pace of many researchers (Sun
and Xu, 2011; Chen et al., 2015; Ke et al., 2021),
we also choose [B, I/M, E, S] tags (Beginning,
Inside/Middle, End, Single character), which repre-
sent the precise position of a character in one word.
Figure 1 gives a simple example.

我 喜 欢 大 自 然 。

S B E B I E S
Char:

Tag:

Figure 1: The [B, I, E, S] tagging scheme. "我喜欢大
自然。" ("I love nature.")

1Our code implementation. https://github.com/
Anzi20/WeiDC

Generally, a CWS task usually consists of three
important parts: Embedding, Encoder and De-
coder. Google published two papers, Mikolov et al.
(2013a) and Mikolov et al. (2013b), and distributed
representation has been widely used in NLP due
to its low dimensions and efficiency in semantic
similarity. Most researchers keep a close eye to
the encoder part which includes Maximum Entropy
(ME) (Berger et al., 1996), feed-forward neural net-
work (Zheng et al., 2013), recursive neural network
(Wang and Xu, 2017) , long-short-term memory
(LSTM) (Chen et al., 2015), Pre-training of Deep
Bidirectional Transformers such as BERT (Tian et
al., 2020) and other models. As for the decoder
part, in addition to softmax, Conditional Random
Fields (CRF) (Lafferty et al., 2001) usually plays
a vital role because it can use the rich contextual
feature in the annotation process.

With the prevalence of pre-training and fine-
tuning, transformer-based pre-trained models have
dominated the field of CWS in recent years. Given
sufficient training data, the pre-trained models
(Nakkiran et al., 2020; Xu et al., 2020) have
achieved remarkable results. However, these works
may suffer from poor predicting accuracy when
rare words or OOV (out-of-vocab) words exist.
What’s more, Huang and Zhao (2007) confirm that
the loss of word segmentation accuracy, caused by
OOV words, is at least 5 times greater than word
segmentation ambiguity. We believe that improv-
ing the accuracy of the OOV words is worthy of
further exploration.

Unlike traditional Knowledge Distillation (KD)
methods, self distillation teaches a student network
by itself instead of a separate teacher (Xu and Liu,
2019; Zhang et al., 2019) . Specifically, during
one training epoch, the best student model or the
student model from the last iteration will be saved
as the teacher model for the next training epoch to
teach the student itself.

Moreover, we believe that the student model
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should study knowledge selectively according to
the importance of information, so it is a practical
solution to add an weight matrix to the training
process. Different from the temperature distillation
technology proposed by Hinton et al. (2015), we
subtly utilize the information gap between pseudo
labels, predicted by the teacher model or student
model, and real labels to obtain the hand-crafted
weight matrix. From another perspective, the pro-
cess of acquiring weight matrices can also be seen
as a kind of communication between teachers and
students. Finally, to more precisely demonstrate
the impact of WeiDC, we will temporarily ignore
all external information.

Our contributions are summarized below. We
proposed WeiDC, which only requires unigram
features and adopts self-distillation technology
with four hand-crafted weight modules and two
teacher models configurations. Considering there
are few choices of weight measures, it is also a
challenge to design a feasible method to obtain
a rational weight value. We also performed vari-
ous experiments, such as testing its robustness in
some low-resource settings, and explored the effi-
ciency of our framework by combining different
encoders and decoders. Experimental results from
four widely used benchmark datasets confirm that
WeiDC can achieve state-of-the-art or competitive
performance, especially in OOV recall.

2 Related Work

Xue and Converse (2002) first treat CWS as a se-
quence labeling task and use a maximum entropy
tagger to train the data set. Xu (2003) shows a
unique charm of the sequential labeling method
in the CWS bakeoffs (Sproat and Emerson, 2003),
especially its results on ROOV (Recall of Out Of
Vocabulary). People thus turn their attention to the
research of sequence labeling method (Peng et al.,
2004; Zhao et al., 2006; Zhao and Kit, 2008). And
Huang and Zhao (2007) conclude that treating the
word segmentation process as a character labeling
problem can balance the recognition of vocabulary
words and unregistered words, because all words
are realized through one unified character marking
process. In general, our research is related to the
following works.
Pre-trained Frameworks Transformer-based pre-
trained models, such as BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019) , and ZEN (Diao et al.,
2020), have demonstrated excellent performance

in CWS tasks. Qiu et al. (2020) propose one uni-
fied model for multi-criteria CWS by leveraging
the powerful ability of the Transformer encoder.
Huang et al. (2020) also use BERT to capture var-
ious annotation criteria among datasets. Ke et al.
(2021) propose a CWS-specific pre-trained model
METASEG. Tian et al. (2020) and Liu et al. (2021)
consider the combination of lexicon features and
BERT for CWS. Huang et al. (2021) propose a
semi-supervised neural method based on RoBERTa
encoder through pseudo labels.
Knowledge Distillation Hinton et al. (2015) first
propose knowledge distillation, using a larger net-
work to teach a smaller network. Tang et al. (2019)
choose to distill knowledge from BERT, a state-
of-the-art language representation model, into a
simple heterogeneous model. Huang et al. (2020)
also extract knowledge from BERT to a truncated
(3 or 6 layers) BERT to balance computational cost
and segmentation accuracy on CWS tasks. Jiao
et al. (2020) adopt multiple distilling strategies to
reduce the number of parameters of the pre-trained
language models. Huang et al. (2021) collect mas-
sive unlabeled data and distill knowledge from the
teacher model to the student model by generating
pseudo labels. Zhang et al. (2019) put forward
self-distillation, which has recently been used in
computer vision, but not commonly used in NLP.

To summarize, for further improving word seg-
mentation accuracy, many researchers make use of
lexicon information (Tian et al., 2020; Liu et al.,
2021), multi-criteria label data (Chen et al., 2017;
Huang et al., 2020; Qiu et al., 2020; Ke et al., 2020)
and even unlabeled data (Sun and Xu, 2011; Zhang
et al., 2013; Huang et al., 2021).

3 The WeiDC Framework

Huang and Zhao (2007) point out that CWS is the
first step of most Chinese information processing
systems, which usually relies on the shallow in-
formation of the text content, such as character
features, which is distinct from the idea, "under-
stand first and then segment words". As shown
in Figure 2, we adopted the traditional word seg-
mentation scheme, but added self distillation and
weight modules to the training phase.

3.1 The Sequential Part

The traditional word segmentation scheme consists
of the Embedding layer, Encoder layer, and De-
coder layer. Formally, x is always seen as all
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[SEP]
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[SEP]
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Figure 2: The WeiDC framework. The sentence, "千载难逢天外客" ("A once-in-a-lifetime visitor from outside
the sky"), is from the MSR testing corpus. And it’s difficult to split "天外客" ("A visitor from outside the sky").

marked data sequences and x = [x1, x2, ..., xn],
and y is over corresponding label sequences and
y = [y1, y2, ..., yn]. We choose the BERT model to
get character embeddings and encode these embed-
dings. After that, the encoder’s outputs are fed into
the decoder layer to obtain predicted tags.
Embedding layer We use BertTokenizer to obtain
our input embeddings. Each character embedding
consists of token embedding and position embed-
ding. We don’t need to consider the Next Sentence
Prediction problem and remove token_type embed-
ding. Additionally, to easily explore various weight
mechanisms, WeiDC ignores unlabeled data or n-
gram features.
Encoder layer Once obtaining character embed-
dings, they will be fed into an encoder, such
as BERT or its derivative models. We choose
bert-base-chinese2 version and only need
config.json, pytorch_model.bin, and
vocab.txt to train linguistic data. Vaswani et
al. (2017) give BERT, based on Transformer, an
abundant description. We decide to omit its back-
ground description here. Furthermore, we also take
RoBERTa3 as our encoder to explore the impact
of various pre-trained models on the CWS experi-
ments.
Decoder layer Compared with Hidden Markov
Models, Lafferty et al. (2001) present CRF for
building probabilistic models to mark and segment
the sequence data with weak independence assump-
tions.

p(yi|xi) =
exp(Wc · zi + bc)∑

yi−1yi
exp(Wc · zi + bc)

(1)

2https://huggingface.co/
bert-base-chinese/tree/main

3https://github.com/brightmart/
roberta_zh (RoBERTa_zh_L12 PyTorch)

In addition, softmax is also a frequent decoder,
which can efficiently convert logit to probability
regardless of intrinsic correlation.

p(yi|xi) = log
exp(zdi )∑D
d exp(zdi )

(2)

where zi ∈ R|D| is logits and zdi is the value at
dimension d in zi. p(yi|xi) is the corresponding
probability value. Wc ∈ R|D|×|D| and bc ∈ R|D|
are trainable parameters of CRF. yi−1yi models the
state from yi−1 to yi.

We continue to operate on the probability
(p(y|x)) to get the predicted label (ŷ).

ŷ = argmax p(y|x) (3)

Through comparative experiments, Qiu et al.
(2020) conclude that with or without CRF does
not make much difference. Since CRF is more
complex and the training cost is higher, we mainly
try softmax to decode logits to make full use of
computing resources.

3.2 Weight Mechanism

During one training epoch, the pseudo labels (ŷ)
from t or s are compared with corresponding true
labels (y), which can be expressed by formula 4. t
and s indicate that ŷ come from the teacher model
or student model, respectively. η refers to the infor-
mation difference between ŷ and y.

ηm = |ŷm − y|,m = t, s (4)

In the process of executing equation 4, we use
absolute value operations. When one pseudo label
is equal to the corresponding true label, we get
0, otherwise we get a positive number. Since the
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result is the opposite of what we want, we have to
perform 5 and 6.

F (j) =

{
0, j = 0

1, j 6= 0
(5)

F (j) converts all positive numbers to 1 and j is a
variable symbol. Then, the intermediate value is
processed by equation 6 to get the final result.

ηm = 1− F (ηm) (6)

We hope there will be enough communication
between the teacher and student to obtain a reason-
able weight value, so we designed equation 7. w1

wei

is the first type of weight vector.

w1
wei = ηt + ηs + 1 (7)

The meaning of equation 7 is very concise. Dur-
ing distillation, samples with higher accuracy are
given more attention, while samples with lower ac-
curacy are given less attention. Moreover, to avoid
losing the basic information carried by each sam-
ple, we need to make sure that the minimum value
of w1

wei is 1, we thus add 1.
We also notice that ηt and ηs may contain various

amounts of knowledge. Therefore, we multiply ηt
or ηs by 2 to get equations 8 and 9, respectively.
Certainly, other coefficients can also be selected
according to actual needs.

w2
wei = 2 · ηt + ηs + 1 (8)

w3
wei = ηt + 2 · ηs + 1 (9)

From another perspective, if the teacher model
is correct and the student model is wrong, this kind
of knowledge should be more valuable. We thus
get another calculation method, which is described
in equation 10, to obtain the weight vector.

w4
wei = 2 · ηt − ηs + 2 (10)

We must add 2 to ensure that the minimum value
of w4

wei is 1.
Finally, according to different weight modules,

all possible values of a single character (marked as
k) are shown in Table 1. The above four weight
mechanisms show that different key factors affect
the weight value. In other words, for the same
pseudo label, different reference factors will lead
to various weight values.

ηtk ηsk w1
weik

w2
weik

w3
weik

w4
weik

1 1 3 4 4 3
1 0 2 3 2 4
0 1 2 2 3 1
0 0 1 1 1 2

Table 1: All possible weight values of character k.

For example, if we consider that words with
low frequency can better reflect the models’ perfor-
mance, we can increase their weights to penalize
the loss of misclassifying these words. As a re-
sult, the student model will pay more attention to
low-frequency words.

According to different distillation scenarios or
learning needs, it is necessary to choose appropri-
ate reference factors to design weight calculation
methods. Here, we take the segmentation difficulty
of words as a reference standard.

3.3 Distillation
Unlike self-training, self-distillation takes a fully
supervised way to dig the potential of the model
itself, requiring no auxiliary models or data. In this
paper, the teacher model comes from two sources,
either the student model from the last iteration
(Dlast) or the student model with the best historical
performance (Dbest) .

The student also learns from two sources of in-
formation, predicted probabilities from the teacher
and one-hot ground-truth label. Hence, the final
loss (LKD) consists of two parts, cross-entropy
loss (LCE) and distillation loss (LDistill) :

LKD = (1− α) · LCE + α · LDistill (11)

To balance the above two losses, we need a coef-
ficient α, which is also set to a fixed value during
the training phase.
LCE is to penalize the cross-entropy loss be-

tween the predicted label (ŷ) against the true label
(y):

LCE = −
∑
x

y log ŷ(x) (12)

LDistill is to reduce the mean-squared-error loss
between the teacher’s logits (z(T )) and the student’s
logits (z(S)), and wwei can be any of the above four
weight types.

LDistill = ||wwei · z(T ) − wwei · z(S)||22 (13)

To better verify the effect of WeiDC, the temper-
ature distillation technology is not considered here.
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Dataset MSR PKU AS CITYU
train test train test train test train test

Char 4,050K 184K 1,826K 173K 8,368K 198K 2,403K 68K
Word 2,368K 107K 1,110K 104K 5,450K 123K 1,456K 41K

Char types 5,168 2,838 4,698 2,934 5,979 3,628 4,832 2,663
Word types 88,119 12,923 55,303 13,148 141,339 18,759 69,085 8,993

OOV Rate - 2.7 - 5.8 - 4.3 - 7.2

Table 2: Corpus details of four CWS datasets

Distinct from previous studies on knowledge distil-
lation, our framework adds the weight mechanism,
allowing the teacher and the student to communi-
cate fully to focus on more valuable knowledge.
Furthermore, the teacher is not a static model but
dynamically evolves as training proceeds. Hence,
the weight vector will also alter as the teacher
model changes so that the student model can learn
richer knowledge.

4 Experiments

4.1 Dataset and Evaluation Metric

The second SIGHAN international Chinese word
segmentation bakeoff (Emerson, 2005), which in-
cludes MSR, PKU, AS and CITYU datasets, is
frequently used in CWS tasks. Since AS and
CITYU are traditional Chinese characters, we con-
vert these data into simplified ones by following
previous studies (Chen et al., 2015; Qiu et al., 2020;
Tian et al., 2020) . We will use these datasets in the
following experiments and corpus details are listed
in Table 2.

We also choose precision (P), recall (R), F-
score, and ROOV , which is the recall for out-of-
vocabulary (OOV) words, to evaluate segmentation
performance. Specifically, we first record the word
information in the complete training corpus and
then divide the corpus into a training set and vali-
dation set. Besides, we take no extra resources but
only training corpus to train our model.

4.2 Baselines

According to whether to use a pre-trained model
such as BERT as the encoder, we have selected
two types of baselines, Non-pretrained Models and
Pre-trained Models.
Non-pretrained Models Chen et al. (2017) pro-
pose adversarial multi-criteria learning for CWS
tasks by exploiting the underlying shared knowl-
edge across multiple heterogeneous criteria. Ma et

al. (2018) also point out that using external knowl-
edge can improve the CWS accuracy. Gong et al.
(2019) provide a more flexible solution to transfer
the learned information to new criteria. They all use
the bidirectional LSTM encoder. Qiu et al. (2020)
propose one unified model for multi-criteria CWS
based on the Transformer encoder. Through the
Gaussian-masked Directional (GD) Transformer,
Duan and Zhao (2020) try to further strengthen the
model itself to perfect CWS tasks.
Pre-trained Models Huang et al. (2020) propose
a domain adaptive segmenter to exploit various
open-domain knowledge. Tian et al. (2020) use
key-value memory networks to incorporate word-
hood information with BERT or ZEN as the en-
coder. Ke et al. (2021) put forward a CWS-specific
pre-trained model to alleviate the discrepancy be-
tween pre-trained models and downstream CWS
tasks. Nguyen et al. (2021) propose a span label-
ing approach to model n-gram features for word
segmentation.

4.3 Training Details

All experiments are implemented on the hardware
with Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz
and NVIDIA Tesla V100. Following previous
works (Ma et al., 2018; Qiu et al., 2020), we ran-
domly select 10% training data for development
and only use its testing set at the end of the training
phase. Similar to the previous work (Tian et al.,
2020), we performed other preprocessing measures
on all data sets.

During fine-tuning, we use Adam with the
learning rate of 2e-5. Both train_batch_size and
eval_batch_size are 16. As for the trade-off hy-
perparameter (α), we randomly select 1% of the
training set to explore the influence of various α
on WeiDC. We observe that when α is 0.3, WeiDC
performs better.

Besides, we train all models up to 50 with some
early stopping strategies, such as "patient epochs"
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Model MSR PKU AS CITYU AVG
F ROOV F ROOV F ROOV F ROOV F ROOV

Chen et al. (2017) ? 96.04 71.6 94.32 72.67 94.75 75.37 95.55 81.4 95.17 75.26
Ma et al. (2018) † 98.1 80.0 96.1 78.8 96.2 70.7 97.2 87.5 96.9 79.25

Gong et al. (2019) ? 97.78 64.2 96.15 69.88 95.22 77.33 96.22 73.58 96.34 77.82
Qiu et al. (2020) ?† 98.05 78.92 96.41 78.91 96.44 76.39 96.91 86.91 96.95 80.28

Duan and Zhao (2020) 97.6 - 95.5 - 95.7 - 95.4 - 96.05 -

Huang et al. (2020) ? 97.9 84.0 96.7 81.6 96.7 77.3 97.6 90.1 97.23 83.25
Tian et al. (2020) † (BERT) 98.28 86.67 96.51 86.76 96.58 78.48 97.8 87.57 97.29 84.87
Tian et al. (2020) † (ZEN) 98.4 84.87 96.53 85.36 96.62 79.64 97.93 90.15 97.37 85.0

Ke et al. (2021) ?‡ 98.5 83.03 96.92 80.9 97.01 80.89 98.2 90.66 97.66 83.87
Nguyen et al. (2021) † 98.31 85.32 96.56 85.83 96.62 79.36 97.74 87.45 97.31 84.49

WeiDC (BERT) 98.28 86.39 96.59 87.21 96.76 80.23 97.79 87.58 97.36 85.35
WeiDC (RoBERTa) 98.43 87.17 96.74 87.48 96.59 79.26 97.95 89.93 97.43 85.96

Table 3: First two blocks record different baselines, namely Non-pre and Pre. The last block is our scores. ? uses
a multi-criteria learning framework, which means that the marked training data are different from the rest. † uses
lexicons or n-gram features. ‡ uses a CWS-specific pre-trained model.

of 3 and "minimum F value" of 0.0001. Specifi-
cally, when the gap between the current F value
and the optimal F value is less than 0.0001, we will
not replace our saved model to avoid frequently
updating the teacher model. Table 4 summarizes
all the vital parameters.

mininum F value 1e-4 train_batch_size 16
num_train_epochs 50 eval_batch_size 16
patient epochs 3 learning_rate 2e-5
train : eval 9 : 1 alpha (α) 0.3

Table 4: Hyper parameters of WeiDC.

We take [B, I, E, S] tagging scheme in our exper-
iments. To explore the influence of diverse weight
modules on CWS, we will only try BERT and
RoBERTa as our encoder. As for BERT, we fol-
low the default settings in their paper (Devlin et al.,
2019). In addition to combining four weight mod-
ules and two types of teacher models, we also plan
to conduct some exploratory experiments, such
as testing the performance of WeiDC on a small
amount of training data.

5 Results and Analysis

In this section, we firstly report the results of
WeiDC and its comparison with the state-of-the-art
works available. Then we explore the robustness
of WeiDC through lots of experiments in different
low-resource settings. We also analyze the impact
of OOV words on the model. Finally, we perform
various NER tasks to test WeiDC’s effectiveness.

5.1 Main Results

Several observations are drawn from Table 3 and
Table 5, where the overall F-score and OOV recall
are all reported.

First, Table 3 demonstrates that pre-trained mod-
els, with lots of prior knowledge, perform better
than non-pretrained models, especially in OOV re-
call. Compared with baselines listed in Table 3, the
results in these experiments not only confirm that
self distillation and weight mechanism are effective
methods to benefit CWS without any auxiliary data
or CWS-specific pre-trained models, but also fully
illustrate that the design of WeiDC can enhance the
model learning ability.

Second, as shown in Table 5, WeiDC achieved
exciting results on ROOV with maintaining compet-
itive performance on F-score. For instance, when
we took BERT as our encoder, WeiDC improved
the F-score by 0.16% on average, from 97.2% to
97.36%, and the ROOV score by 1.71% on average,
from 83.64% to 85.35%.

Third, in most cases, Dbest outperforms Dlast,
and we speculate that updating the teacher model
too frequently will be detrimental to the learning
process of the student model. Besides, different
CWS tasks need various weight modules, so it is
essential to choose reasonable weight mechanisms
according to the characteristics of datasets.

Fourth, with BERT as the encoder and softmax
as the decoder, our base model is powerful, but
the improvement of WeiDC on ROOV scores is
still very decent. Specifically, under the current
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Model MSR PKU AS CITYU AVG
F ROOV F ROOV F ROOV F ROOV F ROOV

BERT(base) 98.22 85.22 96.5 85.6 96.44 77.37 97.63 86.35 97.2 83.64
+Dbest 98.22 85.58 96.59 87.04 96.64 79.51 97.68 86.52 97.28 84.66

+Dbest + w2
wei 98.17 86.07 96.53 88.03 96.71 80.57 97.6 85.4 97.25 85.02

+Dbest + w4
wei 98.28 86.39 96.59 87.21 96.76 80.23 97.79 87.58 97.36 85.35

RoBERTa(base) 98.33 86.74 96.58 87.04 96.34 76.14 97.8 88.8 97.26 84.68
+Dbest 98.43 86.67 96.56 86.34 96.52 78.47 97.84 89.38 97.34 85.22

+Dbest + w2
wei 98.33 86.21 96.79 88.34 96.6 79.26 97.96 90.33 97.42 86.04

+Dbest + w4
wei 98.43 87.17 96.74 87.48 96.59 79.26 97.95 89.93 97.43 85.96

Table 5: Ablation studies combining self distillation and four weight modules. Complete results can be found in
the Appendix Tables 10 and 11.

Sampling Rates
1% 5% 10% 20% 50% 80% 100% AVG

F ROOV F ROOV F ROOV F ROOV F ROOV F ROOV F ROOV F ROOV

BERT(base) 93.92 83.38 94.37 77.65 94.72 76.74 95.83 83.46 96.15 85.13 96.33 84.18 96.5 85.6 95.4 82.31
+Dbest 93.7 82.95 95 82.33 95.79 86.56 95.98 85.63 96.34 85.6 96.36 84.91 96.59 87.04 95.68 85.0

+Dbest + w2
wei 93.29 83.3 95.37 87.86 95.69 87.36 95.82 86.39 96.35 87.96 96.56 87.73 96.53 88.03 95.66 86.95

Table 6: Scores on PKU test set in low-resource settings.

experimental conditions (listed in table 4), w4
wei

has the best overall performance on all data sets,
while w3

wei has the worst performance.
Last, RoBERTa outperforms BERT when we

deal with the CWS task. If CRF is used as the
decoder, the CWS model seems to be more prone to
overfitting, resulting in worse word segmentation.

5.2 Low-Resource Settings

In real life, the training corpus is usually insuffi-
cient, and it is valuable to measure the performance
of CWS models in some low-resource settings. The
partition criterion of our training sets follows Ke et
al. (2021), whose sampling rates are 0.01, 0.05, 0.1,
0.2, 0.5, 0.8, and 1.0. For easy operation, we will
obtain the above training datasets after randomiz-
ing the original training dataset but finally test on
the same original testing dataset.

We decided to perform the above experiment on
PKU without changing any parameters in Table 4.
We first took BERT as the base model and gradu-
ally added Dbest and w2

wei. Related results of the
experiment are shown in Table 6.

We notice that the performance of all models
is greatly affected by sampling rates, especially at
a low ratio such as 1% and 5%. In addition, self
distillation can significantly improve the effect of
CWS, and weight mechanisms can further increase
the ROOV scores.

Specifically, when the sampling rate drops from
100% to 5%, "BERT +Dbest" and "BERT +Dbest +

w2
wei" have better F1 scores than "BERT ". For

ROOV scores, "BERT " decreases by 7.95% while
that of "BERT + Dbest" only decreases by 4.71%.
Surprisingly, "BERT +Dbest +w2

wei" almost always
maintains high ROOV scores, fluctuating between
87% and 88%. We do not pay too much attention
to 1%, because the sample size may be too small
to reflect the real performance of the model.

Generally speaking, the above results confirm
that WeiDC has strong robustness when manual
annotation resources are insufficient.

5.3 OOV Words

From the above experiments, WeiDC worked well
in ROOV . To verify the performance of each model
on OOV words, we operated the PKU training cor-
pus to train all models but took other testing data
sets to evaluate these models.

We first digitized the discrepancy between the
training set of PKU and the test sets of MSR, AS
and CITYU. For visual comparison, we also listed
the distribution of OOV words in the PKU test
set. See Table 7 for more details. It should not be
ignored that both AS and CITYU are traditional
Chinese datasets, where words may be slightly dif-
ferent, such as "铁公路" ("iron road") on CITYU
while "铁路" ("railway") on PKU.

As shown in Table 8, WeiDC almost performs
better than the base model on all three testing tasks,
especially in ROOV . According to table 7 and Table
8, the effect of WeiDC on the test set with a higher
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OOVword
PKU MSR AS CITYU

Type Freq Type Freq Type Freq Type Freq

NotInPKU_Train 2863 6006 4100 8110 8386 18006 3099 6726
All Test Word 13148 104372 12923 106873 18759 122610 8993 40936

OOV Rate 21.78 5.75 31.73 7.60 44.70 14.69 34.46 16.43

Table 7: OOV words for the four CWS test sets. "NotInPKU_Train" represents words that appear in the test
set while not in the PKU training set. Column "Type" only includes the type of OOV word, but column "Freq"
considers the frequency.

Model MSR AS CITYU
F ROOV F ROOV F ROOV

BERT(base) 86.95 20.51 90.05 71.82 90.77 73.51
+Dbest +0.0 +0.88 +0.45 +2.38 +0.52 +2.2

+Dbest + w2
wei -0.08 +0.81 +0.47 +2.41 +0.51 +3.06

Table 8: Train on PKU, but test on other three datasets.

frequency of OOV words is more distinct. How-
ever, the number of types of OOV words seems to
be less beneficial.

We finally checked the PKU and MSR datasets
to find out why all models performed poorly on
MSR. The word segmentation standards of the
above two corpora are very different, such as "最
大" ("biggest") on MSR while "最 大" ("most" and
"big") on PKU, which directly causes all models to
perform better on AS and CITYU, but poorly on
MSR.

5.4 NER Tasks

Similar to CWS tasks, Named Entity Recognition
(NER) tasks can also be performed in the form of
sequence annotations. To further explore the ef-
fectiveness of the weight mechanism and compare
which weight mechanism performs better, we con-
duct some NER experiments. All hyperparameters
are the same as the CWS task. The relevant results
are shown in Appendix Table 13.

We can get the following suggestions. First,
the hand-crafted weight module can improve se-
quence labeling tasks, whether CWS or NER. Sec-
ond, w4

wei has the best overall performance among
all weight mechanisms and is also a good choice
when the features of the training dataset are unclear.

Moreover, the labeling rules of various datasets
vary widely, so it is almost impossible to design
a general weight mechanism. This also explains
that our chosen parameters do not always yield the
best results. To focus our attention on experimen-
tal exploration, we did not spend much time on
parameter tuning.

6 Case Study

For CWS tasks, it is very hard to get the right seg-
mentations if two adjacent words, such as "天外"
("outside the sky") and "客" ("guest"), both appear
for the first time, as shown in Table 9. Unfortu-
nately, WeiDC can’t handle this problem properly
either. However, we find that if we add some valu-
able context, our model can still get rational results.

Gold 千载难逢 天外 客

Original
text: 千载难逢天外客
BERT : 千载难逢天外客
+Dbest + w2

wei: 千载难逢天外客

Replace 1
天外的人，千载难逢天外客

天外的人，千载难逢天外客
天外的人 ,千载难逢天外客

Replace 2
天外的客，千载难逢天外客

天外的客，千载难逢天外客
天外的客，千载难逢天外客

Replace 3
天外的流星，来做客，千载难逢天外客

天外的流星，来做客，千载难逢天外客
天外的流星，来做客，千载难逢天外客

Replace 4
客人说，见到了天外来的流星，千载难逢天外客

客人说，见到了天外来的流星，千载难逢天外客
客人说，见到了天外来的流星，千载难逢天外客

Table 9: "千载难逢天外客" ("A once-in-a-lifetime
visitor from outside the sky"). In each block, the first
line is a raw text, and the last two lines are segmentation
results of BERT and WeiDC, respectively. Both models
are trained on PKU.

Although in some cases both "天外客" ("A visi-
tor from outside the sky") and "天外 客" ("outside
the sky" and "guest") are rational representations,
here we assume that "天外 客" ("outside the sky"
and "guest") is correct one and let these models
learn it by enhancing the semantic environment.

First, according to "Replace 1" and "Replace 4",
if only "天外" ("outside the sky") appears in the
previous text, BERT obtains "天外 客" ("outside
the sky" and "guest") at the cost of inconsistent
segmentation criteria in "天外" ("outside the sky").
For WeiDC, "天外客" ("A visitor from outside the
sky") is regarded as a derivative of "天外" ("outside
the sky"), as shown in "Replace 1". After semantic
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information gets enriched, the possibility of "天外"
("outside the sky") becoming an independent word
increases, so the correct result is obtained. We
also notice that when text content is rich, WeiDC
will get desired results even if there is interference
information such as "外来" ("outside") in the added
semantic knowledge.

Second, from "Replace 2", when "的" ("of") lo-
cates between "天外" ("outside the sky") and "客"
("guest"), both BERT and WeiDC learn the right
segmentation position by treating "的" ("of") as a
single word. We analyzed the PKU training set for
further exploration and found that "的" ("of") is a
high-frequency single-character word. When we
blur the semantic information, as shown in "Re-
place 3", WeiDC treats "天外客" ("A visitor from
outside the sky") as a word, while BERT can still
obtain the correct segmentation. We speculate that
the added interference information hurts the small
text content. From another perspective, WeiDC has
a strong ability to learn contextual knowledge from
different semantic environments to assist CWS
tasks.

Last but not least, we make heatmaps to visualize
the word segmentation process in Figure 3.
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(a)"A once-in-a-lifetime visitor from outside the sky"

(b) "A visitor from outside the sky, a once-in-a-lifetime visitor from outside the sky"

Figure 3: Heatmaps of the label probability.

7 Conclusion

In this paper, we proposed a novel framework
named WeiDC, which could make good use of
the knowledge in teacher models through self-
distillation. The framework also follows the se-
quence labeling paradigm but first applies self dis-
tillation and weight mechanism to CWS, combin-
ing four hand-crafted weight modules and two
types of teacher models. Experimental results show
that WeiDC could achieve higher performance on
four CWS datasets, with the average F-score rank-
ing second and the average ROOV score ranking
first.

However, for non-sequential labeling problems,
such as text classification, a paragraph only corre-
sponds to one tag, so the number of labels is too
small, which may render the method in this paper
ineffective. How to solve such a dilemma deserves
more exploration. Besides, it is also promising to
consider whether more efficient weight methods
exist.
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Model MSR PKU AS CITYU AVG
F ROOV F ROOV F ROOV F ROOV F ROOV

BERT(base) 98.22 85.22 96.5 85.6 96.44 77.37 97.63 86.35 97.2 83.64

+Dbest 98.22 85.58 96.59 87.04 96.64 79.51 97.68 86.52 97.28 84.66
+Dbest + w1

wei 98.16 85.75 96.63 87.29 96.68 80.62 97.78 86.52 97.31 85.05
+Dbest + w2

wei 98.17 86.07 96.53 88.03 96.71 80.57 97.6 85.4 97.25 85.02
+Dbest + w3

wei 98.11 85.61 96.5 86.33 96.67 80.57 97.68 86.59 97.24 84.78
+Dbest + w4

wei 98.28 86.39 96.59 87.21 96.76 80.23 97.79 87.58 97.36 85.35

+Dlast 98.16 86.43 96.64 86.93 96.51 78.22 97.63 86.04 97.24 84.41
+Dlast + w2

wei 97.82 86.07 96.53 87.08 96.67 80.51 97.77 87.3 97.2 85.24
+Dlast + w4

wei 98.16 86.21 96.58 87.81 96.68 80.11 97.68 86.76 97.28 85.22

+Dbest + w2
wei + CRF 98.17 85.37 96.37 85.26 96.75 80.96 97.79 86.86 97.27 84.61

+Dbest + w4
wei + CRF 98.16 85.61 96.48 86.59 96.77 81.63 97.63 85.81 97.26 84.91

Table 10: Take BERT as the base model.

Model MSR PKU AS CITYU AVG
F ROOV F ROOV F ROOV F ROOV F ROOV

RoBERTa(base) 98.33 86.74 96.58 87.04 96.34 76.14 97.8 88.8 97.26 84.68

+Dbest 98.43 86.67 96.56 86.34 96.52 78.47 97.84 89.38 97.34 85.22
+Dbest + w1

wei 98.35 88.55 96.64 87.39 96.53 78.58 97.95 90.03 97.37 86.14
+Dbest + w2

wei 98.33 86.21 96.79 88.34 96.6 79.26 97.96 90.33 97.42 86.04
+Dbest + w3

wei 98.25 87.88 96.57 87.23 96.6 79.41 97.9 89.58 97.33 86.03
+Dbest + w4

wei 98.43 87.17 96.74 87.48 96.59 79.26 97.95 89.93 97.43 85.96

+Dlast 98.4 87.45 96.53 87.19 96.48 78.36 97.89 89.93 97.33 85.73
+Dlast + w2

wei 98.15 86.89 96.7 88.39 96.54 79.21 97.94 90.2 97.33 86.17
+Dlast + w4

wei 98.23 87.88 96.67 88.09 96.67 79.81 97.98 89.82 97.39 86.4

+Dbest + w2
wei + CRF 98.41 87.0 96.63 86.86 96.55 79.09 97.9 89.28 97.37 85.56

Table 11: Take RoBERTa as the base model.

A CWS Appendix

Combining two encoders and two decoders, the
final results on the four datasets are included in
Tables 10 and 11. All experiments adopted the
same hyperparameters, as shown in Table 4.

We speculate that RoBERTa benefits from longer
training time and larger batches of training data
than BERT. In addition, some training tricks used in
RoBERTa may also improve the performance of the
pre-trained model, such as removing the next sen-
tence prediction target, training longer sequences,
and dynamically changing the mask pattern to be
applied to the training data.

To our surprise, if CRF is used as the decoder,
the CWS model seems to be more prone to overfit-
ting, resulting in worse word segmentation. How-
ever, we also notice that CRF performs well on
the AS dataset when using BERT as the encoder,
suggesting that Softmax may not really outperform

CRF. We consider that the current parameters are
more suitable for Softmax. More detailed analysis
is available from Section 5.
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Dataset WEIBO RESUME MSRA
train test dev train test dev train test dev

Sentences 1.4k 0.27k 0.27k 3.8k 0.48k 0.46k 46.4k 4.4k -
Chars 73.8k 14.8k 14.5k 124.1k 15.1k 13.9k 2169.9k 172.6k -

Entities 1.89k 0.42k 0.39k 1.34k 0.15k 0.16k 74.8k 6.2k -

Table 12: Corpus details of three NER datasets

Model WEIBO RESUME MSRA AVG
P R F P R F P R F P R F

BERT(base) 68.01 66.27 67.15 94.58 95.34 94.96 95.66 94.03 94.84 86.08 85.21 85.65

+Dbest 68.83 66.03 67.4 94.34 96.07 95.2 94.84 94.87 94.86 86.0 85.66 85.82
+Dbest + w1

wei 70.12 69.62 69.87 95.21 96.32 95.76 95.09 94.27 94.68 86.81 86.74 86.77
+Dbest + w2

wei 70.1 66.75 68.38 95.52 95.46 95.49 95.39 94.74 95.06 87.0 85.65 86.31
+Dbest + w3

wei 69.93 70.1 70 95.32 96.2 95.76 95.48 94.73 95.1 86.91 87.01 86.95
+Dbest + w4

wei 71.08 70.57 70.83 94.8 95.15 94.98 95.84 94.64 95.24 87.24 86.79 87.02

Table 13: NER tasks. Take BERT as the base model.

B NER Appendix

Corpus details of MSRA (Levow, 2006), WEIBO
(Peng and Dredze, 2015), and RESUME (Zhang
and Yang, 2018) are summarized in Table 12. We
have no access to OntoNote 4, so didn’t test it. All
experiments adopted the same hyperparameters,
as shown in Table 4. We did not list the latest
performance of existing NER tasks, as we only
explored whether WeiDC works for NER tasks and
which weight mechanism is more robust.

As shown in Table 13, w4
wei performs the best on

the WEIBO and MSRA datasets, while the worst
on the RESUME dataset, indicating that it is diffi-
cult, if not impossible, to design a general weight
mechanism. The overall performance of w4

wei is
still higher than other weight mechanisms. How
to more naturally integrate weight mechanisms
and knowledge distillation into NER tasks requires
more exploration and research.

In addition to such NER tasks, non-sequence
annotation tasks, such as text classification, usually
have only one label per sentence, which may limit
the application of WeiDC.
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