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Abstract

Unsupervised constrained text generation aims
to generate text under a given set of constraints
without any supervised data. Current state-of-
the-art methods stochastically sample edit po-
sitions and actions, which may cause unneces-
sary search steps. In this paper, we propose
PMCTG to improve effectiveness by searching
for the best edit position and action in each step.
Specifically, PMCTG extends perturbed mask-
ing technique to effectively search for the most
incongruent token to edit. Then it introduces
four multi-aspect scoring functions to select
edit action to further reduce search difficulty.
Since PMCTG does not require supervised data,
it could be applied to different generation tasks.
We show that under the unsupervised setting,
PMCTG achieves new state-of-the-art results
in two representative tasks, namely keywords-
to-sentence generation and paraphrasing1.

1 Introduction

Constrained text generation is the task of generat-
ing text that satisfies a given set of constraints, and
it serves many real-world text generation applica-
tions, such as dialogue generation (Li et al., 2016)
and summarization (See et al., 2017). There are
broadly two types of constraints: Hard constraints
such as including a set of given words or phrases
in the generated text. Example 1 in Table 1 shows
that the keywords “You” and “beautiful” must oc-
cur in the generated sentence. Soft constraints such
as acquiring the generated text to be semantically
similar to the original text. Example 2 in Table 1
shows a pair of paraphrases where “What are the
effective ways to learn cs?” and “How to learn cs
effectively?” share a similar meaning.

Conventional approaches model the task in an
encoding-decoding paradigm with a supervised
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No. Original Text Generated Text

1
You,
beautiful

You are so beautiful .

2
How to learn
cs effectively?

What are the effective
ways to learn cs?

Table 1: Examples on constrained text generation.

setting (Prakash et al., 2016; Gupta et al., 2018).
However, these methods have certain shortcom-
ings for two constrained generation tasks. For hard
constrained text generation, without external con-
strained means, these methods are difficult to guar-
antee that the generated text can satisfy all con-
straints. For soft constrained one, conventional
methods treat it as a machine translation (MT) task
(Sutskever et al., 2014) and require massive par-
allel supervised data for training. Unfortunately,
constructing such datasets is resource-intensive. In
addition, domain-specific supervised models may
be difficult to transfer to new domains. (Li et al.,
2019).

Recently, unsupervised text generation is pro-
posed to address the above challenges. There are
mainly two research directions: Beam search-based
method aims to generate candidates in order from
left to right that satisfy the constraints in each step,
inspired by MT methods (Hokamp and Liu, 2017;
Post and Vilar, 2018). However, the search space of
MT systems is relatively small, while when applied
to other generation tasks, such as paraphrase, this
approach does not work as optimally as expected
because of a much larger search space (Sha, 2020).
Local edit-based method represented by CGMH
(Miao et al., 2019) and USPA (Liu et al., 2020) is
another effective solution. These methods propose
stochastic local edit strategies to search for reason-
able sentences in a huge search space based on the
given constraints. One main concern is that these
methods may take a long time to search for the
optimal solution because they are based on stochas-



tic strategies. Intuitively, they need more search
steps to converge. G2LC (Sha, 2020) utilizes gra-
dients to determine edit positions and actions to
improve search effectiveness. But it still relies on
supervised data.

Dedicated to improving the local edit-based
methods, in this paper, we propose a framework
PMCTG (Perturbed Masking for Constrained Text
Generation) for constrained text generation. PM-
CTG focuses on controlling the search direction
and reducing the search steps by searching for the
best edit position and action at each step. Specif-
ically, PMCTG extends perturbed masking (Wu
et al., 2020) from a pre-trained BERT model (De-
vlin et al., 2019) to find the best edit position in the
sequence. Perturbed masking aims to estimate the
correlation between tokens in a sequence, which
can be naturally used to find the edit location. We
also propose a series of scoring functions for differ-
ent tasks to select the edit action. PMCTG does not
rely on supervised data and only needs a pre-trained
BERT model to perform perturbed masking.

We evaluate PMCTG in two constrained text gen-
eration tasks, namely keywords-to-sentence gener-
ation and paraphrasing. Experimental results show
that PMCTG tends to achieve new state-of-the-art
performance over multiple baselines. In summary,
the contributions are as follows:

1. We extend perturbed masking to constrained
text generation which can find edit positions
more effectively.

2. We design different scoring functions to se-
lect the best action effectively. With different
scoring functions, PMCTG can be extended to
various generation tasks (Kikuchi et al., 2016;
Ficler and Goldberg, 2017; Hu et al., 2017).

3. We demonstrate our method’s state-of-the-art
performance in keywords-to-sentence genera-
tion and paraphrasing tasks.

2 Related Work

2.1 Constrained Text Generation
Constrained text generation is formulated as a
supervised sequence-to-sequence problem under
the encoding-decoding paradigm (Sutskever et al.,
2014). For example, (Prakash et al., 2016) and (Li
et al., 2019) respectively propose a stacked resid-
ual LSTM network and a transformer-based model
(Vaswani et al., 2017), and (Gupta et al., 2018) pro-
pose to leverage a combination of variational au-
toencoders (VAEs) with LSTM models to generate

paraphrases. A new sentence generation model is
proposed by (Guu et al., 2018), where a prototype
sentence is first extracted from the training corpus
and then edited into a new sentence. However,
these methods do not support constraint integration
(Miao et al., 2019). Later, some works have at-
tempted to add constraints to the generated models.
(Wuebker et al., 2016) and (Knowles and Koehn,
2016) utilize prefixes to guide the target text gen-
eration. (Mou et al., 2016) use pointwise mutual
information (PMI) to predict a keyword and treat
it as a constraint to generate target text. However,
these methods always bind the constraints to the
original model and are therefore difficult to apply
to new domains and new generation models (Li
et al., 2019). Moreover, the above approaches rely
on an adequate parallel supervised corpus, which is
hard to obtain in real-world application scenarios.

Unsupervised constrained text generation has be-
come a research hotspot due to its low training cost
and mitigation of insufficient training data. VAEs
and their variants (Bowman et al., 2016; Roy and
Grangier, 2019) are leveraged to generate sentences
from a continuous latent space. These methods can
effectively get rid of the reliance on supervised
datasets but remain difficult to control and incorpo-
rate generative constraints.

Beam search is a representative approach for
unsupervised constrained text generation. Grid
Beam Search (GBS) (Hokamp and Liu, 2017) is
an algorithm that extends beam search by allowing
the inclusion of pre-specified lexical constraints.
(Post and Vilar, 2018) propose Dynamic Beam Al-
location (DBA), a much faster beam search-based
method with hard lexical constraints. (Zhang et al.,
2020) propose an insertion-based approach consist-
ing of insertion-based generative pre-training and
inner-layer beam search. For the tasks where the
search space is limited (represented by machine
translation), these methods work well. However,
when faced with a large search space, they do not
work as optimally as expected (Sha, 2020).

Local edit-based methods have attracted atten-
tion recently, as they can help to reduce search
spaces. CGMH (Miao et al., 2019) applies
the Metropolis-Hastings algorithm (Metropolis
et al., 1953) to unsupervised constrained generation.
UPSA (Liu et al., 2020) is another local edit-based
method. It directly models paraphrasing as an op-
timization problem and uses simulated annealing
to solve it. However, these models may require



many steps and running time to generate reason-
able sentences since they are based on stochastic
strategies. (Sha, 2020) proposes a gradient-guided
method G2LC that uses token gradients to deter-
mine the edit actions and positions, making the
generation process more controllable. However,
a problem with G2LC is that it still relies on the
supervised corpus to train a binary classification
model to serve their semantic similarity objective.

2.2 Perturbed Masking

Perturbed masking (Wu et al., 2020) is a parameter-
free probing technique to analyze and interpret
pre-trained models. Based on a pre-trained BERT-
based model with masked language modeling
(MLM) objective, it can measure the impact a to-
ken has on predicting another token. It is originally
used in syntax-based tasks such as syntactic parsing
and discourse dependency parsing.

In this paper, we extend perturbed masking to
constrained text generation. For the edit-based ap-
proach edits only one token at each step, we need
to find the token with the highest incongruency to
edit. Our insight is to use perturbed masking to
present the congruency between different tokens.
We believe that the token with the weakest cor-
relation with its adjacent tokens has the highest
incongruency and thus it is the most probable to
edit. Perturbed masking can evaluate the impact
of one token on another and a high impact factor
means that the token has a high impact on its ad-
jacent tokens and we consider these chunks (the
current token with its adjacent tokens) are congru-
ent. Therefore, we can edit the tokens in chunks
with low impact to make these chunks more con-
gruent.

3 Methodology

In this section, we would introduce the proposed
PMCTG by first introducing the specific process
of using perturbed masking to select edit positions,
and then explaining the proposed scoring functions
and the use of them to select the edit actions.

3.1 Edit Position Selection

Most previous works select edit locations stochasti-
cally, which lead to many unnecessary search steps.
To reduce the search steps, we propose to use per-
turbed masking (Wu et al., 2020) to sample the edit
position.

Background. Perturbed masking technique is pro-
posed to assess the inter-token information (i.e.,
the impact one token has on another token in a
sequence) based on masked language modeling
(MLM). It is originally used for dependency pars-
ing.

Formally, given a sequence with n tokens x =
{xi}ni=1 and a pre-trained BERT-based model (De-
vlin et al., 2019) trained with MLM objective, we
obtain contextual representations for each token
H(x)i. To quantify the impact a token xj has on
another token xi, we conduct the following three-
step calculation:

1. Replace xi with [MASK] token and feed the
new sequence x\{xi} into BERT, a contex-
tual representation denoted as H(x\{xi})i
for xi is obtained.

2. Replace xi and xj with [MASK] token and
feed the new sequence x\{xi, xj} into BERT,
another contextual representation denoted as
H(x\{xi, xj})i for xi is obtained.

3. Given a distance metric d(, ), compute the
difference between two vectors I(x|xj , xi) =
d(H(x\{xi})i, H(x\{xi, xj})i). Euclidean
distance is leveraged in this paper.

I(x|xj , xi) indicates the impact xj has on xi,
where a higher value indicates a high impact,
and vice versa. Intuitively, if H(x\{xi})i and
H(x\{xi, xj})i are similar, it means that the pres-
ence or absence of xj has little effect on the predic-
tion of xi, thus reflecting the low importance of xj
to xi.
Position Selection. It is natural to apply perturbed
masking to select the edit position for constrained
text generation. Based on perturbed masking tech-
nique, we compute the edit score for each token
in the sequence and then sample the token with
the highest score to edit. The token with minimal
impact on its adjacent tokens indicates that it has
the weakest correlation with adjacent tokens and
therefore requires edit. We add the special tokens
[CLS] and [SEP ] to the original sentence and then
use the pre-trained BERT to calculate the edit score
for each token:

ESi = 1− 1

2
(I(x|xi, xi+1) + I(x|xi, xi−1))

(1)

Then we can get an edit score vector ES =
{ESi}ni=0. Later, we feed it into a softmax layer
and obtain the edit probabilities:



pediti =
exp(ESi)∑
j exp(ESj)

(2)

After that, the pedit is utilized as the weights to
sample the edit position xe in x where e indicates
the edit position index.

3.2 Edit Action Selection

After sampling the edit position, next we need to
determine the edit action. The three edit actions
we focus on are: insert, replace and delete. Specifi-
cally, our strategy in this step is to pre-implement
the three actions first and then sample the actions
based on their action scores. When scoring inser-
tion action, we simply make the equal probability
of the front or back of the position for token in-
sertion. We first introduce the scoring functions
for different tasks and then explain the edit action
selection based on the action scores.

3.2.1 Scoring Function Design
We propose multiple scoring functions to improve
the generated text. Given the initial sentence x0

with n tokens and the generated sentence x∗ with
m tokens, the scoring functions include fluency,
editorial rationality, semantic similarity, and diver-
sity.
Fluency. The primary condition for a reasonable
sentence is fluency, thus we use the average nega-
tive log-likelihood to estimate a sentence’s fluency
based on a forward language model. The score is
calculated as:

Sflu(x∗) = − 1

m

m∑
i=1

logpLM (x∗,i|x∗,<i) (3)

Editorial Rationality. Since the sentence gen-
eration process is based on local edits, we fur-
ther use perturbed masking to design a local edit
score for different actions to evaluate their ratio-
nality. After a replacement action is executed
at index i in x0, we obtain the sentence x∗ =
{x0,1, x0,2, . . . x0,i−1, x

′, x0,i+1, . . . , x0,n}, where
x′ is the replaced token and m = n. Then we
define the edit score as:

Sedit(x∗) =
1

2
(I(x∗|x′, x0,i+1) + I(x∗|x′, x0,i−1)) (4)

Similarly, after an insertion action, we obtain
x∗ = {x0,1, x0,2, . . . x0,i, x′, x0,i+1, . . . , x0,n},
where x′ is the inserted token and m = n + 1.
The edit score is calculated as:

Sedit(x∗) =
1

2
(I(x∗|x′, x0,i+1) + I(x∗|x′, x0,i)) (5)

After a deletion action, we obtain
x∗ = {x0,1, x0,2, . . . x0,i−1, x0,i+1, . . . , x0,n},
where m = n − 1. The edit score calculated for
deletion is a little different from replacement and
insertion action:

Sedit(x∗) =
1

2
(I(x∗|x0,i−1, x0,i+1)+

I(x∗|x0,i+1, x0,i−1))
(6)

Semantic Similarity. The semantic similarity con-
sists of keyword similarity and sentence similarity.
We use KeyBERT (Grootendorst, 2020) to extract
the keyword set K from x0. And the pre-trained
BERT is leveraged to encode x0 and x∗, where
ik = idx(k) indicates the index of keyword k in
x0. The keyword similarity is defined as finding
the closest token in x∗ by computing their cosine
similarity:

Ssem,key(x∗,x0) =

1

|K|
∑
k∈K

max
i

(cos(H(x0)ik, H(x∗)i))
(7)

As for the sentence similarity, assuming that
H(x) indicates the [CLS] representation in x from
BERT and is leveraged to present the whole sen-
tence (Devlin et al., 2019), we define the sentence
similarity Ssem,sen(x∗, x0) as:

Ssem,sen(x∗,x0) = cos(H(x0), H(x∗)) (8)

Altogether, the semantic similarity score is:

Ssem(x∗,x0) = Ssem,key(x∗,x0) + Ssem,sen(x∗,x0)
(9)

Diversity. Followed (Liu et al., 2020), a BLEU-
based (Papineni et al., 2002) function is adopted
to evaluate the expression diversity of the original
and generated sentence.

Sexp(x∗,x0) = (1−BLEU(x∗,x0)) (10)

3.2.2 Action Scoring
As mentioned above, after sampling the edit po-
sition i, we need to determine the edit action by
re-implementing three actions and sampling the ac-
tions based on their action scores. We generate the
inserted and replaced candidate x′ from a language
model such as LSTM (Hochreiter and Schmidhu-
ber, 1997) and GPT (Radford et al., 2019).



pcandidate = pLM (x0,i|x0,<i) (11)

We use pcandidate as weights to sample x′.After
obtaining the edit position i and candidate x′, we
need to calculate the edit score for each action. We
adopt Sflu and Sedit the our scoring function for
keywords-to-sentence generation:

Shard(x∗) = λfluSflu + λeditSedit (12)

and Sflu, Ssem, Sexp and Sedit for paraphrasing:

Ssoft(x∗) =λfluSflu + λeditSedit+

λsemSsem + λexpSexp
(13)

Notably, since different scores are in different
magnitudes, they need to be normalized to avoid
the dominance of one specific score. After scoring
different actions, we use the scores as weights to
sample the edit action.

3.3 Overall Searching Process
With x0 (given keywords in the keywords-to-
sentence generation task or original sentence in
the paraphrasing task) as input, we repeat the
above steps including edit position selection with
perturbed masking and edit action selection with
scoring functions for local edit. Until the maxi-
mum searching steps, we choose the sentence that
achieves the highest score as the final output, ac-
cording to (12) for keywords-to-sentence genera-
tion task or (13) for paraphrasing task respectively.

4 Experiments

We evaluate our method on two constrained text
generation tasks, namely keywords-to-sentence
generation and paraphrasing.

4.1 Keywords-to-sentence Generation
Experimental Setting. Keywords-to-sentence
generation aims to generate a sentence contain-
ing the given keywords which is a representa-
tive hard constrained text generation task. We
conduct keywords-to-sentence generation exper-
iments on the One-Billion-token dataset2 (Chelba
et al., 2014). Two language models for generation,
namely two-layer LSTM (followed as (Miao et al.,
2019; Sha, 2020)) and GPT (Radford et al., 2019),
are evaluated. Following (Gururangan et al., 2020),
in order to adapt the language models to the specific
domain, we randomly sample 5 million sentences

2http://www.statmt.org/lm-benchmark/

Score Description
1.00 Completely fluent.

0.75
Generally fluent with a few
grammatical errors.

0.50
Generally fluent with many
grammatical errors.

0.25
The whole sentence are not fluent,
but parts of it do.

0.00 Not readable.

Table 2: Fluency scoring guideline.

to continually pre-train BERT-based-cased3 and
GPT24. 3 thousand sentences are held out as the
test set.

As for hyperparameters, for each test sentence,
we randomly sample 1 to 4 keywords as hard con-
straints. Following previous works (Miao et al.,
2019; Sha, 2020), the initial sentence for searching
is the concatenation of the keywords. The maxi-
mum searching step set in this task is 100. And
λflu and λedit are set as 1 in equation (12). Besides,
when the keyword indexes are sampled as edit po-
sitions, we directly conduct insert action since the
keywords cannot be replaced and deleted.

As for evaluation metrics, the generated target
sentence is measured by negative log-likelihood
(NLL) loss. NLL is given by a third-party language
model which is an n-gram Kneser-Ney language
model (Heafield, 2011) trained in a monolingual
English corpus from WMT185. In addition to auto-
matic evaluation metrics, we also introduce human
evaluation. Specifically, we invite 3 experts who
are fluent English speakers to score the generated
sentences according to their quality. The score
ranges from 0 to 1 with an accuracy of two deci-
mal places, where 1 indicates the best score. The
automatic and human evaluation criteria are consis-
tent with previous works (Sha, 2020). The scoring
guideline is shown in Table 2.
Baseline. We compare our method with several
advanced methods:

• sep-B/F (Mou et al., 2016) is a variant of
the backward forward model. In sep-B/F, the
backward and forward sequences respectively
behind and after the keyword are generated
separately. It supports only one keyword.

3https://huggingface.co/bert-base-cased
4https://huggingface.co/gpt2
5http://www.statmt.org/wmt18/translation-task.html



Models NLL Score (Human Evaluation)
1 2 3 4 avg 1 2 3 4 avg

seq-B/F 7.80 / / / / 0.11 / / / /
asyn-B/F 8.30 / / / / 0.09 / / / /
GBS 7.42 8.72 8.59 9.63 8.59 0.32 0.55 0.49 0.55 0.48
DBA 7.41 8.58 8.54 9.25 8.45 0.43 0.53 0.54 0.59 0.52
CGMH 7.04 7.57 8.26 7.92 7.70 0.45 0.61 0.56 0.65 0.57
G2LC 7.02 7.46 8.01 7.76 7.56 0.47 0.73 0.65 0.67 0.63
PMCTG-GPT2 6.98 7.45 7.69 7.89 7.50 0.51 0.68 0.70 0.72 0.65
PMCTG-LSTM 6.92 7.33 7.93 7.68 7.47 0.53 0.69 0.68 0.74 0.66

Table 3: Performance on keywords-to-sentence generation task. Lower NLL and higher score indicate better result.
1,2,3 and 4 present the keyword numbers and avg indicates the average score.

• asyn-B/F (Mou et al., 2016) is similar to sep-
B/F. The difference is that the two sequences
are generated asynchronously, i.e., the back-
ward sequence is first generated, and then the
forward sequence is generated based on the
backward one.

• GBS (Hokamp and Liu, 2017) is a searching
approach that aims to search for a valid so-
lution in the constrained search space of the
generator with grid beam search.

• DBA (Post and Vilar, 2018) is another beam
search-based approach with a higher search
speed.

• CGMH (Miao et al., 2019) is a stochastic
search method based on Metropolis-Hastings
sampling.

• G2LC (Sha, 2020) is a gradient-guided ap-
proach. It improves CGMH by leveraging
gradient to decide the edit positions and ac-
tions.

Automatic and Human Evaluation Results. Ta-
ble 3 shows the performance of multiple methods
on keywords-to-sentence generation task. Among
different kinds of methods, we can see that the local
edit-based methods work better than beam search-
based methods, indicating their superior search-
ing ability. CGMH can narrow the search space
and make it easy to find higher-quality sentences.
G2LC and PMCTG outperform CGMH, which il-
lustrates the importance of determining the correct
edit position and action for each step. Exploration
and strategies for these two issues can better guide
the model to find a more optimal solution, while
also greatly reducing the waste of potentially non-
essential search steps. Overall, the proposed PM-
CTG model outperforms other methods on average
in both automatic and human evaluation metrics.

PMCTG utilizes perturbed masking technology to
identify edit locations and reflect the reasonable-
ness of edit actions more intuitively and practically.

Compared to previous baselines, our approach
may either require fewer steps to search for the
optimal sentence or equal steps to achieve better
results. In this task, our method needs to run only
100 steps while CGMH needs 200 steps for each
sample and our method can achieve better results
(7.47 vs 7.70 in average NLL). Besides, although
G2LC also only needs to run 100 steps for each
sample, our method (PMCTG-LSTM) gives better
results (7.47 vs 7.56 in average NLL). Although the
process requires another BERT model for perturbed
masking, we transform a sentence to a batch of
vectors and only need to call the BERT model once
per search step to calculate the perturbed masking
scores for all tokens. Compared to CGMH and
UPSA, our method makes full use of each search
step to a certain extent, reducing the extra time
spent on random strategies.

Interestingly, PMCTG-LSTM seems to be supe-
rior to PMCTG-GPT2 in this task. For one thing,
part of the superiority of GPT2 to LSTM is in the
semantic richness of the generated sentences. How-
ever, in the target dataset, the sentence form and
semantics are relatively simple, and therefore the
performance of LSTM is comparable to that of
GPT2 in cases where there is no need to generate
sentences with complex semantics. For another,
since keywords are locally ill-formed and seman-
tically distant, the information of keywords may
be difficult to support GPT2 to generate reason-
able candidates without taking backward probabil-
ity into account. In contrast, the two-layer LSTM
considers both forward and backward probabilities
and may be more suitable for generating candidates



Keywords Sentences
worried We are very worried about there .

agreement
To achieve such an agreement ,
it is important .

competition,
action

The shots of competition and
action are on display here .

change,
hours

This will change it in the next
24 hours .

The,greatest,
court

The world’s greatest size court
will be presented to you .

I,things,
him

I can do lots of things for him .

body,
advanced,
July,funeral

The body was found advanced
in July and funeral were held
in September .

Miley,more,
final,spots

But Miley Cyrus has played
more than three times in
the finaltwo spots .

Table 4: Generated examples of PMCTG-LSTM in
keywords-to-sentence generation task.

Score Description

1.00
Two sentences have the completely
same meanings.

0.75
Two sentences have similar meanings
with some different details.

0.50
Two sentences generally have similar
meanings with many different details.

0.25
Two sentences generally have different
meanings with some identical details.

0.00
Two sentences have completely
different meanings.

Table 5: Relevance scoring guideline.

between two less correlated tokens.
We find that more keywords may lead to better

results, one possible reason is that more keywords
can further narrow the search space and facilitate
the search of the model.
Case Study. Some generated examples of PMCTG-
LSTM are shown in Table 4. We observe that the
proposed model can generate fluent and meaningful
sentences while containing the given keywords.

4.2 Paraphrasing

Experimental Setting. Paraphrasing aims to con-
vert a sentence to a different surface form but with
the same meaning. We evaluate PMCTG on two
paraphrase datasets, namely Quora6 and Wikian-

6http://www.statmt.org/wmt18/translation-task.html

swers (Fader et al., 2013). The Quora question
pair dataset consists of 140 thousand parallel sen-
tences pairs and 640 thousand non-parallel sen-
tences. The Wikianswers dataset contains 2.3 mil-
lion question pairs scrawled from the Wikipedia
website. We also conduct an experiment on two-
layer LSTM (followed as (Miao et al., 2019; Liu
et al., 2020; Sha, 2020)) and GPT2 for better com-
parison. Following previous works (Liu et al.,
2020) again, we randomly sample 20 thousand
sentences respectively in two datasets as test sets
and use the other sentences to continually pre-train
BERT-based-cased and GPT2 for domain adaption
as (Gururangan et al., 2020).

As for hyperparameters, the maximum searching
step set in this task is 50 and λ are all set as 1 in
equation (13). The initial sentence for searching is
the original sentence in the datasets.

In terms of evaluation metrics, we leverage the
representative metrics sentence-level BLEU (Pap-
ineni et al., 2002) and ROUGE (Lin, 2004) as the
basic metrics. In addition, as stated in (Sun and
Zhou, 2012), standard BLEU and ROUGE could
not reflect the diversity between the generated and
original sentences. Therefore, we adopt iBLEU
(Sun and Zhou, 2012) which penalizes the gener-
ated sentences with high similarity with the original
ones as an additional evaluation metric. Besides,
we also invite experts to evaluate the generated
paraphrases. Specifically, we sample 300 sentences
from the Quora test set and ask 3 experts to score
each sentence according to two aspects: relevance
and fluency. The evaluation criterion is again con-
sistent with the previous works (Miao et al., 2019;
Liu et al., 2020). The scoring guidelines are shown
in Table 2 and Table 5.
Baseline. We compare our methods with three
types of baseline:

• Supervised methods are original sequence-to-
sequence models trained in in-domain super-
vised data, including ResidualLSTM (Prakash
et al., 2016), VAE-SVG-eq (Gupta et al.,
2018), Pointer-generator (See et al., 2017),
the Transformer (Vaswani et al., 2017), and
DNPG (the decomposable neural paraphrase
generation) (Li et al., 2019).

• Domain-adapted supervised methods train
models in one domain and then adapt them
to another domain, including shallow fusion
(Gülçehre et al., 2015) and multi-task learning
(MTL) method (Domhan and Hieber, 2017).



Models Quora Wikianswer
iBLEU BLEU R1 R2 iBLEU BLEU R1 R2

ResidualLSTM 12.67 17.57 59.22 32.40 22.94 27.36 48.52 18.71
VAE-SVG-eq 15.17 20.04 59.98 33.30 26.35 32.98 50.93 19.11
Pointer-generator 16.79 22.65 61.96 36.07 31.98 39.36 57.19 25.38
Transformer 16.25 21.73 60.25 33.45 27.70 33.01 51.85 20.70
Transformer+Copy 17.98 24.77 63.34 37.31 31.43 37.88 55.88 23.37
DNPG 18.01 25.03 67.73 37.75 34.15 41.64 57.32 25.88
Pointer-generator 5.04 6.96 41.89 12.77 21.87 27.94 53.99 20.85
Transformer+Copy 6.17 8.15 44.89 14.79 23.25 29.22 53.33 21.02
Shallow fusion 6.04 7.95 44.87 14.79 22.57 29.76 53.54 20.68
MTL 4.90 6.37 37.64 11.83 18.34 23.65 48.19 17.53
MTL + Copy 7.22 9.83 47.08 19.03 21.87 30.78 54.1 21.08
DNPG 10.39 16.98 56.01 28.61 25.60 35.12 56.17 23.65
VAE 8.16 13.96 44.55 22.64 17.92 24.13 31.87 12.08
CGMH 9.94 15.73 48.73 26.12 20.05 26.45 43.31 16.53
UPSA 12.02 18.18 56.51 30.69 24.84 32.39 54.12 21.45
G2LC-Recognizer 14.34 20.13 58.90 32.79 / / / /
G2LC-Generator 14.46 23.27 59.65 33.08 / / / /
PMCTG-LSTM 14.79 23.73 59.21 31.92 25.66 33.87 56.21 21.92
PMCTG-GPT2 15.22 24.37 59.03 32.89 26.13 35.02 56.89 23.21

Table 6: Performance on paraphrasing task. R1 and R2 respectively indicate ROUGE1 and ROUGE2. In this table,
this first/second/third blocks respectively indicate the results of supervised/domain-adapted supervised/unsupervised
methods.

• Unsupervised methods that are free of any
supervised data and easily adapted to multiple
new domains, including VAE (Kingma and
Welling, 2014), CGMH (Miao et al., 2019),
UPSA (Liu et al., 2020), and the recurrent
state-of-the-art method G2LC (Sha, 2020).
Notably, G2LC has two variants of G2LC-
Generator and G2LC-Recognizer.

Automatic Evaluation Results. Table 6 presents
the results of multiple methods on the paraphrasing
task. From the first part of Table 6, we can see that
supervised methods significantly outperform the
other two kinds of methods. The supervised mod-
els were trained on 100 thousand question pairs for
Quora and 500 thousand question pairs for Wikian-
swers. Their superiority indicates the effectiveness
of learning knowledge from massive parallel data.
However, such in-domain supervised data is hard
to obtain in real-world applications.

Besides, the second section of Table 6 shows the
domain-adapted supervised models’ performance.
These models are trained in one domain (Quora
or Wikianswers) and then evaluated in another do-
main (Wikianswers or Quora). Their performances
are much lower than in-domain supervised models’

performances. This demonstrates the poor gener-
alizability of supervised models and calls for the
need for unsupervised methods.

The last section of Table 6 shows the results
of multiple unsupervised methods. VAE seems to
work worst on both datasets, which suggests that
paraphrasing by latent space sampling performs not
as well as local edit methods. PMCTG achieves
the best performance in most cases, which indi-
cates the effectiveness of PMCTG again. Unsu-
pervised PMCTG does not require parallel data
and can easily generalize to new domains, thus
some unsupervised methods tend to achieve higher
performance than the domain-adapted supervised
models. In addition, it is worthwhile to note that
the performance of some unsupervised methods
(UPSA, G2LC, and PMCTG) is even better than
some supervised methods (Residual LSTM and
VAE-SVG-eq), which indicates that the gap be-
tween supervised and unsupervised methods has
narrowed due to the effective searching strategies
of the local edit-based methods. In addition, differ-
ent from the keywords-to-sentence generation task,
GPT2 works better than two-layer LSTM in the
paraphrasing task. We believe that given a partially



Method Relevance Fluency
VAE 0.53 0.64
CGMH 0.62 0.70
UPSA 0.75 0.73
G2LC(Recognizer) 0.79 0.77
G2LC(Generator) 0.81 0.78
PMCTG-GPT2 0.76 0.81

Table 7: Human evaluation results on paraphrasing.

Type Sentence
Ori what can make physics easy to learn?
Gen how to learn physics easily?
Ref how can you make physics easy to learn?

Ori
is it possible to pursue many different things
in life?

Gen is it good to buy many different things in life?

Ref
how do i refuse to choose between different
things to do in my life?

Ori how do i choose a journal to publish my paper?

Gen
how do you choose a journal to publish your
first book?

Ref where do i publish my paper?
Ori where can i get free books to read or download?
Gen where did i download free books to read?
Ref where can i get free books?

Table 8: Generated examples of PMCTG-GPT2 in para-
phrasing task.

fluent text, GPT2 can generate more reasonable
candidates due to its powerful language modeling
capability.
Human Evaluation Results. From Table 7, we
show PMCTG-GPT2 achieves state-of-the-art per-
formance in terms of fluency, but still suffers from
relevance. We plan to improve its relevance in
future research.
Case Study. Table 8 lists some representative gen-
erated examples from PMCTG-GPT2. They show
the four most common types of paraphrasing for
the proposed method. The first type is the change
of syntax such as the interchange of “what can. . . ”
and “how to. . . ” as in the first example. The sec-
ond type is the change of adjective such as the sec-
ond example where the “possible” is changed into
“good”. The third type is the change of personal
pronouns such as the interchange of “you” and “I”
in the third example. The last type is the change of
tense, the most common is the interchange of gen-
eral past tense and general present tense as the last
example. In general, one limitation of the proposed
model is the relatively low expressive diversity of

generated sentences. One possible reason is that
since each search step modifies only one token, and
the unit of conversion from one expression to an-
other is usually phrases or sentence blocks, thus the
model may be biased not to search in that direction.

5 Conclusion

We propose a method PMCTG to improve the pre-
vious stochastic searching methods in the topic
of unsupervised constrained generation. PMCTG
leverages perturbed masking technique to find the
best edit position and leverages newly designed
multiple scoring functions to decide the best edit
action. We evaluate the proposed method on two
representative tasks: keywords-to-sentence genera-
tion (hard constraints) and paraphrasing (soft con-
straints). Experimental results demonstrate the ef-
fectiveness of the proposed method which achieves
competitive results on three datasets over multiple
advanced baseline methods. We plan to improve
the diversity and relevance of the generated sen-
tences in future work.
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