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Abstract

Sememe knowledge bases (SKBs), which anno-
tate words with the smallest semantic units (i.e.,
sememes), have proven beneficial to many NLP
tasks. Building an SKB is very time-consuming
and labor-intensive. Therefore, some studies
have tried to automate the building process
by predicting sememes for the unannotated
words. However, all existing sememe predic-
tion studies ignore the hierarchical structures of
sememes, which are important in the sememe-
based semantic description system. In this
work, we tackle the structured sememe predic-
tion problem for the first time, which is aimed
at predicting a sememe tree with hierarchical
structures rather than a set of sememes. We de-
sign a sememe tree generation model based on
Transformer with an adjusted attention mecha-
nism, which shows its superiority over the base-
line methods in experiments. We also conduct
a series of quantitative and qualitative analy-
ses of the effectiveness of our model. All the
code and data of this paper are available at
https://github.com/thunlp/STG.

1 Introduction

A word is the fundamental element of natural lan-
guages, but its meaning can be further divided. To
explore semantics atomically, linguists define a se-
meme as the minimum semantic unit (Bloomfield,
1926). It is even believed that the meanings of all
words in any language can be represented by a lim-
ited set of sememes, which is closely related to the
idea of semantic primitives (Wierzbicka, 1996).

HowNet (Dong and Dong, 2006) is the most
well-known sememe knowledge base (SKB). It
comprises more than 100,000 English and Chinese
words and phrases manually annotated by about
2,000 sememes that are defined by linguistic ex-
perts. Multiple senses of a polysemous word are
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Figure 1: Sememe annotations of the words “throne”
and “emperor” in HowNet.

independently annotated, and the sememes anno-
tated to a sense are hierarchically organized as a
sememe tree. Figure 1 illustrates the sememe anno-
tations of two English words in HowNet.

Different from other lexical knowledge bases,
SKBs like HowNet define words intensionally with
a limited set of semantic units (sememes), thus have
some unique strengths. For example, SKBs can be
combined with neural network models smoothly
by regarding sememes as the external semantic
labels of words (Qi et al., 2019; Qin et al., 2020).
Moreover, thanks to the limitedness of sememes,
SKBs have been proven very useful in the low-
data regimes, e.g., improving the representation
learning of rare words by transferring knowledge
from frequent words via sememes (Niu et al., 2017).
As a result, SKBs have been widely utilized in
many NLP tasks (Qi et al., 2021b).

However, most languages have no SKBs like
HowNet, and it is too expensive to manually build
an SKB for a new language from scratch.1 In ad-
dition, even for the languages covered in HowNet
(English and Chinese), new words are emerging
every day and the meanings of existing words keep
changing. It is also costly to expand and update

1It took several linguistic experts more than two decades
to build HowNet.
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HowNet. To solve these issues, a series of stud-
ies have been conducted, trying to automatically
predict sememes for monolingual or cross-lingual
words (Xie et al., 2017; Jin et al., 2018; Qi et al.,
2018; Du et al., 2020; Lyu et al., 2021). For simplic-
ity, all previous sememe prediction studies ignore
the hierarchical structures of sememes. They sim-
plify sememe prediction as a multi-label classifica-
tion task, and their models output a structureless
set of sememes.

However, the structures of sememes are very
important. For one thing, the structural informa-
tion is indispensable in the sememe-based seman-
tic description system, as it carries semantics, and
branches of sememe trees stand for the relations of
sememes. As shown in Figure 1, the difference in
sememe structure results in the different meanings
of the second sense of “throne” and “emperor”,
although they have four identical sememes. For
another, the structures of sememes are necessary
for many sememe-based applications (Liu and Li,
2002; Zhu et al., 2019; Liu et al., 2020).

In this paper, we try to tackle structured sememe
prediction, which is aimed at predicting sememes
together with their hierarchical structures rather
than the structureless sememes only. This task is
essentially a kind of tree generation task but is
more challenging than other tree generation tasks.
First, the size of its node type is more than 2,000
(i.e., over 2,000 sememes), which is much larger
than that of most tree generation tasks, e.g., less
than 100 for code generation and semantic pars-
ing (rab). Second, the structures of sememe trees
are extremely diverse — almost any sememe can
be the child node of another sememe, and one se-
meme node can have an arbitrary number of chil-
dren. Many of the existing tree prediction methods
depend on the certain number of children of a node
and perform strongly correlated with the number
of candidates (Yin and Neubig, 2017), thus are not
applicable.

To handle this difficult task, we conduct further
formalization. Different from most structureless
sememe prediction studies whose input is merely
a word, inspired by Du et al. (2020), we regard a
sentence of definition as the input, and the task is
formalized as a sequence-to-tree task. We do this
for two reasons. First, sememe prediction can be
conducted at the sense level (one definition corre-
sponds to one sense of a word). Second, definitions
can provide more useful information than single

words for structured sememe prediction.
Further, we propose a model based on Trans-

former (Vaswani et al., 2017) especially designed
for the task of sememe tree generation (STG). We
decompose the attention in Transformer into two
parts that capture the semantic similarity and topo-
logical relations between sememes, respectively,
in order to better represent the characteristics of
sememe trees. Experimental results show that our
method outperforms baseline methods including
the vanilla tree Transformer model. We also con-
duct quantitative and qualitative analyses of the
results of our method.

2 Related Work

2.1 Sememe Knowledge Base

As a kind of special lexical knowledge base, SKBs
represented by HowNet have been widely explored
in various NLP applications, including word rep-
resentation learning (Niu et al., 2017), word sense
disambiguation (Hou et al., 2020), language mod-
eling (Gu et al., 2018), reverse dictionary (Zhang
et al., 2020b), textual adversarial and backdoor at-
tacks (Zang et al., 2020; Qi et al., 2021c), etc.

Meanwhile, some studies focus on automating
the process of expanding and constructing SKBs.
They propose different methods to automatically
predict sememes for words. Xie et al. (2017)
present the task of lexical sememe prediction and
propose two simple but effective methods that are
based on collaborative filtering and matrix factor-
ization, respectively. Jin et al. (2018) and Lyu et al.
(2021) utilize the Chinese character and glyph in-
formation in lexical sememe prediction and achieve
higher performance. Du et al. (2020) introduce dic-
tionary definitions into sememe prediction and find
that the abundant semantic information in defini-
tions is very beneficial to sememe prediction. But
they do not conduct sense-level sememe prediction.
They simply concatenate the definitions of multiple
senses of a word and predict the combined sememe
set for the word.

The above studies use the sememe annotations of
existing words in HowNet to predict sememes for
new words, aiming to expand HowNet. Some stud-
ies try to construct SKBs for new languages auto-
matically. Qi et al. (2018) present the task of cross-
lingual lexical sememe prediction, which predicts
sememes for words in a new language by bilingual
word embedding alignment of a HowNet-covered
language and a new language. Qi et al. (2020) pro-
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pose to build a multilingual SKB based on Babel-
Net, a multilingual encyclopedia dictionary (Nav-
igli and Ponzetto, 2012). BabelNet is composed
of BabelNet synsets, each of which contains multi-
lingual synonyms, e.g., hello (English),你好 (Chi-
nese) and bonjour (French) are included in one
BabelNet synset. The multilingual synonyms in a
synset convey the same meaning and should have
the same sememe annotations. Therefore, they pro-
pose the task of sememe prediction for BabelNet
synsets, hoping that if all synsets are annotated with
sememes, all words in over 200 languages in Babel-
Net would obtain sememe annotations. Moreover,
the sememe annotations are independently anno-
tated to senses, because a synset corresponds to a
sense. Following Qi et al. (2020), Qi et al. (2022)
further utilize multilingual and multimodal infor-
mation in BabelNet to improve the performance of
sememe prediction for BabelNet synsets.

In addition, Qi et al. (2021a) make an attempt to
construct an SKB based on a dictionary fully auto-
matically. They regard the words in the controlled
defining vocabulary of a dictionary as sememes
rather than use the existing sememe set of HowNet.

Although achieving satisfactory sememe predic-
tion results, all these studies ignore the hierarchical
structures of sememes. This work is the first at-
tempt to conduct structured sememe prediction.

2.2 Tree Generation

Structured sememe prediction is a kind of tree gen-
eration task. Some tree generation tasks have been
widely explored, such as code generation (rab; Yin
and Neubig, 2017; Sun et al., 2020; Nguyen et al.,
2019), semantic parsing (Shiv and Quirk, 2019; Li
et al., 2020) and math word problem solving (Liu
et al., 2019; Zhang et al., 2020a; Wu et al., 2021).
However, as explained in §1, sememe tree genera-
tion is more challenging than these tasks because
of its large size of node types and a vast variety of
structures.

Quite a few tree generation studies use the se-
quence modeling models represented by recur-
rent neural networks, especially LSTM (Hochreiter
and Schmidhuber, 1997), and achieve great perfor-
mance (Zaremba and Sutskever, 2014; Allamanis
et al., 2016). Recently, with the widespread use of
Transformer in sequence modeling, some studies
have shown that Transformer-based models also
perform well on tree generation and are more par-
allelizable to deal a large amount of data (Shiv and

Quirk, 2019; Nguyen et al., 2019; Zugner et al.,
2021). Therefore, we also design our sememe tree
generation model based on Transformer.

3 Methodology

In this section, we first detail two straightforward
sememe tree generation (STG) models, which will
serve as the baselines. Then, we describe the modi-
fication of tree attention and introduce a novel STG
model.

3.1 Neighbor-based STG (NSTG)

A sememe tree can be divided into multiple se-
meme paths from the root node to leaf nodes. As-
suming different sememe paths are independent,
the probability of generating a sememe tree can be
formalized as:

P (T |w) =
∏
S∈T

P (S|w), (1)

where T refers to the sememe tree of the synset w,
and S denotes a sememe path in T .

Using the multiplicative theorem of probability,
the probability of each sememe path is formalized
as:

P (S|w) =
NS∏
i=1

P (si|w, S0:i−1), (2)

where Ns is the length of S, si is the i−th sememe
of S, and S0:i−1 refers to the previous path from the
beginning token START to the (i− 1)-th sememe
of S, where START is added as the root node of a
sememe tree.

With the Markov assumption, we further decom-
pose a sememe path into parent-child sememe pairs.
Generating a child sememe based on a father se-
meme is the atomic step of generating a sememe
path:

P (S) =

NS∏
i=1

P (si|w, si−1), (3)

Inspired by Xie et al. (2017), we assume that
similar words should share similar sememe tree
structures and we can apply collaborative filtering
(Xie et al., 2017) to the STG task and propose the
Neighbor-based STG (NSTG) model.

Specifically, for each sememe pair ei =
(si−1, si), the non-normalized generation proba-
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Figure 2: Definition and sememe tree sequence of
"bn:00077087n" in BabalNet

bility can be approximated as:

P̂ (si|w, si−1) =
∑
wj

sim(wj , w)×Mj,ei × dri ,

(4)
where sim(wj , w) measures the similarity between
two words (senses), based on the embeddings of the
two words’ definitions from BERT (Devlin et al.,
2019). Mj,ei indicates whether the synset wj pos-
sesses the sememe pair ei. rj is the descending rank
of the similarity. d ∈ (0, 1) is a hyper-parameter,
which can be viewed as the declined confidence
factor that helps the model concentrate on the most
similar words. We use sigmoid as the normaliza-
tion strategy.

We also adopt the beam search algorithm to gen-
erate sememe paths. The key point in beam search
is to design a well-performed generation function
at each search step.

3.2 Transformer-based STG (TSTG)

NSTG model is simple and efficient because it does
not require extra training. Nevertheless, the gen-
eralization ability of NSTG is limited to the rep-
resentative ability of sentence encoding. And it
fails to utilize the sequential information in the
generated sememe paths, which are of critical im-
portance in the STG task. To address this issue, we
can follow previous tree generation studies and use
a Transformer model to learn and decode hierar-
chical sememe structures. This method is named
Transformer-based STG (TSTG).

The normal Transformer architecture accepts se-
quential inputs. Therefore, we need to convert trees
into sequences. We linearize sememe trees by the
pre-order depth-first traversal. However, the count
of branches of a node is not certain in STG, so we
use a special BACK token to represent the back and
eventually get a one-to-one mapping from sememe
tree to sememe tree sequence. An example of the
sememe tree sequence is shown in Figure 2.

We decompose the step of STG into repeatedly

sememe generation and BACK token generation,
ending with the depth going back to 0.

3.3 Tree-attention Transformer Model
(TaSTG)

The above method enables transformer architec-
ture to generate trees. However, it suffers some
problems.

Problems of Attention Computation
Normal attention in Transformer is formalized as:

αij =

(
(wi + pi)W

Q
) (

(wj + pj)W
K
)T

√
d

, (5)

where wi,wj refer to node embeddings, and
bmpi, bmpj refer to positional embeddings. αij

is the attention score of the i-th and j-th nodes.
Absolute positional embedding is tied with node

embedding in the normal transformer. However,
for the exact position i and j, there is little evidence
that the node and where it appears in a sequence has
a strong correlation. This randomness may cause
noise in attention computation, especially for tree-
structured data. One position has two neighbors in
a sequence, but it is not true in a tree. As in the
example in Figure 2, the topological relations of
nodes (Human, Royal) and nodes (Human, Head-
OfState) are considered to be the same. However,
the distance in the sequence representation of them
is 3 and 1, which differs a lot.

To better capture the structure of tree data, we
think attention should satisfy the following three
requirements: (1) topologically neighbored nodes’
attention should be high; (2) semantically similar
nodes’ attention should be high; (3) some sub-trees
of brother nodes can convert symmetrically in STG
tasks.

Our Modification
Inspired by Ke et al. (2020), we untie the correla-
tions between positions and words. We divide the
computation of attention into two parts: semantic
attention and positional attention. (1) Semantic
attention captures the semantic similarity of twos
nodes in the tree, and the computation is the same
as normal attention. (2) Positional attention is spe-
cially designed to capture the topological relations
of nodes in the tree.

Correspondingly, we design a new self attention
computation method for tree structure as follows:
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αij =
si · sj + pi · pj√

2d
+ bi,j , (6)

where si, sj refers to the node encoding, pi,pj

refers to the positional encoding of i and j, and bi,j
refers to the distance encoding of i and j. 1√

2d
is

used to retain the scale of attention score.
For tree position, we define Depth embedding

as learnable parameters to capture features of tree
input. Simultaneously, we define Distance embed-
ding as learnable parameters as the bias in posi-
tion attention. Attention is considered to be higher
when depths are closer and distance is smaller.

For the multi-head version, Depth embedding
and Distance embedding are different in all the
heads. And for efficiency, we share the Depth em-
bedding and Distance embedding in all the layers,
so we only need to compute position attention in
the first layer and reuse it in other layers. The
function can be quickly computed by:

attn = (
AQ ∗AT

K√
2d

+
PQ ∗ P T

K√
2d

+B)AV , (7)

where B is formalized as the distance metric of all
the nodes in the tree. With the help of BACK, we
can compute the B in O(n2) times with a stack-
based algorithm.
BACK token is special in tree sequence because it

has the same number as other nodes and distributes
randomly in all the depths. To overcome the imbal-
ance of nodes, we specially add the BACK token
in odd depth between two sememe nodes, while
sememe nodes are in even depth. We will further
discuss the efficiency of Tree-attention in §5.1.

The transformer decoder layer is composed of
three sub-layers. We adopt Tree-attention in the
self-attention sub-layer. For the sub-layer to per-
form multi-head attention over the output of the
encoder stack, we use normal attention because it
is hard to capture the attention between tree nodes
and sequence reasonably, we leave it for future
work.

4 Experiments

4.1 Dataset

HowNet provides no definitions for words, and us-
ing an external dictionary requires special efforts to
conduct a sense-level alignment with HowNet. In
this paper, we resort to the BabelSememe dataset,
which is built by Qi et al. (2020). A BabelNet

synset corresponds to a sense of a word and in-
cludes definitions from other sources like WordNet
(Miller, 1998), and some BabelNet synsets are man-
ually aligned with senses of words in HowNet. One
example is Figure 2.

Since there is no other attempt aligned with
sense-level definitions and sememe trees, we fi-
nally use BabelNet as the only dataset. In other
words, we try to predict sememes for Babel-
Net synsets given their definitions. There are
34,964/3,228/3,228 synsets with definitions in the
training/validation/test sets.

4.2 Experimental and Parameter Settings
For NSTG, we use sentence-BERT (Reimers et al.,
2019) to encode definitions and compute similar-
ity. The embedding dimension is 768. For hyper-
parameters, we set the beam size in beam search
to 50 and select the top 10 candidates for merging.
We set the declined confidence factor base d to 0.9
empirically.

For TSTG and TaSTG, we use the base version
of BERT as the encoder, and the dimension of word
embeddings is 768. We use sememe embedding
pre-trained by SPSE (Xie et al., 2017), and the di-
mension is 200. We train an 8-layer, 8-head trans-
former decoder, and the learning rate is set to 10−5.
To avoid duplicate prediction, we only choose the
valid sememes that have not been predicted. We
also use beam search during the prediction.

4.3 Baselines
We use NSTG and TSTG as the baseline. We ab-
late our TsSTG to understand the efficiency of the
modification of the decoder. First, we remove bias
and build up the TaSTB-B model, which has almost
the same parameters as TaSTG. To understand the
compute of depth encoding, we also convert the rel-
ative position of tree node i from the depth of i to
the traversal order of i, and build up the TaSTB-D
model.

4.4 Evaluation Protocol
We use the following metrics for STG:

BLEU Since the generated tree sequence is short,
and higher order n-grams may not overlap, we use
smoothed BLEU-4 score (Lin and Och, 2004), fol-
lowing Feng et al. (2020).

Strict-F1 To measure the structural similarity of
the sememe tree T and predicted tree T ′ , we define
the Strict-F1 metric as follows:
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Method BLEU Strict Edge Vertex

NSTG 10.7 25.6 27.5 33.9
TSTG 15.5 35.6 37.2 45.0

TaSTG 17.0 39.7 41.2 48.2
TaSTG-D 14.9 37.5 39.0 45.9
TaSTG-B 15.1 39.1 40.5 47.4

Table 1: Result of different models.

1. Start from the roots of T and T ′ and put them
into the current node sets O and O′. The in-
tersection list U is empty.

2. Get the intersections Ui for the children of
both O and O′ in layer i. Add Ui to U , and
then update both O and O′ with their children
until reaching the deepest leaves.

3. For precision (P ), recall (R) and F1 score F1,
we define P = Size(U)

Size(T ′) , R = Size(U)
Size(T ) , F1 =

2×P×R
P+R .

The Strict-F1 metric is challenging because it
supposes that if the predicted parent sememe node
is incorrect, all its corresponding children sememes
are not considered.

Edge, Vertex Inspired by the classical evaluation
metrics in structure learning tasks such as taxon-
omy induction (Bordea et al., 2016), we also use
the Edge and Vertex metrics. The former evaluates
the precision, recall, and F1-score after breaking
down trees into edges, while the latter computes
the non-hierarchical prediction result after breaking
down trees into nodes.

4.5 Main Results

The experimental results for all the models are
shown in Table 1, from which we observe that:

(1) TaSTG model reaches the highest F1 score,
which indicates that Tree-attention works more con-
servatively than the other models. All transformer-
based models significantly outperform the NSTG
model, which is mainly because NSTG merely
makes predictions based on similar synsets and
existing sememe pairs, while 11.5% synsets in the
test set have unseen sememe pairs, which are hard
for NSTG to predict.

(2) Removing the Distance embedding and con-
verting the Depth embedding to Forward embed-
ding both result in a negative impact on the model’s
performance. This suggests that in tree-structured
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Figure 3: The average score of Distance Embedding of
different heads.
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Figure 4: Visualization of computation results of differ-
ent Depth embedding.

input, it’s more important to focus on topologically
similar nodes. And the gain of Depth embedding
is much more than that of Distance embedding,
which might be because the number of learnable
parameters for tree structure in Depth embedding
is much more.

(3) Differences between the BLEU are smaller
than those of F1, which indicates that the BLEU
score may not capture the hierarchical similarity
between the output tree and the answer.

5 Analysis

In this part, we further discussed the efficiency of
positional attention and analyzed the performance
of our model in different tree complexity, and make
a case analysis of our models.

5.1 Hierarchical Feature Capture

In this section, we study whether Tree-attention
learns hierarchical structures. And we analyze the
performance of Positional attention in structure
reconstructing.
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Figure 5: Test results over the complexity of trees. Confidence intervals shown in the figures are estimated with a
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Visualization of Positional Attention
Considering that the most straightforward way of
interpreting the hierarchical features is to visualize
the attention scores, we plot the heat-map of our
Positional attention result.

The average scores of Distance embedding of
different heads are shown in Figure 3. We can
explicitly see that when the distance is small, the
Positional attention bias is high, which indicates
that our Distance embedding mainly focuses on
topologically similar nodes. The bias is lower when
distance is 2, we guess this is used to eliminate the
influence of brother nodes, in which depths are the
same and the Depth encoding score is high.

Then we visualize the Depth embedding compu-
tation result of different depths, the result is shown
in Figure 4. Knowing that we define BACK token
in odd depth and sememe node in even depth, we
plot the score with and without BACK token. From
the result, we can see that:

(1) The result in the deeper layer tends to be
high, which means when generating atomic steps,
models focus more on longer tree paths, this may be
because different sememe paths indicate different
dimensions of senses, and during generating a new
path, models need to avoid the existing paths.

(2) In Figure 4(a), scores of depth-0 are much
lower than others. It is because depth-0 repre-
sents START, which is noise when generating other
nodes. Likely, BACK token in even columns retains
a lower score. Our model captures this feature and
focuses more on meaningful nodes.

(3) For a row in Figure 4(b) (i < j), the score
is higher when the depth is closer; and for a
column(i > j), the score is higher when the depth
is far, which indicates that during generation, our
models focus more on succeeds, and focus more

Method BLEU Strict Edge Vertex

NSTG 23.9 44.3 46.9 65.4
TSTG 38.2 69.7 71.9 82.6

TaSTG 35.9 70.3 72.5 82.1
TaSTG-D 32.1 67.6 70.3 81.0
TaSTG-B 33.8 69.5 72.4 82.0

Table 2: The Restricted evaluation result of different
models.

on closer ancestors.
From the visualize, we can directly see that our

model successfully captures the hierarchical feature
of tree-structured input by using Depth embedding
and Distance embedding.

Structure Reconstruction Ability
To better measure the ability of models to capture
hierarchical information, we design a Restricted
evaluation, during which we provide correct se-
memes without structures for our models and ask
the models to predict structures for the input se-
memes. This evaluation focuses on evaluating the
structure organization ability of our models in STG.
Especially, We ignore the synset who have sememe
tree of size 1 in Restricted evaluation, because this
has no structural information. Results are demon-
strated in Table 2, from which we can observe that:

(1) All the models achieve significant improve-
ment over the results in Table 1. It indicates that
the major challenge for the STG task comes from
selecting appropriate candidate sememes at each
level.

(2) NSTG model shares the lowest gain because
it tends to give a relatively conservative prediction,
resulting in the lowest Recall score ( 36.6 in the
restricted test compared with 53.3 of TaSTG). In
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Type Definition Ground Truth Our Prediction

Metaphorical 

Rare Sememe

A Muslim republic that occupies 

the heartland of ancient south 

Asian civilization in the Indus 

River valley; achieved 

independence from the United 

Kingdom in 1947

Explicit Rare 

Sememe

Remote city of Kazakhstan that 

(ostensibly for security reasons) 

was made the capital in 1998

Related 

Sememe

Bring together in a common cause 

or emotion

Confusing 

Structure

The status of being born to 

parents who were not married

Capital

City

ProperName

KazakhstanPlace
ProperName

Kazakhstan

CityPlace

Ally ComeTogether

Politics

Pakistan

Country

ProperName

Place

Asia

Politics

ProperName

Country

Asia

Place

Lineal

JuniorHuman

Family

Unlawful GetMarried

Unmarried

Human

Family

Junior
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Figure 6: Some representative cases of STG.

the contrast, the Base transformer model gener-
ates big trees (18% larger than TaSTG) and gets a
higher Recall score in the restricted test, gaining
most improvements in the restricted test, perform-
ing similarly with TaSTG.

However, our STG models’ performances are
far from perfect, which implies that understanding
sememe tree structures is still challenging.

5.2 Sememe Tree Complexity (STC) Analysis
In order to further investigate our models under
different scenarios and get a deeper understanding
of STG tasks, we further conduct three auxiliary
experiments over different levels of sememe tree
complexity (STC). Here we define the STC as the
annotated sememe number of target words, depth
of target tree, and number of terminal nodes in a
tree. We conduct these experiments with Strict-
F1 on Open evaluation due to limited space. We
combine results of words that have more than 8
sememes, which is deeper than 6, or which have
more than 5 terminal nodes since there are less than
1%. From the result, we can see that:

In Figure 5(a),Figure 5(b), we can see that pre-
diction performance first increases and then drops
with the growth of tree size and depth, which indi-
cates that the STG task is difficult both when there
are too few or many sememes in synset. This is in
compliance with previous work Qi et al. (2020).

Since the big size and high depth of a tree may
not absolutely represent high complexity, we also

implement the performance of models with the
number of terminal nodes, et tree paths, the result
are shown in Figure 5(c).

(1) With the help of Depth embedding and Dis-
tance embedding, TaSTG reaches the highest score
in all the cases. And base transformer model per-
forms worse when there are fewer tree paths.

(2) Due to the number of learnable parameters of
structure capture, TaSTG-B performs much better
than TaSTG-D. And the gain of Distance embed-
ding and Depth embedding is huge when there are
more tree paths. This is because Distance embed-
ding distinguishes nodes from different tree paths.

5.3 Case Study
To show the insights and challenges intuitively, we
give some representative cases in Table 6 and make
a qualitative case analysis of our model.

(1) Rare Sememe: Some predictions include
very rare sememes. This kind of case challenges
our model to get the meaning of sememe from a
few train data. Our model successfully captures
rare information from definition when it appears.
For Example, our model learns the connection with
sememe "Kazakhstan" and the word "Kazakhstan",
because it appears a few times in the train set. How-
ever, in some predictions, definitions don’t directly
imply the meanings of some sememes, and it’s diffi-
cult for our model to make such predictions without
extra training data. For example, our model cannot
predict “Pakistan” from the definition. This kind
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of case challenges models on learning sememe def-
initions, but it is not contained in our train set.

(2) Related Sememe: The most common error
type is Related Sememes (e.g., predicting "Come-
Together" while the correct sememe is "Ally"). It
implies that learning BabelNet’s annotation pref-
erences to distinguish related sememes that only
have minor differences is still challenging for cur-
rent STG models.

(3) Confusing Structure: Some definitions of
synsets have rich meaning. For example, our model
predicts correct sememes for “premarital preg-
nancy” but the incorrect structure, which shows
the challenge of predicting correct structures. How-
ever, tackling the confusing structure of sememes
is a difficult problem even for human experts.

6 Conclusion and Future Work

In this paper, we handle the structured sememe
prediction task for the first time. We propose a
Transformer-based tree generation model by adapt-
ing the attention mechanism to trees. Experimental
results show that our model outperforms baselines
including the general tree Transformer. We also
conduct extensive experiments and detailed analy-
ses to demonstrate the different properties of our
models and the challenges of the task.

We will explore the following research direc-
tions in the future: (1) We will better measure the
semantic similarity of tree nodes. In this paper, the
Strict-F1 score only focuses on the structure and ig-
nores the semantic similarity of generated sememe
pairs with the answer. (2) We will further explore
to import the tree-attention mechanism in all sub-
layers of the decoder and figure out the influence.
(3) We will try to combine our method with other
sememe-based applications and further analyze the
influence of the structure information of sememes.
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