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Abstract

The table-based fact verification task has re-
cently gained widespread attention and yet re-
mains to be a very challenging problem. It
inherently requires informative reasoning over
natural language together with different numer-
ical and logical reasoning on tables (e.g., count,
superlative, comparative). Considering that, we
exploit mixture-of-experts and present in this
paper a new method: Self-adaptive Mixture-
of-Experts Network (SaMoE). Specifically, we
have developed a mixture-of-experts neural net-
work to recognize and execute different types
of reasoning—the network is composed of mul-
tiple experts, each handling a specific part of
the semantics for reasoning, whereas a man-
agement module is applied to decide the con-
tribution of each expert network to the verifi-
cation result. A self-adaptive method is devel-
oped to teach the management module combin-
ing results of different experts more efficiently
without external knowledge. The experimental
results illustrate that our framework achieves
85.1% accuracy on the benchmark dataset TAB-
FACT, comparable with the previous state-of-
the-art models. We hope our framework can
serve as a new baseline for table-based ver-
ification. Our code is available at https:
//github.com/THUMLP/SaMoE.

1 Introduction

Fact Verification, aiming to determine the consis-
tency between a statement and given evidence, has
become a crucial part of various applications such
as fake news detection, rumor detection (Rashkin
et al., 2017; Thorne et al., 2018; Goodrich et al.,
2019; Vaibhav et al., 2019; Kryscinski et al., 2020).
While most existing research focuses on verifica-
tion based on unstructured text, a new trend is ex-
tending the scope to structured evidence (e.g., ta-
bles), which is informative and ubiquitous in our
daily lives. Table-based verification faces different
challenges than unstructured-text-based due to the

complexity of the requirements, including sophis-
ticated textual, numerical, and logical reasoning
across evidence tables; even for some statements,
multiple types of reasoning are indispensable to
complete the verification. An example is presented
in Figure 1.

Figure 1: An Example of table-based fact verification.

To tackle the challenges above, previous work
established two kinds of methods: (1) program-
enhanced methods (Chen et al., 2020; Zhong et al.,
2020; Shi et al., 2020; Yang et al., 2020) and (2)
table-based pre-trained models (Eisenschlos et al.,
2020; Liu et al., 2021). The program-enhanced
methods mainly leverage programs generated by
the semantic parser. Specifically, statements are
parsed into executable programs to extract the logi-
cal/numerical semantics, which is further be lever-
aged together with contextual semantics learned by
a language model (e.g., BERT) in inference. How-
ever, the semantic parsers that generate semantic-
consistent programs must be trained in a weak su-
pervision setting, which brings difficulties in train-
ing. Furthermore, generalizing this method to other
datasets is almost impossible without the API set
modification according to the reasoning require-
ments on the new datasets.

The table-based pre-trained models leverage
elaborate model structure (Herzig et al., 2020) and
pre-training tasks (Eisenschlos et al., 2020; Liu
et al., 2021) to enhance the reasoning skills on struc-
tured data. Nevertheless, two significant shortcom-
ings remain. Firstly, the process is demanding due
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Figure 2: An overview of Self-adaptive Mixture-of-Experts Network (SaMoE) for table-based fact verification.

to the tremendous computing resources required
by pre-training. Moreover, the effectiveness of pre-
training to its downstream tasks mainly depends on
the adaptability between these two tasks. Therefore,
implementing pre-training tasks may fail to meet
the requirements when facing the unseen reasoning
types demanded by new datasets.

In this paper, we introduce an innovative frame-
work, Self-adaptive Mixture of Experts (SaMoE),
to address the previously mentioned problems. The
entire framework is illustrated in Figure 2. SaMoE
consists of 3 components: feature extractor, ex-
perts, and management module, which is the
combination of manager and supervisor networks.
Each expert initially takes the same feature as input
and then learns to deal with different parts of the
reasoning types (e.g., contextual/logical/numerical)
required by table-based verification. A manage-
ment module is designed to guide the training of
experts and combine experts’ verification results
effectively. The manager network in this module
assigns each expert a unique attention score, al-
lowing each individual to focus on different kinds
of reasoning types and summarizes experts’ en-
tire outputs as the final verification result. How-
ever, managers failed to allocate the highest atten-
tion score to the expert who performs best on the
current reasoning type in most circumstances. To
alleviate this problem, we introduce a supervisor
network to adjust the attention score given by the
manager. The supervisor network is trained self-
adaptively (i.e., it learns directly from experts’ per-
formance on the train set) without prior knowledge
of the task or dataset. Extensive experiments are

conducted to show that our proposed framework,
implemented with a general pre-trained language
model RoBERTa (Liu et al., 2019), outperforms
previous state-of-the-art methods, including table-
based pre-trained models. The main contributions
of this work are as follows:

• We innovatively implement mixture-of-
experts for table-based verification, aiming
to arrange each expert to different types of
reasoning. This method can also be easily
generalized to other datasets.

• We investigate a self-adaptive method to ad-
just suitable attention score to each expert ac-
cording to its performance on different reason-
ing types, achieving more efficient coopera-
tion across experts.

• Our framework achieves better performance
on the TABFACT dataset without the assis-
tance of table-based pre-trained models.

2 Research Question

The table-based verification task expects one to de-
termine whether a statement S is entailed or refuted
by an evidence table T . The process above can be
regarded as a binary classification task and thus de-
noted as f(S, T ) = ŷ, where f is the verification
model and ŷ ∈ {0, 1} its prediction.

3 Methods

We present the proposed framework (SaMoE),
which leverages a set of experts to deal with differ-
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ent parts of the reasoning types involved in table-
based verification. This section is organized as fol-
lows. Sec.3.1 introduces the feature extractor that
extracts the joint semantics of the table-statement
pair. Sec.3.2 describes experts that verify the state-
ments separately based on the same extracted se-
mantics. Sec.3.3 describes the management mod-
ule that guides the experts’ training and combines
their verification results effectively; two compo-
nents of this module, the manager and the supervi-
sor, are introduced in this section individually.

3.1 Feature Extractor
Feature extractor parses the statement-table pair
and learns the joint table-statement semantics. Ta-
bles are initially pruned and serialized into a se-
quence. Subsequently, the serialized tables are
transmitted into the language model together with
the statements for joint representation learning.
These two processes will be further interpreted in
the following subsections.

3.1.1 Table Pre-processing
As for Tables, the pre-processing (pruning and se-
rializing) before the joint representation learning
provides convenience for subsequent processing of
the existing language model.

Table Pruning Table pruning discards some
parts of the table that do not participate in the ver-
ification, according to the input size limit of the
language model. We take advantage of the table-
pruning algorithm proposed in Chen et al. (2020)
and further enhance its performance. The origi-
nal algorithm matches the entities in statements
with cells in tables by a heuristic method and se-
lects the columns that include matched cells to
form the pruned table. Noticed that the algorithm
always fails to select the critical columns of veri-
fication while there is still room left for the input
sequence of the language model, we further add a
greedy strategy on the algorithm that keeps adding
columns that are not selected to the pruned table
until reaching the maximum input size of the down-
stream model to make the best use of its capacity.

Table Serializing Tables are further serialized to
a 1-D sequence after pruning to be compatible with
the input format of the language model. We fol-
low the serializing method used in TABLE-BERT
(Chen et al., 2020) that paraphrases tables with
a natural language template. Specifically, a table
with m rows and n columns is paraphrased as “row

1 is: h1 is T11; ... ; hn is T1n. row 2 is: ... row m is:
h1 is Tm1; ... ; hn is Tmn.", where hi refers the ith

header and Tij the value in the (i, j)− th cell of ta-
ble T . We find that such template-serialized tables
are more suitable for language models pre-trained
on unstructured text to process.

3.1.2 Joint Representation Learning
After the table pre-processing, the serialized table
and the statement are further passed to a language
model to learn the joint contextual representation
of each token. The learned representation vectors
are then transmitted to the experts and the man-
agement module for inference and management.
Specifically, the serialized table and the statement
are initially tokenized into two token sequences T̃
and S. Then the joint token sequence X is formed
as X = [⟨s⟩, S, ⟨/s⟩, T̃, ⟨/s⟩], where ⟨s⟩ and ⟨/s⟩
are the separators that identify the beginning and
the end of each token sequence. The token se-
quence X will be padded or truncated to fit the
maximum input length of the language model. Fi-
nally, a transformer model is applied to learn the
contextual representation of X :

H = fLM (X) (1)

where H ∈ Rn×d refers to the learned joint repre-
sentation, n is the maximum input length and d the
dimension of the representation vector. fLM de-
notes the contextual representation learning process
of the language model. In this paper, we implement
it with transformer (Vaswani et al., 2017), the most
popular contextual representation model in recent
years.

3.2 Experts

A group of experts is applied to verify the state-
ments separately based on the same statement-table
joint semantics extracted by the feature extractor
module. Experts share the same model structure,
while the parameter learning strategy of SaMoE
gives expert differentiation. Specifically, each ex-
pert is implemented with a stack of transformer
encoding layers. An MLP classifier that calculates
the probability of the statement is entailed by the
evidence table based on the encoded semantics. We
implement experts with the same general structure
rather than different structures specially designed
for certain reasoning types since we anticipate that
the proposed framework can be smoothly general-
ized to other datasets. The process above can be
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formulated as follows:

hi = fEnci(H) (2)

pi = softmax(tanh(hiWi
1)W

i
2) (3)

where hi ∈ Rd is the token ⟨s⟩’s final represen-
tation vector encoded by the ith expert’s encoder
Enci. It implies the ith expert’s whole understand-
ing to the statement-table pair. Wi

1 ∈ Rd×d and
Wi

2 ∈ Rd×2 are the trainable parameters of ith ex-
pert’s classifier, which projects hi to the probabili-
ties pi ∈ R2 that the statement is entailed/refuted
by the table. tanh and softmax are activation
functions. ne refers to the number of experts.

3.3 Management Module
Learning the joint semantics parsed in Sec.3.1, the
management module intends to generate attention
scores to bias experts’ training and combine ex-
perts’ results efficiently. The module consists of
two components: manager and supervisor, both of
them are implemented based on transformer model.
The manager is mainly designed to guide experts’
training, while the supervisor is applied to combine
experts’ results efficiently.

Manager The manager guides the training of ex-
perts and forms a preliminary assumption to the
expert combination. It encodes the joint represen-
tation matrix and generates attention scores aM to
guide the experts’ training process:

hM = fEncM (H) (4)

eM = tanh(hMWM
1 )WM

2 (5)

aM = softmax(eM ) (6)

where EncM denotes the manager’s encoder,
WM

1 ∈ Rd×d and WM
2 ∈ Rd×ne are trainable pa-

rameters. The network structures of the manager
and experts are basically the same, only different in
the layers of the encoder and the output dimension.

After preceding calculation, the normalized at-
tention scores aM are used to guide the training
of experts by a specially designed verification loss,
which will be introduced in Sec.4.1.1.

Supervisor The supervisor adjusts the attention
scores submitted by the manager to improve the co-
operative efficiency among experts (i.e. assigning
higher weights to experts who perform better on
the current input pair). The network predicts the
deviation between the preliminary assumption (i.e.,

the attention) and the ideal combination weights
based on the knowledge encoded in the joint repre-
sentation matrix H:

hS = fEncS (H) (7)

eS = tanh(hSWS
1 )W

S
2 (8)

aS = softmax(eM + eS) (9)

where WS
1 ∈ Rd×d, WS

2 ∈ Rd×ne are trainable
parameters and EncS refers to the encoder of the
supervisor. Parameters of the supervisor are op-
timized self-adaptively based on experts’ perfor-
mance on the train set. More details of this learning
strategy will be presented in Sec.4.2.

4 Parameter Learning

Parameters in SaMoE are learned in two consec-
utive stages: 1) Multi-expert training: parameters
in the feature extractor, experts and the manager
are end-to-end optimized under the supervision of
labels; 2) Self-adaptive learning: parameters in the
supervisor are self-optimized by observing experts’
performance on the train set (other parameters are
fixed simultaneously). A weighted sum of two
losses is minimized in the first stage to achieve
diverse and balanced training of experts. For the
second stage, we minimize a self-adaptive loss cal-
culated based on the experts’ classification loss.
Subsequent sections introduce these two learning
stages in detail.

4.1 Multi-expert Training
Multi-expert training guides each expert on dealing
with different reasoning types while maintaining
balanced training across experts. To achieve the
goals above, we develop two loss functions: 1) ver-
ification loss LV that measures the weighted sum
of each expert’s classification loss, differentiating
experts’ learning with different attention scores as-
signed by the manager; 2) manager assumption
loss LM that is applied to prevent the occurrence
of imbalanced training across experts. The overall
loss of this state is calculated by a weighted sum
of these two terms: L1 = LV + λLM , where λ
is a hyperparameter that controls the ratio of LM .
Subsequent sections provide detailed introduction
to these two terms.

4.1.1 Verification Loss
The verification loss LV is designed based on the
loss function proposed in Jacobs et al. (1991). It
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is calculated by the weighted sum of each expert’s
cross-entropy:

LV =

ne∑
i=1

(aM )i · CE(pi, l) (10)

where (aM )i is the ith element of the attention
scores aM , l ∈ {0, 1} is the label of the statement-
table pair and CE(·, ·) the cross-entropy function.
Note that it is necessary to calculate each expert’s
cross-entropy independently. We want each expert
to behave like an independent expert (i.e., complete
the verification without the help of other experts).
The attention vector aM acts as a "training sched-
uler" in this loss function: experts that are assigned
with larger attention scores receive a larger gradient
than other experts on the current input, resulting in
diverse experts’ performance.

4.1.2 Manager Assumption Loss
We have trained the MoE with only the verification
loss LV and observe a severe "imbalanced experts"
phenomenon that only one expert is well-trained
(i.e., the expert performance is improved by train-
ing) and the manager keeps assigning a close-to-1
attention score to this expert, which is also reported
in previous research (Eigen et al., 2013; Shazeer
et al., 2017). To avoid this problem, we develop
another loss function that forces the manager to
assign reasonable attention scores to experts:

LM = D(aP ||aM ) (11)

where D(·||·) denotes the Kullback–Leibler diver-
gence and aP a prior assumption that is generated
with a simple heuristic algorithm (to be introduced
in the next paragraph) which requires limited prior
knowledge of the reasoning types. By minimizing
LM , the manager learns to assign each expert with
a reasonable attention score, resulting in a balanced
training across experts.

Prior Assumption Generation The prior as-
sumption aP is generated to represent the probabil-
ities that the statement involves different reasoning
types that we are interested in. Specifically, we
develop a trigger-word-based heuristic algorithm
to form the prior assumption for each statement
automatically:

1. Initialize the prior assumption with e0 ∈ Rne ,
which is empirically set as (0.1, 0.1, ..., 0.6)T .
The (e0)ne represents the probability that the

statement does not involve any predefined rea-
soning types and thus is set higher than other
values in advance.

2. Traverse the trigger-word set1 of each reason-
ing type (ne − 1 types in total). If a trigger
word/pattern w that belongs to ith reasoning
type is detected in the statement, the trigger’s
weight sw (set empirically) is accumulated
to the ith dimension of a zero-initialized bias
vector δ ∈ Rne : δi ← δi + sw.

3. Add the bias vector δ to the prior assumption
e0 and normalize to get the prior assumption:
aP = softmax(e0 + δ).

Figure 3 presents an example of this process. Learn-
ing to imitate the prior assumption, the manager
guides each expert to focus on different reason-
ing types and thus achieves diverse experts. We
implement a relatively small trigger-word pool in
experiments and find the method works effectively,
indicating that the method can be smoothly gen-
eralized to other datasets with little modification
to the predefined reasoning types and trigger-word
pool.

Figure 3: An example of prior assumption generation
with ne = 5 and 4 predefined reasoning types.

4.2 Self-adaptive Learning
Self-adaptive learning aims to enhance further the
expert combining efficiency with only the knowl-
edge of the expert’s performance on the train set.
Specifically, an “expert ability" vector aE ∈ Rne

is calculated based on the “expert loss" vector
m ∈ Rne , where mi = CE(pi, l) is the cross-
entropy loss of the ith expert. Note that the cross-
entropy of the expert is negatively correlated with
its performance. Then the expert ability vector aE
is calculated as follows:

aE = softmax(−α ·m) (12)
1a set of words that suggest a specific reasoning type, see

Appendix C for more information.
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where α =
√
β/V ar(m) is a variance-

normalizing coefficient and β is a hyperparameter
that decides the variance of the expert ability vector
before the activation (i.e., V ar(−α·m) = β). Such
normalization is designed based on the observation
that m tends to have a extreme small variance and
softmax(−m) often generates a close-to-uniform
distribution. Note that the generated aE is pos-
itively correlated with the experts’ performance
(e.g., if the ith expert outperforms the jth expert on
the input pair then we have (aE)i > (aE)j).

Based on aE , we develop the loss function that
has the same form with LM in Sec 4.1.2:

LS = D(aE ||aS) (13)

By minimizing the loss above, the higher atten-
tion scores are assigned to the best-performed ex-
perts after the supervisor’s adjustment, resulting in
more efficient cooperation across experts.

5 Experiment Setup

5.1 Data and Metric

We conduct the experiments on TABFACT, a large
scale benchmark dataset of the table-based fact ver-
ification task2. TABFACT contains a total of 117k
statements and 16k Wikipedia tables. The test set
is further divided into a simple and complex sub-
set based on verification difficulty, for verifying
some statements on TABFACT requires more logi-
cal/numerical reasoning skills. We choose accuracy
as the evaluation metric following the existing work
to make our experiment results comparable. More
details of TABFACT are presented in Appendix A.

5.2 Implementation Details

Training Details We set ne = 5 expert networks
in our implementation of SaMoE. The transformer
layers are 12 for encoders in the feature extractor
and experts and 2 for encoders in the manager and
supervisor. The hidden states’ dimension d, the
maximum input length n, the λ in Sec.4.1, and the
β in Sec.4.2 are set to 1024, 512, 0.1 and 0.1 re-
spectively. We applied RoBERTa-Large (Liu et al.,
2019) to initialize the feature extractor and experts
in our framework. The details of parameter initial-
ization can be found in Appendix B.

2We did not conduct experiments on other datasets such as
SEM-TAB-FACTS (Wang et al., 2021) and InfoTabs (Gupta
et al., 2020), since there is little work and comparisons have
been made on these datasets.

We apply Adam optimizer (Kingma and Ba,
2015) in training with learning rate 2e-5, dropout
rate 0.1, warmup step 17,304, and batch size 32.
SaMoE is first trained in the Multi-expert training
stage for 57,680 steps (20 epochs). Then the super-
visor is trained in the self-adaptive learning stage
for another 5,000 steps, while the best parameters
of other parts in the framework are loaded and fixed.
The model is evaluated every 1000 steps, and the
model that achieves the highest performance on the
development set is saved. All the codes are imple-
mented with Pytorch (Paszke et al., 2019) and the
transformers package (Wolf et al., 2020). We train
all our models on a single GeForce RTX 3090.

Settings of Prior Assumption We choose the
top 4 types of reasoning types that appear most
frequently in TABFACT3 (count, comparative, su-
perlative, negation). We apply a small trigger-word
pool containing only 26 trigger words, injecting
limited prior knowledge of the dataset. More de-
tails of this part are presented in Appendix C.

5.3 Baselines

We compared our proposed framework with differ-
ent kinds of baselines on TABFACT: (1) Program-
enhanced methods: LPA (Chen et al., 2020), Log-
icalFactChecker (Zhong et al., 2020), HeterTFV
(Shi et al., 2020), ProgVGAT (Yang et al., 2020)
and Decomp (Yang and Zhu, 2021); (2) Table-
based pre-trained models: TAPAS (Eisenschlos
et al., 2020) and TAPEX (Liu et al., 2021); (3)
Other methods: Table-BERT (Chen et al., 2020)
and SAT (Zhang et al., 2020).

6 Results

6.1 Overall Performance

We compare the proposed SaMoE with different
kinds of baselines, and the results are listed in
Table 1. Baselines are presented with the best
performance reported in the corresponding papers.
SaMoE obtains an accuracy of 85.1% on the test
set, achieving a new state-of-the-art on the dataset.
Results show that our method consistently out-
performs all the program-enhanced methods with
a significant 2.4% improvement compared with
the Decomp method (the best performed program-
enhanced method). Note that SaMoE performs
similar with Decomp-LARGE on the simple subset

3We follow the statistics in Chen et al. (2020) for the
frequency of different reasoning types.
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Model Val Test Testsimple Testcomplex Small Test
TABLE-BERT 66.1 65.1 79.1 58.2 68.1
LPA 65.1 65.3 78.7 58.5 68.9
LogicalFactChecker 71.8 71.7 85.4 65.1 74.3
HeterTFV 72.5 72.3 85.9 65.7 74.2
SAT 73.3 73.2 85.5 67.2 -
ProgVGAT 74.9 74.4 88.3 67.6 76.2
Decomp-LARGE 82.7 82.7 93.6 77.4 84.7
TAPAS-LARGE 81.5 81.2 93.0 75.5 84.1
TAPEX 84.6 84.2 93.9 79.6 85.9
SaMoE 84.2 85.1 93.6 80.9 86.7
Human Performance - - - - 92.1

Table 1: Comparative performance (accuracy) on TABFACT.

of the test set (93.6% vs. 93.6%) while outper-
forms Decomp-LARGE with a remarkable 3.5%
on the complex subset (80.9% vs. 77.4%). Such
analysis indicates that the performance improve-
ment is mainly derived from successfully verifying
complex statements, which required more sophisti-
cated reasoning than statements in the simple set.
SaMoE even shows comparable performance with
the previous SOTA TAPEX that is pre-trained to
execute SQL queries on tables. Our method out-
performs TAPEX with a 0.9% improvement on the
test set and a further 1.3% improvement on the
complex subset, indicating that SaMoE, based on a
text-based pre-trained model, performs even better
than table-based pre-trained models on a variety
of complex reasoning types demanded by the table-
based verification.

Model Val Test
SaMoE 84.2 85.1
SaMoE w/o Sa 84.0 84.7
SaMoE w/o Sa (ne = 1) 83.6 84.0

Table 2: Ablation results that shows the effectiveness
of the proposed MoE and self-adaptive learning meth-
ods. SaMoE w/o Sa denotes that the framework without
self-adaptive learning, and ne = 1 denotes that the
framework involves only one expert, where the manage-
ment module does not work in this situation.

6.2 Ablation Study
We further investigate the effectiveness of the MoE
structure and self-adaptive learning with an abla-
tion study. We conduct two experiments: one re-
duces the number of experts to 1 to disable the con-
tribution from the MoE structure (SaMoE w/o Sa
(ne = 1)); the other trains the proposed framework

with only the Multi-expert training stage (SaMoE
w/o Sa). Results are presented in Table 2. The MoE
structure achieves a 0.7% improvement on the test
set (84.7% vs. 84.0%), and self-adaptive learning
further improves the performance slightly (85.1%
vs. 84.7%). Note that the slight improvement of
self-adaptive learning is expected since the experts
and the feature extractor are fixed in this stage. The
results demonstrate the effectiveness of both the
MoE structure and the self-adaptive learning.

6.3 Effectiveness Analysis

We show in this section that the effectiveness of the
proposed framework is derived from two aspects:
the differentiation of experts (each expert outper-
forms others on a specific part of reasoning types)
and the effective attention assignment by the man-
agement module (the best-performed experts are
assigned with higher attention scores).

(a) Trained with LV (b) Trained with LV + LM

Figure 4: Comparison of models trained with/without
the manager assumption loss LM .

6.3.1 Expert Differentiation

We first investigate the proposed manager assump-
tion loss LM and find that it achieves balanced
training across experts, which is the premise of
expert differentiation. Figure 4 compares the two
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models trained with and without LM , with the per-
formance curves of different experts on the devel-
opment set presented in each sub-figure. Once LM
is applied, four experts that fail to be trained (the
performance stays around 50% as training steps
increase) achieve comparable performance with
the rest expert (expert 5 in sub-figure (a)). The re-
sult indicates that the proposed LM leads balanced
training across experts.

Figure 5: The proportion of statements in the test set
that at least k experts verify them correctly (k ∈ [1, 5]).

We further show that the proposed framework
achieves differentiation across experts. Figure 5
presents the proportion of statements in the test set
that are verified correctly by at least k experts (k
varies from 1 to 5). Note that the proportion in-
creases rapidly as k decreases (76.2% to 90.7% for
k from 5 to 1), which illustrates that experts behave
differently on a large proportion of statements. The
results indicate that SaMoE successfully achieves
expert differentiation, which expands the original
performance upper bound considerably (90.7%).

Model
Accuracy

Top 1 Top 2 Top 3
SaMoE 32.0 59.0 76.0
SaMoE w/o Sa 25.4 44.8 67.6

Table 3: The top-k accuracy of the management module
that predicts the best-performed experts on the test set.

6.3.2 Effective Attention Assignment
We conduct a detailed analysis to investigate
whether the management module assigns higher at-
tention scores to experts with the best performance
after self-adaptive learning. To achieve this goal,
we regard the management module as a ne-class
classifier and calculate the top-k accuracy of pre-
dicting the best-performed expert (the one with the

smallest cross-entropy) on the test set where k is
chosen in [1, 2, 3]. The results of the analysis
are presented in Table 3. The top-k accuracy is
improved significantly after self-adaptive learning
(+6.6%, +14.2%, +8.4% respectively), indicating
that the management module successfully assigns
higher attention scores to the best-performed ex-
perts by self-adaptive learning.

Based on the significant performance upper
bound expanded by the expert differentiation, the
effective attention assignment achieves more effi-
cient cooperation across these diverse experts, thus
improving the verification performance.

7 Related Works

Table-Based Fact Verification Most of the cur-
rent models utilize programs to improve the
model’s ability to handle various types of numeri-
cal and logical reasoning (Chen et al., 2020; Zhong
et al., 2020; Shi et al., 2020; Yang et al., 2020; Yang
and Zhu, 2021), while Eisenschlos et al. (2020);
Liu et al. (2021) leverage table-based pre-trained
models to parse the structural and numerical seman-
tics of tables better. Unlike previous works, we use
a novel mixture-of-experts framework to handle
different logical and numerical semantics without
semantic parsing and table-based pre-training.

Mixture of Experts Mixture of experts is a spe-
cial model combining method. Jacobs et al. (1991)
first introduces this method and proposes a loss
that encourages competitive learning across expert
models. Afterwards, it is applied in various fields,
including dialog system (Le et al., 2016), content
recommendation(Ma et al., 2018; Zhu et al., 2020),
image classification(Wang et al., 2020; Riquelme
et al., 2021), etc. In this paper, we develop a
self-adapted mixture-of-experts framework that
achieves a more effective combination of experts
by learning from the experts’ performance on the
train set.

8 Conclusion

This paper proposes a new method that exploits the
mixture of experts to recognize and execute differ-
ent types of reasoning required for table-based fact
verification. We propose an MoE model guided
with limited prior knowledge to handle different
parts of the reasoning types required by table-based
verification with diverse experts. Moreover, we de-
sign a supervisor network to adjust the imprecise
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attention score and achieve a more efficient com-
bination across experts. A self-adaptive learning
strategy is further applied to train the proposed su-
pervisor network without prior knowledge of the
task or dataset. The experiments show that the
proposed model achieves a new state-of-the-art per-
formance of 85.1% accuracy on the benchmark
dataset TABFACT. The ablation studies and analy-
sis further indicate the effectiveness of the proposed
MoE structure and self-adaptive learning strategy.
We hope our work is helpful for those who aim to
further exploit the power of mixture-of-experts on
table-based reasoning in the future.
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A Statistics of TABFACT

Table 4 shows the basic statistics of TABFACT. As
the table shows, the whole dataset is randomly di-
vided into three subsets with the ratio be 8:1:1. The
average numbers of rows and columns in tables
keep approximately the same across three subsets,
which reflects the consistency of data distribution.

Split #Sentence #Table Avg.row Avg.col
Train 92,283 13,182 14.1 5.5
Dev 12,792 1,696 14.0 5.4
Test 12,779 1,695 14.2 5.4

Table 4: Statistics of TABFACT, including the number
of statements, tables, and the average number of rows
and columns in tables.

B Parameter Initialization

For parameter initialization, We leverage
RoBERTa-Large, a pre-trained language model
that has 24 transformer encoding layers. We
initial parameters of the feature extractor with
the embedding layer and the bottom 12 encoding
layers of RoBERTa-Large and each expert with
the upper 12 encoding layers of RoBERTa-Large,
respectively. We use PyTorch to initialize other
parameters randomly.

C Specific Setting of Prior Assumption
Generation

We choose four reasoning types that appear most
frequently in TABFACT: count, comparative, su-
perlative, and negation. The detailed definitions of
four reasoning types chosen in our implementation
are listed below:

1. Count: counting the number of specific rows
in the table, such as “xxx be listed a total of 3
times", “xxx win only 1 time in ...", etc.

2. Comparative: comparing two values in the
statement or cells, such as “xxx play in more
than 1 game during ...", “xxx has a larger yyy
than zzz", etc.

3. Superlative: finding the highest/lowest value
of the specific column, such as “the longest
xxx be yyy", “the lowest score at xxx be yyy",
etc.

4. Negation: negating the original semantics of
the statement, such as “xxx has never lost a
game in ...", “xxx never score 0 points", etc.

Type Trigger Weight
Count only+[number] 1.6
Count [number]+times 2
Count [number]+of 1.6
Count there be+[number] 1.6

Negation no 1.5
Negation not 1.5
Negation never 1.5
Negation didn’t 1.5

Comparative [JJS] or [RBS] 1.5
Superlative [JJR] or [RBR] 1.5

Table 5: Some trigger words/patterns applied in the
generation of the prior assumption on TABFACT.

A small trigger-word pool that contains only 26
trigger words/patterns is applied for the prior as-
sumption generation: 11 triggers for the "count"
type, 15 for "negation"; and for the rest types (i.e.,
"comparative" and "superlative" types), the NLTK
package is employed to recognize the comparative
and superlative words automatically. Such a small
trigger-word pool injects limit prior knowledge of
the dataset, indicating that the proposed method
can be generalized to other datasets by simply mod-
ifying the pool of trigger words. Table 5 presents
some words/patterns in the trigger-word pool ap-
plied in our experiments. x+[number] denotes a
combination of a word and a number that is served
as a trigger (e.g., for the statement “xxx win 3
times in ...", we match the phrase “3 times" with
the trigger “[number]+times").
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