Logic-Driven Context Extension and Data Augmentation
for Logical Reasoning of Text

Siyuan Wang'; Wanjun Zhong?, Duyu Tang®, Zhongyu Wei'*,
Zhihao Fan', Daxin Jiang®, Ming Zhou*, Nan Duan’®
'School of Data Science, Fudan University, China
2Sun Yat-Sen University, China *Microsoft, China *Sinovation Ventures, China
SResearch Institute of Intelligent and Complex Systems, Fudan University, China
{wangsy18,zywei,fanzh18} @fudan.edu.cn; zhongwj25 @mail2.sysu.edu.cn
zhouming @chuangxin.com; {dutang,djiang,nanduan } @ microsoft.com

Abstract

Logical reasoning of text requires identifying
critical logical structures in the text and per-
forming inference over them. Existing methods
for logical reasoning mainly focus on contex-
tual semantics of text while struggling to explic-
itly model the logical inference process. In this
paper, we not only put forward a logic-driven
context extension framework but also propose a
logic-driven data augmentation algorithm. The
former follows a three-step reasoning paradigm,
and each step is respectively to extract logical
expressions as elementary reasoning units, sym-
bolically infer the implicit expressions follow-
ing equivalence laws and extend the context to
validate the options. The latter augments lit-
erally similar but logically different instances
and incorporates contrastive learning to better
capture logical information, especially logical
negative and conditional relationships. We con-
duct experiments on two benchmark datasets,
ReClor and LogiQA. The results show that our
method achieves state-of-the-art performance
on both datasets, and even surpasses human
performance on the ReClor dataset. !

1 Introduction

Recent years have witnessed a growing interest
in logical reasoning of text, which learns to un-
derstand a given text in logical level and perform
logical inference to deduce implications from as-
serted ones (McCarthy, 1989; Nilsson, 1991). As a
significant component of human reading compre-
hension, it is essential in many application scenar-
i0s, such as negotiation and debate. And several
datasets have been proposed as benchmarks for this
task (Williams et al., 2017; Habernal et al., 2017;
Yu et al., 2020; Liu et al., 2020).
An example of logical reasoning problems is
shown in Figure 1, which takes a context descrip-
*Work is done during internship at Microsoft. Zhongyu
Wei and Duyu Tang are corresponding authors.

'Codes are publicly available at https://github.
com/WangsyGit/LReasoner.

p
Context:
If you have no keyboarding skills at all, you will not be able to use a
computer. And if you are not able to use a computer, you will not be
able to write your essays using a word processing program.
Question:
If above statements are true, which one of the following must be true?
Options: w
A. Ifyou are not able to write your essays using a word processing
program, you have no keyboarding skills. m
B. If you are able to write your essays using a word processing
program, you have at least some keyboarding skills. /
C. Ifyou are not able to write your essays using a word processing
program, you are not able to use a computer. |[NESEAEEEN)
D. Ifyou have some keyboarding skills,you will be able to write
your essays using a word processing program.

Logical Symbols :
a : have keyboarding skills
P : be able to use a compute
Y : be able to write your essays using
a word processing program

Logical Expressions :
(ma->—p)

= B—->—y)

Extend the Implicit Logical Expressions by Laws:
Fa>—pf) = Boa) Contrapostion
@ p->y) = ¥->B)
(ma->B)AEB>y) = (—a—>—y) Transitive Law
Bora)Ay—>B) = ¥—ora)

Contrapostion

Transitive Law

-

Figure 1: A logical reasoning example from ReClor
dataset (Yu et al., 2020). To find the answer, it needs to
extract logical symbols, identify logical expressions and
perform logical inference to extend the implicit logical
expressions. The underlined phrases represent logical
symbols. The colored rectangles are corresponding log-
ical expressions of each option.

tion, a question and four options as the input, and
aims to identify the option that logically follows the
context. The main challenge to solve such a prob-
lem is to uncover the logical propositional structure
among the text and perform logical inference over
them, which are beyond the capability of contextual
pre-trained models (Liu et al., 2019; Yang et al.,
2019; Lan et al., 2020) without such logical anno-
tations. They usually treat logical reasoning as a
traditional reading comprehension task and match
the given context with candidate answers, without
modeling the discrete logical inference process ex-
plicitly (Yu et al., 2020). Recently, Huang et al.
(2021) utilizes discourse information to unwrap

1619

Findings of the Association for Computational Linguistics: ACL 2022, pages 1619 - 1629
May 22-27, 2022 (©)2022 Association for Computational Linguistics

https://github.com/WangsyGit/LReasoner
https://github.com/WangsyGit/LReasoner

the logical structure and propose a discourse-aware
graph network to learn discourse-based contextual
embeddings for logical reasoning. However, it is
still entangled in enhancing contextual representa-
tion while ignoring explicit logical inference.

In responding to these issues, we propose a three-
step paradigm for logical reasoning based on sym-
bolic logic information. Firstly, we identify the
elementary components for reasoning from the con-
text as the logical expressions, like (—a — =), to
uncover the logical relationships between logical
symbols. Then we perform logical inference fol-
lowing equivalence laws to extend the implicit ones
from these identified logical expressions. Thirdly,
candidate options can be validated by comparing
themselves with all obtained logical expressions.

We propose a logic-driven context extension
framework to integrate these three reasoning steps,
namely logic identification to parse the context
into logical expressions, logic extension to infer
implicit logical expressions and logic verbaliza-
tion for answer prediction. To combine the inter-
pretability of symbolic inference with anti-noise
of continuous representation, we follow a neural-
symbolic paradigm (Besold et al., 2017; Garcez
et al., 2019) which conducts logic identification
and extension in a symbolic manner and utilizes
the pre-trained model as the backbone of logic ver-
balization. In practice, we verbalize implicit logical
expressions into natural language and feed them
as an extended context into a pre-trained model to
match the answer. Moreover, to encourage the pre-
trained model to better capture logical information,
we further propose a logic-driven data augmenta-
tion algorithm. Specifically, it constructs challeng-
ing instances with literally similar but logically dif-
ferent contexts by modifying logical expressions.
Contrastive learning (Chen et al., 2020) is used
for encouraging our model to distinguish different
contexts to better capture negative and conditional
relationships in logical expressions.

The experiments are conducted on two challeng-
ing logical reasoning datasets, ReClor (Yu et al.,
2020) and LogiQA (Liu et al., 2020). Results show
that our system achieves state-of-the-art perfor-
mance on both datasets, and even surpasses human
performance on ReClor. Further results also show
the effectiveness of both logic-driven context exten-
sion framework and data augmentation algorithm,
and demonstrate the generalizability of our system.

2 Task and Background
2.1 Task Definition

We study the problem of logical reasoning of
text on a multiple-choice question answering task.
The task is described as following: given a con-
text ¢, a question ¢, and four associated options
{01, 02,03,04}, we aim to select the most appro-
priate option as the answer o,.

2.2 Base Model

In this paper, we follow the leading methods on the
leaderboards to take pre-trained models as our base
model, e.g., ROBERTa (Liu et al., 2019). It concate-
nates the context, the question and each option as
an input and encodes the sequence for calculating
its score. Given four options, four concatenated
sequences are constructed to calculate four scores,
and the one with the highest score is chosen as the
answer. Specifically, the concatenated sequence is
formulated as [CLS] ¢ [SEP] q || o [SEP], where
¢ is the context and ¢ || o is the concatenation
of the question and each option. The represen-
tations of special token [C'LS] in four sequences
are fed into a linear layer with a softmax func-
tion to get the probability distribution of options as
P({o1,02,03,04}|c,q). The cross entropy loss is
calculated as Eq. 1, where o, is the correct option.

La= —ZlogP(oa|c, q) (1)

Although promising results have been reported
(Yu et al., 2020), pre-trained models for logical rea-
soning directly encode the triplet of context, ques-
tion and options, which mainly leverage contex-
tual semantics but struggle to model the symbolic
inference process explicitly. Thus we propose a
framework on top of a pre-trained model to extract
logical expressions in the text and symbolically
perform logical inference to predict the answer.

3 Logic-Driven Context Extension

In this section, we present a logic-driven context
extension framework for logical reasoning of text,
which is illustrated in Figure 2. The framework is
divided into three steps as follows. It first identifies
the logical symbols and expressions explicitly men-
tioned in the context and options (§ 3.1). Then it
performs interpretable logical inference over them
to extend the logical expressions implicit in the
context (§ 3.2). Finally, it verbalizes the extended
logical expressions related to each option as an

1620

Logic Identification Logic Extension Logic Verbalization

Context: ‘ symbol & ‘ symbol f ‘
If you have no keyboarding skills at all, you will nm}Loglcal Expressions

Implicit Logical Expressions:
(ma—=>=p)=2(p—>a)
(=B—>=v)=(y>B)
(ma—=>=p)A(=p—>=y)=2(=a—>=y)
(B>a)a(y »B)=(y »a)

score h;

be able to use a compiter. And if you are not able to | in the context: :> Pre-trained Encoder

5 N —
use a computer, you will not be able to write your
essays using a word processiné l_grggram,

symbol y

(=a—>=p);
(=p—>=v):

[CLS] ¢ [SEPY gl o; [EXT] ¢; [SEP]

Options: m //fT
A. If you are not able to write your essays using a ~ . /|
word processing program, you have no u Extended contexts of each option: ~ // /|

keyboarding skills. A. If you do not have keyboarding ;Gk{ilfsl then

B. If you are able to write your essays using a Logical Expressions Extended Logical Expressions related you will not be able to write your/essays ...
word processing program, you have at least in each option: to each option: B. If you are able to use a computef, the you
some keyboarding skills. A (=y—>-a); A (ma—>—=y); will have keyboarding skills. lfyq‘h are ... JIf

C. If you are not able to write your essays usinga >~ g. (y »a); ::> B. (Boa)i(y—=B):(y—>a); you are able to write your essays /.. /then you
word processing program, you are not able to C. (=y—>-8); C. (=a—=y); will have keyboarding skills. [
use a computer. D. (a—>v); D. (Boa):(y—=B)i(y—>a); C. If you do not have keyboarding skills, then

D. If you have some keyboarding skills, you will you will not be able to write your esdays

be able to write your essays using a word
processing program. D)

D. If you are able to use a computer, then you
will have keyboarding skills. If you are ...

Figure 2: The overall architecture of logic-driven context extension framework. c, ¢, 0; and e; are the context,
question, i-th option and the extended context for ¢-th option, respectively. The texts in green mean that the option
B is matched against its extended context which has the highest score.

extended context and utilizes it in the pre-trained
model to match the answer (§ 3.3).

3.1 Logic Identification

In order to perform logical reasoning, we first need
to identify the elementary reasoning components
as logical expressions to uncover the logical rela-
tionships between logical symbols. We identify the
existing logical expressions for each sentence in the
context and each option. To show the format of the
logical expression, we introduce some notations:

(1) {a, B,7,...}: the logical symbols, which are
the basic constituents in the context to consti-
tute the logical expressions, such as the “have
keyboarding skills” in Figure 2.

(2) {—,—}: the logical connective set. = means
the negation operation upon a specific logical
symbol and — acts as a conditional relation-
ship between two logical symbols.

(3) {(a — B),...}: the logical expressions, which
are composed of logical symbols and connec-
tives. (a« — [3) means that « is the condition

of 5.

To ensure the generalizability of our framework
without annotated logic forms, we design a fairly
simple logical identification approach using an off-
the-shelf constituency parser (Joshi et al., 2018)
and several common keywords of logical semantics.
We first employ the constituency parser to extract
constituents including noun phrases and gerundial
phrases as basic symbols. The logical symbols in
each sentence are combined by logical connectives
to constitute logical expressions as follow-up. If
any negative word (e.g., “not”, “unable”) is in or

immediately before a logical symbol «, we add the
negation connective — before o as a new symbol
— «. Then if there is a conditional relationship
between two symbols « and 3 in a sentence, we
construct the corresponding logical expression as
(¢ —). We simply recognize the conditional
relationship between « and (3 as (aw — [3) accord-
ing to conditional indicators (e.g., “if a, then 3,
“B since «”’) and whether an active voice occurs
between « and 3. The detailed negative and condi-
tional keywords are listed in Appendix A with the
whole identification procedure summarized as an
algorithm. As shown in Figure 2, given the context
with two sentences, we can extract three logical
symbols {«, 3, v} and identify two existing logical
expressions as (—a — =) and (=5 — —).

3.2 Logic Extension

In addition to the logical expressions explicitly
mentioned in the context, there are still some other
implicit ones that we need to logically infer and ex-
tend. We combine the identified logical expressions
existing in all sentences of the context as a logi-
cal expression set S, and perform logical inference
over them to further extend the implicit expressions
according to logical equivalence laws. Here we fol-
low two most applicable logical equivalence laws
involving implication and negation in propositional
logic, including contraposition (Russel et al., 2013)
and rransitive law (Zhao et al., 1997):

Contraposition :
(a—=pB) = (= — ~a) 2

Transitive Law :
(a=B)ANB—=7) = (a=7) O

1621

Then the extended implicit logical expressions
form an extension set of the current logical expres-
sion set S as Sg. As in Figure 2, the set of existing
logical expressions is S = {(—a — =), (=5 —
—y)} and the logic extension set is Sg = {(8 —
O‘)a (7 - 6)7 (—|Oé - _‘7)7 (’7 — Oé)}

3.3 Logic Verbalization

After inferring the extended logical expression set
Sg, we verbalize them into natural language for bet-
ter utilization of the pre-trained model considering
that symbolic logic is more difficult to be encoded.
We first select the related expressions from Sg for
each option. A logical expression is regarded as re-
lated to an option if it has the same logical symbols
with the option judged by the text overlapping and
whether a negation connective exists. For example,
(- — —y) in Figure 2 is related to option C' be-
cause they both contain —y. Then we transform all
logical expressions related to the option at symbolic
space into natural language by filling them into a
template and concatenate them into a sentence. We
take such a sentence as an extended context for this
option. For simplicity, we only adopt the If-Then
statements as the verbalization template, which is
one of the most common patterns of logical rea-
soning, but we make some adjustments according
to the tense and singular/plural. Specifically, the
template is designed as shown in Table 1.

(-a =)

If do not «, then will not ~.

If you do not have keyboarding
skills, then you will not be able to
write your essays using a word pro-
cessing program.

Logic
Template
Extended
context

Table 1: An example of verbalizing a logical expression
into text.

We feed extended contexts into the pre-trained
model to match the options and predict the answer.
We take an extended context as the sentence e, and
introduce a special token [X T'] to represent con-
text extension. Then we reformulate the input se-
quence as [CLS] ¢ [SEP| q || o [EXT] e [SEP]
for encoding and feed the [C'LS] representation
into a classification layer to get each option’s score
and find the most appropriate answer.

4 Logic-Driven Data Augmentation

In order to make the pre-trained model put more fo-
cus on logical information in the context, especially

logical negative and conditional relationships, we
further introduce a logic-driven data augmenta-
tion algorithm. Inspired by SimCLR (Chen et al.,
2020), we augment challenging instances with lit-
erally similar but logically different contexts built
by modifying logical expressions. It then adopts
contrastive learning and encourages our model to
distinguish logically correct context supporting the
answer. We first introduce the background of Sim-
CLR and then describe our logic-driven contrastive
learning.

SimCLR As a paradigm of self-supervised repre-
sentation learning by comparing different samples,
contrastive learning (Wu et al., 2018; He et al.,
2020a) aims to make the representations of similar
samples be mapped close together, while that of
dissimilar samples be further away in the encoding
space. The goal can be described as following.

s(f(@), f(@7) > s(f(2), f(27) @

x" is a positive sample similar to the data point =
while 2~ is a negative sample dissimilar to z. f(-)
is an encoder to learn a representation and the s(-)
is a similarity function of two representations. Over
this, SImCLR (Chen et al., 2020) builds a classifier
to distinguish positive from negative samples and
learns to capture what makes two samples different.

Logic-Driven Contrastive Learning In our
question answering setting, we alter the score func-
tion from measuring the similarity between two
representations towards calculating the score that
the question can be solved by the correct answer
under a given context:

/

S (C+, Q70a) > Sl(c_a (Loa) (5)

where (ct,q,0,) and (¢, q,0,) are the positive
and negative sample, ¢ and ¢~ are the positive
and negative context, respectively, and s is the
score function. The contrastive loss can be formu-
lated as a classification loss for predicting the most
plausible context that supports the answer:

Lo= —Zlog

where s (+) and s (—) are short for s (¢T, ¢, 0,)
and s’ (¢™, q,04) respectively.

Aware of symbolic logical expressions, we can
construct logical negative samples including neg-
ative contexts that are literally similar but logical

exp(s'(+))
exp(s’(+)) + exp(s'(—))

(6)

1622

dissimilar to the positive one. We take the original
context to construct the positive sample. Then we
generate a negative sample by modifying the exist-
ing logical expressions in the context and verbaliz-
ing the modified logical expressions into a negative
context as § 3.3. During the modification opera-
tions, we randomly choose a logical expression and
randomly delete, reverse or negate such an expres-
sion. The delete, reverse or negate operations are
respectively to delete a logical expression in the
context, reverse the conditional order of a logical
expression and negate a logical symbol in a logical
expression. The constructing procedure of a logi-
cal negative sample is illustrated in Figure 3. Then
the model can be trained to better capture logical
information, especially negative and conditional
relationships in logical expressions.

(context, question, answer)
l Logic Identification
(=B, (B-7) -

l Randomly delete, reverse or negate
a logical expression

delete B-7v)

Boa)(Boy) .

(@ = =B) (B-7), .
(ma—=B)(B~v) -

l Logic Verbalization

reverse

negate

(context™, question, answer)

Figure 3: Procedure to construct a logical negative
sample.

In the logic-driven data augmentation algorithm,
our framework is trained with a combined loss as
L = L4 + L. And the classification of positive
and negative context for the correct answer is also
implemented in the logic-driven context extension
framework.

5 Experiments

5.1 Experimental Dataset

Our experiments are conducted on two challenging
datasets ReClor (Yu et al., 2020) and LogiQA (Liu
et al., 2020) that cover diverse and complicated
logical reasoning skills, to investigate the general
effectiveness of our system. ReClor is built upon
standardized exams including GMAT and LSAT.
As there are some biased instances that can be
solved without knowing contexts and questions,
ReClor splits the unbiased instances from the test
data as the HARD set to fully assess the logical
reasoning ability. The other biased ones are taken

as the EASY set. LogiQA comes from the Na-
tional Civil Servants Examination of China and is
professionally translated into an English version.
ReClor consists of 6,138 questions and is di-
vided into training, validation and test sets with
4,638, 500 and 1, 000 data points. The test set is
further split into EASY set and HARD set with
440 and 560 data points. LogiQA contains 8, 678
questions and is split into 7,376/651 /651 samples
for training, validation and testing. Each question
is collected with a context and four answer options,
in which only one is correct. The implementation
details of experiments are given in Appendix B.

5.2 Overall Performance

We compare our systems with several baseline mod-
els and human performance.
Baseline Models The compared baseline pre-
trained models include BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), ALBERT (Lan et al.,
2020) and DeBERTa (He et al., 2020b). We
also compare our model with DAGN (Huang
et al., 2021), an available state-of-the-art method
on the leaderboard which proposes a discourse-
aware graph network for logical reasoning taking
RoBERTa-large as the backbone.
Our Systems LReasonergr,pert, 1S our proposed
logic-driven reasoner taking RoBERTa as the
backbone model, which utilizes both logic-driven
context extension framework and data augmen-
tation algorithm. We also build our LReasoner
on top of two more powerful pre-trained mod-
els ALBERT and DeBERTa as LReasonera;perr
and LReasonerp.peris, respectively. Besides,
LReasonerg,sempie 1S an ensemble of DeBERTa,
LReasonerarperr and LReasonerp.perta.
Human Performance Yu et al. (2020) and Liu et al.
(2020) report human performance as the average
scores of graduate or post-graduate students over
randomly chosen test samples.

The evaluation results are shown in Table 2. We
have several findings:

- Our systems outperform all baseline models
on both datasets by a considerable margin.
LReasonergpsemple €ven surpasses the human per-
formance on both EASY and HARD sets of
ReClor. This indicates the effectiveness of our
method for logical reasoning.

- Compared to the corresponding baseline mod-
els including RoBERTa, ALBERT and DeBERTa,
our LReasonerr,peria, LReasonersigerr and

1623

ReClor LogiQA
Model

Val Test EASY HARD Val Test
BERT (Devlin et al., 2019)* 53.8 49.8 72.0 323 338 321
RoBERTa (Liu et al., 2019)* 62.6 556 75.5 40.0 359 353
ALBERT (Lan et al., 2020) 70.2 66.5 76.6 586 389 376
DeBERTa (He et al., 2020b) 744 689 83.4 575 444 415
DAGN (Huang et al., 2021) 65.8 58.3 759 445 369 393
LReasonergoBERTa 66.2 624 814 47.5 38.1 40.6
LReasonerar gerr 732 1707 8l1.1 625 41.6 412
LReasonerpeperTa 746 71.8 834 62.7 458 433
LReasoner gngempie 78.0 76.1 87.0 67.5 458 45.0
Human Performance* - 63.0 57.1 67.2 - 86.0

Table 2: Experimental results (accuracy %) of different models on ReClor and LogiQA. The results in bold are the
best performance of each column except for LReasonerg,sempre and Human Performance. * indicates that the results
of ReClor and LogicQA are taken from (Yu et al., 2020) and (Liu et al., 2020).

LReasonerp.perta consistently perform better. It
demonstrates that our method is robust to be ef-
fective for logical reasoning based on different
pre-trained models, even the most recent state-of-
the-art ones.

- Our models generate large improvement on both
HARD and EASY sets of ReClor compared with
baseline models. This observation verifies that
our model is capable of improving logical rea-
soning ability on both biased and unbiased data.

5.3 Further Analysis

Ablation Study To dive into the effectiveness of
different components in our logic-driven reasoner,
we conduct an ablation study which takes RoBERTa
as our backbone model on ReClor validation and
test sets. As shown in Table 3, RoBERTa+CE and
RoBERTa+DA both outperform the baseline model
RoBERTa and perform worse than our final system
RoBERTa+CE+DA. 1t indicates that both logic-
driven context extension framework and data aug-
mentation algorithm can boost the performance of
question answering involving logical reasoning.

Model | Val Test EASY HARD
RoBERTa | 626 556 755 400
+CE 652 583 786 423
+ DA 658 61.0 809 454
+CE+DA | 662 624 814 475

Table 3: Ablation study of our system. CE
and DA are respectively our logic-driven context
extension framework and data augmentation algorithm.
RoBERTa+CE+DA is our proposed LReasonerg,peryy-

Comparison of Negative Sample Construction
Strategies To further analyze the effectiveness
of our logical negative samples in logic-driven con-
trastive learning, we compare several different neg-
ative sample construction strategies in contrastive
learning on top of RoBERTa for ReClor.

Model | Test EASY HARD
RoBERTa (w/o CLR) | 556 755 40.0
RoBERTa (w/ CLR-RS) | 582 793 416
RoBERTa (w/ CLR-RD) | 589 78.9 432
RoBERTa (w/CLR-L) | 61.0 809 454

Table 4: Comparison of different negative sample con-
struction approaches. CLR represents contrastive learn-
ing. RS means randomly selecting a context from in-
batch data while RD means randomly deleting a sen-
tence from the original context. L denotes our logical
negative sample construction method in logic-driven
contrastive learning.

From Table 4, we can find that all models with
contrastive learning outperform the model without
it, which demonstrates that contrastive learning can
help to better predict the answer. Our logic-driven
contrastive learning RoBERTa(w/ CLR-L) performs
best. It reveals that logical negative samples are
more effective than negative samples constructed
by other methods which make the model better
capture the logical negative and conditional rela-
tionships in the context for logical reasoning.

Evaluation of Logic Identification To evaluate
the performance of our symbolic logic identifica-
tion method, we randomly sample 50 instances
from the validation set and manually annotate the
logical symbols and expressions as labels. We re-

1624

Context : Everyone sitting in the clubhouse of the golf course today at ten o' clock had just registered for a beginner' s golf lesson. Gerald,
Robert, and Shirley were sitting in the clubhouse this morning at ten o' clock. No accomplished golfer would register for a beginner' s golf
lesson.

Question : If the statements above are true, which one of the following must also be true on the basis of them?

Options : (Answer : C)

A. Gerald, Robert, and Shirley were the only people who registered for a beginner ‘s golf lesson this morning. (y — Others)

B. None of the people sitting in the clubhouse this morning at ten o' clock had ever played golf. (@ — — Others)

C. Neither Gerald nor Shirley is an accomplished golfer.(y - —17)

D. Everyone sitting in the clubhouse this morning at ten o' clock registered only for a beginner's golf lesson. (& — Others)

Logical Symbols & | a: sitting in the clubhouse of the golf course today at ten o° clock; [: registered for a beginner* s golf lesson ;

Expressions y : Gerald, Robert, and Shirley; n: accomplished golfer ;
a—>f; yoa; n-o>-p;

Extending the (a—>p)=(=f-o—-a);(y—>a)=2(—a>=y); (n>=8)=2(f>=1n);

Implicit Logical (a=B)r(y—>a)=(y—B); (=B>=a)r(ma>=y)=2(=F>-Y);

Expressions (a=>B)A(fo=n)=2(a>=an); (M>=p)AEfo>—a)=2(n>—a);
(YoB)ABoon)=2(yo-n); (Mo -a)aa>=y)=2(>Y);

Implicit Logical A(y-B)i(y>=n); B.(a—>—-1n);

Expressionsrelated |C.(y ->8):(y —>—-1n); vV D.(a——7);

to each option

Figure 4: A ReClor case of the reasoning process of LReasonergggr- Phrases underlined denote other symbols
(called Others) different from the logical symbols in context and bold tokens make them different.

port the recall of logical symbol and logical ex-
pression identification as 65.9% and 48.9%, respec-
tively. We can see that our generic logic parsing
method which operates in an unsupervised manner
achieves relatively reliable performance. Unsuper-
vised and generic logic parsing is an essential future
direction that is expected to be further studied to
enhance the performance of the overall system.

Case Study A ReClor case is presented in Fig-
ure 4 to show the reasoning process of our system.
At first, the logical symbols are correctly extracted
from the context and the logical expressions are
identified based on them considering logical nega-
tive and conditional relationships. Then we extend
the logical expressions by inferring implicit ones
in the context. For each option, we recognize its
logical expression and find the related extended ex-
pressions. We verbalize them into the text to feed
into the pre-trained model as an extended context
to compute a matching score. Finally, we take op-
tion C which exactly matches an extended implicit
logical expression as the most plausible answer.

Detailed Analysis of Different Reasoning Types
As ReClor integrates various types of logical rea-
soning skills, we can detailedly investigate the per-
formance of our system LReasonerrpgrr on dif-
ferent logical reasoning types compared to the base-
line model ALBERT. We analyze the improvements
brought by our system, and point out challenges to
shed a light on future directions.

As shown in Table 5, our model is generally ef-
fective on most reasoning types compared to the
baseline model, especially Implication, Most

Reasoning Type Base Ours

Necessary Assumptions (11.0%) 73.7 76.3 (1)
Sufficient Assumptions (3.6%) 70.0 70.0 (—)
Strengthen (9.0%) 69.1 702 (1)
Weaken (10.6%) 64.6 59.3()
Evaluation (1.6%) 692 69.2(—)
Implication (6.2%) 438 543(1)
Conclusion/Main Point (3.1%) 80.6 77.8(1)
Most Strongly Supported (6.7%) 589 71.4 (1)
Explain or Resolve (8.0%) 60.7 67.9(1)
Principle (5.7%) 723 769 (1)
Dispute (2.5%) 63.3 80.0(1)
Technique (3.8%) 75.0 80.6 (1)
Role (3.7%) 78.1 68.8(])
Identify a Flaw (11.3%) 65.0 71.8(1)
Match Flaws (4.9%) 613 61.3(-)
Match the Structure (2.7%) 56.7 86.7 (1)
Others (5.5%) 68.5 72.6(1)

Table 5: Results of different reasoning types. Numbers
in parentheses are percentages of different types. Base
is the ALBERT while Ours means our LReasonera;gerr.
1, | and — respectively mean that our performance is
better, worse than and equal to the baseline ALBERT.

Strongly Supported. These questions em-
phasize the ability of inference over logical units.
Specifically, Implication needs to infer the
conclusion that logically follows a set of premises
while Most Strongly Supported aims to
find the statement that is most strongly supported
by a stimulus. This observation verifies the effec-
tiveness of our system to model logical deduction.
Besides, Implication is precisely the reason-
ing ability investigated by NLI tasks, which reveals
that our model would also be effective in NLI.
However, there still exists some reasoning types

1625

that are challenging for our system, such as Match
flaws and Weaken. Weaken aims to find the
opposite statement that weakens the argument.
Match flaws is even more challenging as it re-
quires analyzing the flaw that conflicts with the
complete logical chain in the context, and finding
an option exhibiting the same flaw. Therefore, how
to model the different degrees of a logical state-
ment, and abstract the complete logical chain for
flaw identification, are interesting future directions.

5.4 Generalizability Discussion

Our logic-driven reasoner not only embodies its
superiority in ReClor and LogiQA, but also can be
generalized to other datasets and task formats. To
demonstrate this, we evaluate our framework on
a widely studied extractive QA task SQuAD (Ra-
jpurkar et al., 2016), which covers diverse skills
instead of just explicit logical reasoning, such as
reasoning of lexical variation, commonsense and
causal relations (Sugawara and Aizawa, 2016).
As shown in Table 6, our framework is effective
on SQUAD compared to both RoBERTa-base and
RoBERTa-large, which manifests the generalizabil-
ity of our logic-driven reasoner.

Model | EM Fl

RoBERTua-base* 83.0 90.4
LReasonerr,peRTa-base | 85.6 91.7
RoBERTa-large* 88.9 94.6
LReasonerroperTa-large | 89-3 94.8

Table 6: Dev. set results of our framework compared to
RoBERTa (both base and large models) on SQuAD. *
denotes the results come from (Liu et al., 2019).

6 Related Work

In recent years, there has been a surge in NLP
research towards complex reasoning, such as rea-
soning for commonsense knowledge (Huang et al.,
2019), numerical calculation (Dua et al., 2019) or
multi-hop aggregation (Yang et al., 2018). Com-
pare to these widely studied reasoning tasks, logi-
cal reasoning is also an essential and challenging
capability but is relatively unexplored. Natural Lan-
guage Inference (NLI) (Dagan et al., 2005; Bow-
man et al., 2015; Williams et al., 2018; Khot et al.,
2018) is a typical task requiring logical reason-
ing, which aims to determine whether a hypothesis
can be reasonably entailed from a premise. How-
ever, these NLI datasets mainly handle the task at

sentence-level and are limited to only a few logical
reasoning types, such as entailment, contradiction,
and neutral. To promote a deeper passage-level
logical reasoning ability, several QA datasets have
been proposed. LogiQA (Liu et al., 2020) is col-
lected from the National Civil Servants Examina-
tion of China covering 5 logical reasoning types.
Yu et al. (2020) propose ReClor dataset from the
GMAT and LSAT tests which examines 17 types
of logical reasoning. In this paper, we take both
ReClor and LogiQA as the testbed to investigate
diverse and complicated logical reasoning skills.
Pre-trained language models (Devlin et al., 2019;
Liu et al., 2019; Yang et al., 2019; Lan et al., 2020)
have been widely adopted for various reasoning
tasks and achieve promising performance. How-
ever, they directly encode the given texts to predict
the output while failing to identify the symbolic
logical structure and perform explicit logical infer-
ence for logical reasoning of text. Semantic parsers
(Reddy et al., 2016; Singh et al., 2020) are usually
employed for converting texts to logical forms, and
graph neural networks (Fang et al., 2019; Huang
et al., 2021) and neural module networks (Gupta
et al., 2019) also have been attempted to partly
imitate the human reasoning process. But these
neural methods may not be easily generalized to
our desired propositional logical schema without
annotations and still perform an implicit inference.
To circumvent these limitations and utilize the su-
perior performance of neural models, we take inspi-
ration from neuro-symbolic reasoning (Wang et al.,
2018; Arabshahi et al., 2020) to integrate symbolic
inference and neural representation. We design an
explicit three-step logical reasoning paradigm and
propose a logic-driven reasoning system to generi-
cally identify the logical structure and perform in-
terpretable logical inference in a symbolic module
while taking a pre-trained model as the backbone.

7 Conclusion and Future Work

In this paper, we focus on the task of logical reason-
ing of text. Following a three-step logical reasoning
paradigm, we first propose a neuro-symbolic logic-
driven context extension framework. It identifies
logical expressions as elementary units of logical
inference and symbolically deduces the implicitly
mentioned expressions, and verbalizes them as an
extended context into a pre-trained model to match
the answer. We also introduce a logic-driven data
augmentation algorithm, which augments literally

1626

similar but logically different instances and em-
ploys contrastive learning to help our model better
capture logical information. Experimental results
confirm the general effectiveness of our LReasoner,
and it even surpasses human performance on the
ReClor dataset. In the future, we will explore to
model different logical reasoning types and directly
incorporate symbolic logic into the model structure.

Acknowledgments

This work is partially supported by Natural
Science Foundation of China (No.6217020551,
61906176), Science and Technology Commission
of Shanghai Municipality Grant (No.20dz1200600,
21QA 1400600, GWV-1.1, 21511101000) and Zhe-
jiang Lab (No. 2019KD0OADO1).

References

Forough Arabshahi, Jennifer Lee, Mikayla Gawarecki,
Kathryn Mazaitis, Amos Azaria, and Tom Mitchell.
2020. Conversational neuro-symbolic commonsense
reasoning. arXiv preprint arXiv:2006.10022.

Tarek R Besold, Artur d’Avila Garcez, Sebastian Bader,
Howard Bowman, Pedro Domingos, Pascal Hitzler,
Kai-Uwe Kiihnberger, Luis C Lamb, Daniel Lowd,
Priscila Machado Vieira Lima, et al. 2017. Neural-
symbolic learning and reasoning: A survey and inter-
pretation. arXiv preprint arXiv:1711.03902.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632-642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations. In In-
ternational conference on machine learning, pages
1597-1607. PMLR.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The pascal recognising textual entailment chal-
lenge. In Machine Learning Challenges Workshop,
pages 177-190. Springer.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
41714186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.
Drop: A reading comprehension benchmark re-
quiring discrete reasoning over paragraphs. arXiv
preprint arXiv:1903.00161.

Yuwei Fang, Siqi Sun, Zhe Gan, Rohit Pillai, Shuohang
Wang, and Jingjing Liu. 2019. Hierarchical graph
network for multi-hop question answering. arXiv
preprint arXiv:1911.03631.

Artur d’Avila Garcez, Marco Gori, Luis C Lamb,
Luciano Serafini, Michael Spranger, and Son N
Tran. 2019. Neural-symbolic computing: An ef-
fective methodology for principled integration of
machine learning and reasoning. arXiv preprint
arXiv:1905.06088.

Nitish Gupta, Kevin Lin, Dan Roth, Sameer Singh, and
Matt Gardner. 2019. Neural module networks for rea-
soning over text. arXiv preprint arXiv:1912.04971.

Ivan Habernal, Henning Wachsmuth, Iryna Gurevych,
and Benno Stein. 2017. The argument reason-
ing comprehension task: Identification and recon-
struction of implicit warrants. arXiv preprint
arXiv:1708.01425.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross Girshick. 2020a. Momentum contrast for un-
supervised visual representation learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9729-9738.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020b. Deberta: Decoding-enhanced
bert with disentangled attention. arXiv preprint
arXiv:2006.03654.

Lifu Huang, Ronan Le Bras, Chandra Bhagavatula, and
Yejin Choi. 2019. Cosmos ga: Machine reading com-
prehension with contextual commonsense reasoning.
arXiv preprint arXiv:1909.00277.

Yinya Huang, Meng Fang, Yu Cao, Liwei Wang, and
Xiaodan Liang. 2021. Dagn: Discourse-aware
graph network for logical reasoning. arXiv preprint
arXiv:2103.14349.

Vidur Joshi, Matthew Peters, and Mark Hopkins. 2018.
Extending a parser to distant domains using a few
dozen partially annotated examples. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1190-1199, Melbourne, Australia. Association
for Computational Linguistics.

Tushar Khot, Ashish Sabharwal, and Peter Clark. 2018.
Scitail: A textual entailment dataset from science
question answering. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 32.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learning
of language representations. In International Confer-
ence on Learning Representations.

1627

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang,
Yile Wang, and Yue Zhang. 2020. Logiga: A chal-
lenge dataset for machine reading comprehension
with logical reasoning. In Proceedings of the Twenty-
Ninth International Joint Conference on Artificial
Intelligence.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. CoRR, abs/1907.11692.

I. Loshchilov and F. Hutter. 2017. Fixing weight decay
regularization in adam. ArXiv, abs/1711.05101.

John McCarthy. 1989. Artificial intelligence, logic and
formalizing common sense. In Philosophical logic
and artificial intelligence, pages 161-190. Springer.

Nils J Nilsson. 1991. Logic and artificial intelligence.
Artificial intelligence, 47(1-3):31-56.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, Austin, Texas. Association
for Computational Linguistics.

Siva Reddy, Oscar Tickstrom, Michael Collins, Tom
Kwiatkowski, Dipanjan Das, Mark Steedman, and
Mirella Lapata. 2016. Transforming dependency
structures to logical forms for semantic parsing.
Transactions of the Association for Computational
Linguistics, 4:127-140.

Stuart Russel, Peter Norvig, et al. 2013. Artificial in-
telligence: a modern approach. Pearson Education
Limited.

Hrituraj Singh, Milan Aggrawal, and Balaji Krishna-
murthy. 2020. Exploring neural models for parsing
natural language into first-order logic. arXiv preprint
arXiv:2002.06544.

Saku Sugawara and Akiko Aizawa. 2016. An analysis
of prerequisite skills for reading comprehension. In
Proceedings of the Workshop on Uphill Battles in
Language Processing: Scaling Early Achievements to
Robust Methods, pages 1-5, Austin, TX. Association
for Computational Linguistics.

Lei Wang, Yan Wang, Deng Cai, Dongxiang Zhang,
and Xiaojiang Liu. 2018. Translating a math word
problem to an expression tree. arXiv preprint
arXiv:1811.05632.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112—-1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Adina Williams, Nikita Nangia, and Samuel R Bow-
man. 2017. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv
preprint arXiv:1704.05426.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Fun-
towicz, et al. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. ArXiv,
abs/1910.03771.

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua
Lin. 2018. Unsupervised feature learning via non-
parametric instance discrimination. In Proceedings
of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3733-3742.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. In Advances in neural informa-
tion processing systems, pages 5753-5763.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W Cohen, Ruslan Salakhutdinov, and
Christopher D Manning. 2018. Hotpotqa: A dataset
for diverse, explainable multi-hop question answer-
ing. arXiv preprint arXiv:1809.09600.

Weihao Yu, Zihang Jiang, Yanfei Dong, and Jiashi Feng.
2020. Reclor: A reading comprehension dataset re-
quiring logical reasoning. In International Confer-
ence on Learning Representations (ICLR).

J-K Zhao, Elizabeth M Rudnick, and Janak H Patel.
1997. Static logic implication with application to re-
dundancy identification. In Proceedings. 15th IEEE
VLSI Test Symposium (Cat. No. 97TB100125), pages
288-293. IEEE.

A Details of Logic Identification

We design a generic logic identification approach
that uses an off-the-shelf constituency parser and
most common keywords of logical semantics (to-
tally no more than 20). We employ the constituency
parser to extract constituents as basic symbols. We
regard literally similar constituents with an overlap
rate over 60% as the same symbol if they also have
consistent degree modifiers, such as “only”, “most”,
“least”, etc.

We define a set of negative words for identifying
logical negation, including {“not”, “n’t’, “unable”,
“no”, “few”, “little”, “neither”, “none of’}. And
the full set of conditional indicators for recognizing
the logical conditional relationship between o and
B as (o — B)is { “if o, then 5, “« in order for
87, “athus 87, “B due to a”, “ owing to o”,
“B since a”, “—f unless a”}. The detailed parsing

procedure is illustrated in Algorithm 1.

1628

https://aclanthology.org/D16-1264
https://aclanthology.org/D16-1264
https://doi.org/10.18653/v1/W16-6001
https://doi.org/10.18653/v1/W16-6001

Algorithm 1 Logic Identification Algorithm
Input: A sentence in the context or an option ¢ to
be parsed, a set of logical negative keywords N/
and a set of logical conditional indicators C.
Output: A logical expressions set S parsed from
the input ¢.

1: Initializing S := {}

2: Extracting constituents from the input £.

3: Recognizing literally similar constituents as
the same symbol and obtain all logical symbols
as {a, 0, ...}.

4: for symbol ¢ in {«, 3, ...} do

5. if 3n; € N is in or immediately before the

logical symbol a then

6: Adding the negation connective — before
a as —a.
7: Replacing the original symbol with the
negative one as a := —a.
end if
9: end for

10: for symbol a in {a, G, ...} do

11: for symbol bin {«, 3, ...} do

12: if a # b and (3 ¢; € C is between two
logical symbols a and b or an active voice
occurs between a and b) then

13: Obtaining a logical expression a — b.

14: Appending a — b to the logical expres-
sion set S.

15: end if

16: end for

17: end for

18: return The logical expressions set S.

B Implementation Details

We take RoBERTa-large (Liu et al., 2019),
ALBERT-xxlarge-v2 (Lan et al., 2020) and
DeBERTa-xlarge (He et al., 2020b) as our back-
bones and implement them using Huggingface
(Wolf et al., 2019). We use a batch size of 8 and
fine-tune for 10 epochs. The AdamW (Loshchilov
and Hutter, 2017) with 81 = 0.9 and 52 = 0.98 is
taken as the optimizer and the learning rate is le-5.
We use a linear learning rate scheduler with 10%
warmup proportion. We automatically evaluate our
model on validation set to choose parameters that
achieve the highest accuracy. We select at most
two extended logical expressions related to each
option to construct the extended context for ReClor
and select at most three for LogiQA. We train our
proposed systems and other comparison models on

two NVIDIA Tesla V100 GPUs.

1629

