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Abstract
After a period of decrease, interest in word
alignments is increasing again for their use-
fulness in domains such as typological re-
search, cross-lingual annotation projection and
machine translation. Generally, alignment al-
gorithms only use bitext and do not make
use of the fact that many parallel corpora are
multiparallel. Here, we compute high-quality
word alignments between multiple language
pairs by considering all language pairs to-
gether. First, we create a multiparallel word
alignment graph, joining all bilingual word
alignment pairs in one graph. Next, we use
graph neural networks (GNNs) to exploit the
graph structure. Our GNN approach (i) uti-
lizes information about the meaning, position
and language of the input words, (ii) incorpo-
rates information from multiple parallel sen-
tences, (iii) adds and removes edges from the
initial alignments, and (iv) yields a prediction
model that can generalize beyond the training
sentences. We show that community detec-
tion provides valuable information for multi-
parallel word alignment. Our method outper-
forms previous work on three word alignment
datasets and on a downstream task.

1 Introduction

Word alignments are crucial for statistical machine
translation (Koehn et al., 2003) and useful for many
other multilingual tasks such as neural machine
translation (Alkhouli and Ney, 2017; Alkhouli
et al., 2016), typological analysis (Lewis and Xia,
2008; Östling, 2015; Asgari and Schütze, 2017) and
annotation projection (Yarowsky and Ngai, 2001;
Fossum and Abney, 2005; Wisniewski et al., 2014;
Huck et al., 2019). The rise of deep learning
initially led to a temporary plateau, but interest in
word alignments is now increasing, demonstrated
by several recent publications (Jalili Sabet et al.,
2020; Chen et al., 2020; Dou and Neubig, 2021).

While word alignment is usually considered for
bilingual corpora, our work addresses the problem
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Figure 1: Alignment graph for the verse “It will pro-
duce thorns and thistles for you, and you will eat the
plants of the field.” in a 12-way multiparallel corpus.
Colors represent languages. Each English (yellow)
node is annotated with its word. Red dashed lines cut
links that incorrectly connect distinct concepts. We ex-
ploit community detection algorithms to detect distinct
concepts. This provides valuable information for our
GNN model and improves word alignments.

of word alignment in multiparallel corpora, con-
taining sentence level parallel text in more than two
languages. Examples of multiparallel corpora are
JW300 (Agić and Vulić, 2019), PBC (Mayer and
Cysouw, 2014) which covers the highest number
of languages (1334), and Tatoeba.1 While the per-
language amount of data provided in such corpora
is less than bilingual corpora, they support highly
low-resource languages, many of which are not
covered by existing language technologies (Joshi
et al., 2020). Therefore, these corpora are essen-
tial for studying many of the world’s low-resource
languages.

We consider the task of word alignment for mul-
tiparallel sentences. The basic motivation is that
the alignment between words in languages U and

1https://tatoeba.org
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V can benefit from word-level alignments of U
and V with a translation in a third language W .
Following up on the work of Imani Googhari et al.
(2021), we model multilingual word alignments
with tools borrowed from graph theory (commu-
nity detection algorithms) combined with neural
network based models, specifically, the graph neu-
ral network (GNN) model of Scarselli et al. (2009).

GNNs were proposed to extend the powerful
current generation of neural network models to the
processing of graph-structured data and they have
gained increasing popularity in many domains (Wu
et al., 2020; Sanchez-Gonzalez et al., 2018; He
et al., 2020). GNNs can incorporate heterogeneous
sources of signal in the form of node and edge
features. We use this property to take into account
properties of the whole alignment graph, notably its
tendency to cluster into communities, see Figure 1.

With our new proposed methods, we obtain im-
proved results on word alignment for three lan-
guage pairs: English-French, Finnish-Hebrew and
Finnish-Greek. As a demonstration of the im-
portance of high-quality alignments, we use our
word alignments to project annotations from high-
resource to low-resource languages. We improve
a part-of-speech tagger for Yoruba by training it
over a high-quality dataset, which is created using
annotation projection.

Contributions: i) We propose a graph neural
network model to enhance word alignments in a
multiparallel corpus. The model incorporates a
diverse set of features for word alignments in mul-
tiparallel corpora and an elegant way of training it
efficiently and effectively. ii) We show that commu-
nity detection improves multiparallel word align-
ment. iii) We show that the improved alignments
improve performance on a downstream task for
a low resource language. iv) We propose a new
method to infer alignments from the alignment
probability matrix. v) We will make our code pub-
licly available.

2 MultiParallel Word Alignment Graphs

2.1 Building MultiParallel Word Alignment
Graphs

Our starting point is the work of Imani Googhari
et al. (2021), who introduce MPWA (MultiParallel
Word Alignment), a framework that utilizes the syn-
ergy between multiple language pairs to improve
bilingual word alignments for a target language pair.
The rationale is that some of the missing alignment

edges between a source and a target language can
be recovered using their alignments with words in
other languages.

An MPWA graph is constructed using the fol-
lowing two steps:

1. create initial bilingual alignments for all lan-
guage pairs in a multiparallel corpus using a
bilingual word aligner;

2. represent the bilingual alignments for each
multiparallel sentence in a graph containing
one vertex for each token occurring in any lan-
guage and one edge for each initial bilingual
word alignment link.

Potentially missing alignment links are then added
based on the graph structure in an inference step,
casting the word alignment task as an edge pre-
diction problem. Figure 1 gives an example of a
multiparallel word alignment graph for a 12-way
multiparallel sentence.

Imani Googhari et al. (2021) use two traditional
graph algorithms, Adamic-Adar and non-negative
matrix factorization, for predicting new alignment
edges from the MPWA graph. However, these
graph algorithms are applied to individual multipar-
allel sentences independently and therefore cannot
accumulate knowledge from multiple sentences.
Moreover, their edge predictions are solely based
on the structure of the graph and do not take ad-
vantage of other beneficial signals such as a word’s
language, relative position and meaning. Another
limitation of this work is that it only adds links
and does not remove any, which is important to
improve precision.

This work addresses these shortcomings by us-
ing GNNs to predict alignment edges from MPWA
graphs.

2.2 Community Detection in Alignment
Graphs

One important advantage of GNNs over traditional
graph algorithms is that they can directly incor-
porate signals from different sources in the form
of node and edge features. We utilize this by tak-
ing into account the following observation: The
nodes in the alignment graph are words in paral-
lel sentences that are translations of each other. If
the initial bilingual alignments are of good qual-
ity, we expect words that are mutual translations
to form densely connected regions or communities;
see Figure 1. These communities should not be
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linked to each other, each corresponding to a dis-
tinct connected component. In other words, ideally,
words representing a concept should be densely
connected, but there should be no links between
different concepts. While, this intuition will not be
true for all concepts between all possible language
pairs, we nonetheless hypothesize that identifying
distinct concepts in a multiparallel word alignment
graph can provide useful information.

To examine to what extent these expectations
are met, we count the components in the original
Eflomal-generated (Östling and Tiedemann, 2016)
graph (see §4.2 for details on the initial alignments).
Table 1 shows that the average number of com-
ponents per sentence is less than three (“Eflomal
intersection”, columns #CC). But intuitively, the
number of components should roughly correspond
to sentence length (or, more precisely, the num-
ber of content words). This indicates that there
are many links that incorrectly connect different
concepts. To detect such links, we use community
detection (CD) algorithms.

CD algorithms find subnetworks of nodes that
form tightly knit groups that are only loosely con-
nected with a small number of links (Girvan and
Newman, 2002). One well-known approach to
CD attempts to maximize the modularity measure
(Newman and Girvan, 2004). Modularity assesses
how beneficial a division of a community into two
communities is, in the sense that there are many
links within communities and only a few between
them. Given a graph G with n nodes and m edges
and G’s adjacency matrix A ∈ Rn×n, modularity
is defined as:

mod =
1

2m

∑
ij

(
Aij − γ

didj
2m

)
I(ci, cj) (1)

where di is the degree of node i. I(ci, cj) is 1
if nodes i and j are in the same community, 0
otherwise.

As exact modularity maximization is intractable,
we experiment with two CD algorithms implement-
ing different heuristic approaches:

• Greedy modularity communities (GMC). This
method uses Clauset-Newman-Moore greedy
modularity maximization (Clauset et al.,
2004). GMC begins with each node in its
own community and greedily joins the pair of
communities that most increases modularity
until no such pair exists.

FIN-HEB FIN-GRC ENG-FRA
#CC F1 #CC F1 #CC F1

Eflomal intersection 2.2 0.404 1.6 0.646 2.2 0.678

GMC 13.7 0.396 10.1 0.375 13.5 0.411
LPC 41.5 0.713 37.1 0.754 46.0 0.767

Sentence length 25.7 23.2 27.4

Table 1: Effect of community detection algorithms
(GMC and LPC) on alignment prediction. #CC: aver-
age number of connected components. F1: word align-
ment performance.

• Label propagation communities (LPC). This
method finds communities in a graph using
label propagation (Cordasco and Gargano,
2010). It begins by giving a label to each node
of the network. Then each node’s label is up-
dated by the most frequent label among its
neighbors in each iteration. It performs label
propagation on a portion of nodes at each step
and quickly converges to a stable labeling.

After detecting communities, we link all
nodes inside a community and remove all inter-
community links. GMC (LPC) on average removes
3% (7%) of the edges. Table 1 reports the average
number of graph components per sentence before
and after running GMC and LPC, as well as the
corresponding F1 for word alignment (see §4.1 for
details on the evaluation datasets). We see that the
number of communities found is lower for GMC
than for LPC; therefore, LPC identifies more can-
didate links for deletion.2 Comparing the number
of communities detected with the average sentence
length, GMC seems to have failed to detect enough
communities to split different concepts properly.
The F1 scores confirm this observation and show
that LPC performs well at detecting the communi-
ties we are looking for.

This analysis shows that CD algorithms com-
pute valuable information for word alignments. To
exploit this in our GNN model, we add node com-
munity information as a node feature; see §3.1.3.

3 Predicting and using MultiParallel
Word Alignments (MPWAs)

3.1 GNNs for MPWA

GNNs can be used in transductive or inductive set-
tings. Transductively, the final model can only be

2LPC may detect more communities than average sentence
length because of null words: words that have no translation
in the other languages, giving rise to separate communities.
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used for inference over the same graph that it is
trained on. In an inductive setting, which we use
here, nodes are represented as feature vectors, and
the final model has the advantage of being applica-
ble to a different graph in inference.

Below is the step-by-step overview of our GNN-
based approach for an MPWA graph:

1. run community detection algorithms on the
initial graph (§2.2);

2. obtain features for the nodes of the graph
(§3.1.3);

3. compute node embeddings from node features
and initial alignment links in the GNN encod-
ing step (§3.1.2);

4. learn to distinguish between nodes that are
aligned together and that are not aligned to-
gether in the GNN decoding step (§3.1.2);

After the GNN model is trained on multiple MPWA
graphs, it is used to infer an alignment probabil-
ity matrix between tokens in a source language
and tokens in a target language for a multiparal-
lel sentence, see §3.1.4. Our method predicts new
alignment links from this matrix, independently of
initial edges. Therefore, given an initial bilingual
alignment, it is not limited to adding edges, but it
can also remove them.

3.1.1 Model Architecture
Our model is inspired by the Graph Auto Encoder
(GAE) model of Kipf and Welling (2016) for link
prediction. A GAE model consists of an encoder
and a decoder. The encoder creates a hidden rep-
resentation for each node of the graph and the
decoder predicts the links of the graph given the
nodes’ representations. Using the graph of word
alignments, the model will learn the word align-
ment task. Therefore it will be able to predict word
alignments that are missed by the original bilingual
word aligner and also detect incorrect alignment
edges.

We make changes to this model to improve the
model’s quality and reduce its computational cost.
We use GATConv layers (Veličković et al., 2018)
for the encoder instead of GCNConv (Kipf and
Welling, 2017) and a more sophisticated decoder
instead of simple dot product for a stronger model.
We also introduce a more efficient training proce-
dure.

The encoder is a graph attention network (GAT)
(Veličković et al., 2018) with two GATConv layers
followed by a fully connected layer. Layers are
connected by RELU non-linearities. A GATConv
layer computes its output x′i for a node i from its
input xi as

x′i = αi,iWxi +
∑

j∈N (i)

αi,jWxj , (2)

where W is a weight matrix, N (i) is some neigh-
borhood of node i in the graph, and αi,j is the
attention coefficient indicating the importance of
node j’s features to node i. αi,j is computed as

αi,j =
exp

(
g
(
a>[Wxi ‖Wxj ]

))∑
k∈N (i)∪{i} exp (g (a>[Wxi ‖Wxk]))

(3)
where ‖ is concatenation, g is LeakyReLU, and a
is a weight vector. Given the features for the nodes
and their alignment edges, the encoder creates a
contextualized hidden representation for each node.

Based on the hidden representations of two
nodes, the decoder predicts whether a link con-
nects them. The decoder architecture consists of a
fully connected layer, a RELU non-linearity and a
sigmoid layer.

3.1.2 Training
By default, GAE models are trained using full
batches with random negative samples. This ap-
proach requires at least tens of epochs over the
training dataset to converge and a lot of GPU mem-
ory for graphs as large as ours. We train our model
using mini-batches to decrease memory require-
ments and improve the performance. Using our
training approach the model converges after one
epoch. We take care to select informative nega-
tive samples (as opposed to random selection) as
described below.

Figure 2 displays our GNN model and the train-
ing process. The training set contains one graph for
each sentence. Each graph is divided into multiple
batches. Each batch contains a random subset of
the graph’s edges as positive samples. The nega-
tive samples are created as follows. Given a sen-
tence u1u2 . . . un in language U and its translation
v1v2 . . . vm in language V , for each alignment edge
ui:vj in the current batch, two negative edges ui:v′j
and u′i:vj (j′ 6= j, i′ 6= i) are randomly sampled.

For each training batch, the encoder takes the
batch’s whole graph (i.e., node features for all
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Figure 2: GNN training. At each training step, node features and links of a multiparallel sentence are fed to a graph
attention network (GAT) that creates hidden representations for all nodes. On the decoder side, at each step, one
batch of alignment links and hidden node representations is used to create positive and negative samples, which
are then processed and classified by a multi-layer perceptron (MLP). Parameters of GAT and MLP are updated for
each batch. FC = fully connected.

graph nodes and all graph edges) as input and com-
putes hidden representations for the nodes. On the
decoder side, for each link between two nodes in
the batch, the hidden representations of the two
nodes are concatenated to create the decoder’s in-
put. The decoder’s target is the link class: 1 (resp.
0) for positive (resp. negative) links. We train with
a binary classification objective:

L = −1

b

b∑
i=1

log(p+i ) +
1

2b

2b∑
i=1

log(p−i ) (4)

where b is the batch size and p+i and p−i are the
model predictions for the ith positive and negative
samples within the batch. Parameters of the en-
coder and decoder as well as the node-embedding
feature layer are updated after each training step.

3.1.3 Node Features
We use three main types of node features: (i) graph
structural features, (ii) community-based features
and (iii) word content features.

Graph structural features. We use degree,
closeness (Freeman, 1978) , betweenness (Bran-
des, 2001) , load (Newman, 2001) and harmonic
centrality (Boldi and Vigna, 2014) features as addi-
tional information about the graph structure. These
features are continuous numbers, providing infor-
mation about the position and connectivity of the
nodes within the graph. We standardize (i.e., z-
score) each feature across all nodes, and train an
embedding of size four for each feature.3

Community-based features. One way to incor-
porate community information into our model is to

3Learning a size-four embedding instead of a single num-
ber gives the feature a weight similar to other features – which
have a feature vector of about the same size.

train the model based on a refined set of edges after
the community detection step. This approach hob-
bles the GNN model by making decisions about
many of the edges before the GNN gets to see
them. Our initial experiments also confirmed that
training the GNN over CD refined edges does not
help. Therefore, we add community information
as node features and let the GNN use them to im-
prove its decisions. We use the community de-
tection algorithms GMC and LPC (see §§2.2) to
identify communities in the graph. Then we repre-
sent the community membership information of the
nodes as one-hot vectors and learn an embedding
of size 32 for each of the two algorithms.

Word content features. We train embeddings
for word position (size 32) and word language (size
20). We learn 100-dimensional multilingual word
embeddings using Levy et al. (2017)’s sentence-
ID method on the 84 PBC languages selected by
Imani Googhari et al. (2021). Word embeddings
serve as initialization and are updated during GNN
training.

After concatenating these features, each node
is represented by a 236 dimensional vector that is
then fed to the encoder.

3.1.4 Inducing Bilingual Alignment Edges

Given a source sentence x̂ = x1, x2, . . . , xm in lan-
guage X and a target sentence ŷ = y1, y2, . . . , yl
in language Y , we feed all possible alignment links
between source and target to the decoder. This pro-
duces a symmetric alignment probability matrix S
of size m× l where Sij is the predicted alignment
probability between words xi and yj . Using these
values directly to infer alignment edges is usually
suboptimal; therefore, more sophisticated methods
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have been suggested (Ayan and Dorr, 2006; Liang
et al., 2006). Here we propose a new approach: it
combines Koehn et al. (2005)’s Grow-Diag-Final-
And (GDFA) with Dou and Neubig (2021)’s proba-
bility thresholding. We modify the latter to account
for the variable size of the probability matrix (i.e.,
length of source/target sentences). Our method is
not limited to adding new edges to some initial
bilingual alignments, a limitation of prior work. As
we predict each edge independently, some initial
links can be discarded from the final alignment.

We start by creating a set of forward (source-
to-target) alignment edges and a set of backward
(target-to-source) alignment edges. To this end,
first, inspired by probability thresholding (Dou and
Neubig, 2021), we apply softmax to S, and zero
out probabilities below a threshold to get a source-
to-target probability matrix SXY :

SXY = S ∗ (softmax(S) >
α

l
) (5)

Analogously, we compute the target-to-source prob-
ability matrix SY X :

SY X = S> ∗ (softmax(S>) >
α

m
) (6)

where α is a sensitivity hyperparameter, e.g., α = 1
means that we pick edges with a probability higher
than average. We experimentally set α = 2. Next,
from each row of SXY (SY X ), we pick the cell
with the highest value (if any exists) and add this
edge to the forward (backward) set.

We create the final set of alignment edges by ap-
plying the GDFA symmetrization method (Koehn
et al., 2005) to forward and backward sets. The
gist of GDFA is to use the intersection of forward
and backward as initial alignment edges and add
more edges from the union of forward and back-
ward based on a number of heuristics. We call this
method TGDFA (Thresholding GDFA).

We also experiment with combining TGDFA
with the original bilingual GDFA alignments. We
do so by adding bilingual GDFA edges to the union
of forward and backward before performing the
GDFA heuristics. We refer to these alignments as
TGDFA+orig.

We evaluate the resulting alignments using F1

score and alignment error rate (AER), the standard
metrics in the word alignment literature.

3.2 Annotation Projection
Annotation projection automatically creates lin-
guistically annotated corpora for low-resource lan-

guages. A model trained on data with “annotation-
projected” labels can perform better than a com-
pletely unsupervised method. Here, we focus on
universal part-of-speech (UPOS) tagging (Petrov
et al., 2012) for the low resource target language
Yoruba; this language only has a small set of anno-
tated sentences in Universal Dependencies (Nivre
et al., 2020) and has poor POS results in unsuper-
vised settings (Kondratyuk and Straka, 2019).

The quality of the target annotated corpus de-
pends on the quality of the annotations in the source
languages and the quality of the word alignments
between sources and target. We use the Flair (Ak-
bik et al., 2019) POS taggers for three high re-
source languages, English, German and French
(Akbik et al., 2018), to annotate 30K verses whose
Yoruba translations are available in PBC. We then
transfer the POS tags from source to target using
three different approaches: (i) We directly trans-
fer annotations from English to the target. (ii)
For each word in the target, we get its Eflomal
bilingual alignments in the three source languages
and predict the majority POS to annotate the tar-
get word. (iii) The same as in (ii), but we use
our GNN (TGDFA) alignments (instead of Eflomal
alignments) to project from source to target. In all
three approaches, we discard any target sentence
from the POS tagger training data if more than 50%
of its words are annotated with the "X" (other) tag.

We train a Flair SequenceTagger model on the
target annotated data using mBERT embeddings
(Devlin et al., 2019) and evaluate on Yoruba test
from Universal Dependencies.4

4 Experimental Setup

4.1 Word Alignment Datasets

Following Imani Googhari et al. (2021), we use
PBC, a multiparallel corpus of 1758 sentence-
aligned editions of the Bible in 1334 languages.

Evaluation data. For our main evaluation, we
use the two word alignment gold datasets for PBC
published by Imani Googhari et al. (2021): Blinker
(Melamed, 1998) and HELFI (Yli-Jyrä et al., 2020).
The HELFI dataset contains the Hebrew Bible,
Greek New Testament and their translations into
Finnish. For HELFI, we use Imani Googhari et al.
(2021)’s train/dev/test splits. The Blinker dataset
provides word level alignments between English
and French for 250 Bible verses.

4https://universaldependencies.org/
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FIN-HEB FIN-GRC ENG-FRA
Method Prec. Rec. F1 AER Prec. Rec. F1 AER Prec. Rec. F1 AER

Eflomal (intersection) 0.818 0.269 0.405 0.595 0.897 0.506 0.647 0.353 0.971 0.521 0.678 0.261
Eflomal (GDFA) 0.508 0.448 0.476 0.524 0.733 0.671 0.701 0.300 0.856 0.710 0.776 0.221

WAdAd (intersection) 0.781 0.612 0.686 0.314 0.849 0.696 0.765 0.235 0.938 0.689 0.794 0.203
NMF (intersection) 0.780 0.576 0.663 0.337 0.864 0.669 0.754 0.248 0.948 0.624 0.753 0.245
WAdAd (GDFA) 0.546 0.693 0.611 0.389 0.707 0.783 0.743 0.257 0.831 0.796 0.813 0.186
NMF (GDFA) 0.548 0.646 0.593 0.407 0.720 0.759 0.739 0.261 0.844 0.767 0.804 0.195

GNN (TGDFA) 0.811 0.648 0.720 0.280 0.845 0.724 0.780 0.220 0.926 0.711 0.804 0.192
GNN (TGDFA+orig) 0.622 0.683 0.651 0.349 0.738 0.780 0.758 0.242 0.863 0.789 0.824 0.174

Table 2: Word alignment results on PBC for GNN and baselines. The best result in each column is in bold. GNN
outperforms the baselines as well as the graph algorithms WAdAd and NMF on F1 and AER.

Training data. The graph algorithms used by
Imani Googhari et al. (2021) operate on each mul-
tiparallel sentence separately. In contrast, our
approach allows for an inductive setting where
a model is trained on a training set, accumulat-
ing knowledge from multiple multiparallel sen-
tences. We combine the verses in the training sets
of Finnish-Hebrew and Finnish-Greek for a com-
bined training set size of 24,159.5

4.2 Initial Word Alignments

We use the Eflomal statistical word aligner to ob-
tain bilingual alignments. We train it for every
language pair in our experiments. We do not con-
sider SimAlign (Jalili Sabet et al., 2020) since it
is shown to perform poorly for languages whose
representations in the multilingual pretrained lan-
guage model are of low quality. We use Eflomal
asymmetrical alignments post-processed with the
intersection heuristic to get high precision bilingual
alignments as input to the GNN. We use the same
subset of 84 languages as Imani Googhari et al.
(2021).

4.3 Training Details

We use PyTorch Geometric6 to construct and train
the GNN. The model’s hidden layer size is 512
for both GATConv and Linear layers. We train
for one epoch on the training set – a small portion
of the training set is enough to learn good embed-
dings (see §5.1.1). For training, we use a batch
size of 400 and learning rate of .001 with AdamW
(Loshchilov and Hutter, 2017). The whole training

5Note that we do not use any gold alignments for training
the GNN. Using the verses from HELFI train split as our train-
ing set is for convenience. Our ablation experiment (Figure 3)
show that a smaller subset of the training set is sufficient to
achieve good performance

6pytorch-geometric.readthedocs.io

process takes less than 4 hours on a GeForce GTX
1080 Ti and the inference time is on the order of
milliseconds per sentence.

5 Experiments and Results

5.1 Multiparallel corpus results
Table 2 shows results on Blinker and HELFI for
our GNNs and the baselines: bilingual alignments
and two graph-based algorithms WAdAd and NMF
from Imani Googhari et al. (2021). Our GNNs
yield a better trade-off between precision and re-
call, most likely thanks to their ability to remove
edges, and achieve the best F1 and AER on all
three datasets, outperforming WAdAd and NMF.

GNN (TGDFA) achieves the best results
on HELFI (FIN-HEB, FIN-GRC) while GNN
(TGDFA+orig) is best on Blinker (ENG-FRA).
As argued in Imani Googhari et al. (2021), this
is mostly due to the different ways these two
datasets were annotated. Most HELFI alignments
are one-to-one, while many Blinker alignments are
many-to-many: phrase-level alignments where ev-
ery word in a source phrase is aligned with ev-
ery word in a target phrase. This suggests that
one can choose between GNN (TGDFA) and GNN
(TGDFA+orig) based on the desired characteristics
of the alignment.

5.1.1 Effect of Training Set Size
To investigate the effect of training set size, we
train the GNN on subsets of our training data with
increasing sizes. Figure 3 shows results. Perfor-
mance improves fast until around 2,000 verses;
then it stays mostly constant. Using more than
6,400 samples does not change the performance
at all. Therefore, in the other experiments we use
6,400 randomly sampled verses from the training
set to train GNNs.
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Figure 3: F1 of GNN (TGDFA) and GNN
(TGDFA+orig) on Blinker as a function of train size

5.1.2 Ablation Experiments
To examine the importance of node features, we
ablate language, position, centrality, community
and word embedding features. Table 3 shows that
removal of graph structural features drastically re-
duces performance. Community features and lan-
guage information are also important. Removal of
word position information and word embeddings
– which store semantic information about words –
has the least effect. Based on these results, it can be
argued that the lexical information contained in the
initial alignments and in the community features
provides a strong signal regarding word related-
ness. The novel information that is crucial is about
the overall graph structure which goes beyond the
local word associations that are captured by word
position and word embeddings.

5.1.3 Effect of Word Frequency
We investigate the effect of word frequency on
alignment performance where frequency is calcu-
lated based on the source word in the PBC; the first
bin has the highest frequency. Figure 4 shows that
the performance of Eflomal drops with frequency
and it struggles to align very rare words. In con-
trast, GNN is not affected by word frequency as
severely and its performance gains are even greater
for rare words. WAdad which is the multilingual
baseline from (Imani Googhari et al., 2021) has
the same trend as the GNN method, but the GNN
method is more robust.

5.2 Annotation Projection

Table 4 presents accuracies for POS tagging in
Yoruba. Unsupervised baseline performance is

(a) ENG-FRA (b) FIN-HEB

Figure 4: F1 for different frequency bins.

FIN-HEB FIN-GRC ENG-FRA

GNN (TGDFA) 0.720 0.780 0.804

¬ language -0.323 -0.280 -0.370
¬ position -0.068 -0.045 -0.066
¬ centrality -0.636 -0.730 -0.772
¬ community -0.204 -0.238 -0.253
¬ word-embedding -0.139 -0.103 -0.129

GNN (TGDFA+orig) 0.651 0.758 0.824

¬ language -0.238 -0.077 -0.162
¬ position -0.088 +0.029 -0.032
¬ centrality -0.556 -0.530 -0.617
¬ community -0.156 -0.039 -0.083
¬ word-embedding -0.135 +0.002 -0.058

Table 3: F1 for GNNs and ∆F1 for five ablations

50.86%. Supervised training using pseudo-labels
mostly outperforms the unsupervised baseline. Pro-
jecting the majority POS labels to Yoruba improves
over projecting English labels. Using the GNN
model to project labels works best and outperforms
Eflomal-GDFA-majority (resp. the unsupervised
baseline) by 5% (resp. 15%) absolute improvement.

6 Related Work

Bilingual Word Aligners. Much work on bilin-
gual word alignment is based on probabilistic mod-
els, mostly implementing variants of the IBM mod-
els of Brown et al. (1993): e.g., Giza++ (Och and
Ney, 2003), fast-align (Dyer et al., 2013) and Eflo-
mal (Östling and Tiedemann, 2016). More recent
work, including SimAlign (Jalili Sabet et al., 2020)
and SHIFT-ATT/SHIFT-AET (Chen et al., 2020),
uses pretrained neural language and machine trans-
lation models. Although neural models achieve
superior performance compared to statistical align-
ers, they can only be used for fewer than two hun-
dred high-resource languages that are supported by
multilingual language models like BERT (Devlin
et al., 2019) and XLM-R (Conneau et al., 2020).
This makes statistical models the only option for
the majority of the world’s languages.
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Model Yoruba YTB

Unsupervised (Kondratyuk and Straka, 2019) 50.86

Eflomal Inter – eng 43.45
Eflomal GDFA – eng 55.13

Eflomal Inter – majority 54.13
Eflomal GDFA – majority 60.27

GNN (TGDFA) – majority 65.74
GNN (TGDFA+orig) – majority 64.55

Table 4: POS tagging with annotation projection for
Yoruba. Apart from “Unsupervised”, all lines show a
sequence tagger trained on pseudo-labels induced by
word alignments. GNN-based pseudo-labels outper-
form prior work by 5% absolute.

Multiparallel Corpora. Prior applications of
using multiparallel corpora include reliable transla-
tions from small datasets (Cohn and Lapata, 2007),
and phrase-based machine translation (PBMT) (Ku-
mar et al., 2007). Multiparallel corpora are also
used for language comparison (Mayer and Cysouw,
2012), typological studies (Östling, 2015; Asgari
and Schütze, 2017) and PBMT (Nakov and Ng,
2012; Bertoldi et al., 2008; Dyer et al., 2013).
ImaniGooghari et al. (2021) provide a tool to
browse a word-aligned multiparallel corpus, which
can be used for the comparative study of languages
and for error analysis in machine translation.

To the best of our knowledge Lardilleux and
Lepage (2008) and Östling (2014)7 are the only
word alignment methods designed for multiparal-
lel corpora. However, the latter method is outper-
formed by Eflomal (Östling and Tiedemann, 2016),
a bilingual method from the same author. Recently,
Imani Googhari et al. (2021) proposed MPWA,
which we use as our baseline.

Graph Neural Networks (GNNs) have been
used to address many problems that are inherently
graph-like such as traffic networks, social networks,
and physical and biological systems (Liu and Zhou,
2020). GNNs achieve impressive performance
in many domains, including social networks (Wu
et al., 2020) and natural science (Sanchez-Gonzalez
et al., 2018) as well as NLP tasks like sentence
classification (Huang et al., 2020), question gener-
ation (Pan et al., 2020), summarization (Fernandes
et al., 2019) and derivational morphology (Hof-
mann et al., 2020).

7github.com/robertostling/eflomal

7 Conclusion and Future Work

We introduced graph neural networks and commu-
nity detection algorithms for multiparallel word
alignment. By incorporating signals from diverse
sources as node features, including community fea-
tures, our GNN model outperformed the baselines
and prior work, establishing new state-of-the-art
results on three PBC gold standard datasets. We
also showed that our GNN model improves down-
stream task performance in low-resource languages
through annotation projection.

We have only used node features to provide sig-
nals to GNNs. In the future, other signals can be
added in the form of edge features to further boost
the performance.
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ter, Jan Hajič, Christopher D. Manning, Sampo
Pyysalo, Sebastian Schuster, Francis Tyers, and
Daniel Zeman. 2020. Universal Dependencies v2:
An evergrowing multilingual treebank collection.
In Proceedings of the 12th Language Resources
and Evaluation Conference, pages 4034–4043, Mar-
seille, France. European Language Resources Asso-
ciation.

Franz Josef Och and Hermann Ney. 2003. A systematic
comparison of various statistical alignment models.
Computational Linguistics, 29(1):19–51.

Robert Östling. 2014. Bayesian word alignment for
massively parallel texts. In Proceedings of the 14th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics, volume 2: Short
Papers, pages 123–127, Gothenburg, Sweden. Asso-
ciation for Computational Linguistics.

Robert Östling. 2015. Word order typology through
multilingual word alignment. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 2: Short Papers), pages 205–211, Beijing,
China. Association for Computational Linguistics.

Robert Östling and Jörg Tiedemann. 2016. Efficient
word alignment with Markov Chain Monte Carlo.
The Prague Bulletin of Mathematical Linguistics,
106(1).

Liangming Pan, Yuxi Xie, Yansong Feng, Tat-Seng
Chua, and Min-Yen Kan. 2020. Semantic graphs
for generating deep questions. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 1463–1475, Online. As-
sociation for Computational Linguistics.

Slav Petrov, Dipanjan Das, and Ryan McDonald. 2012.
A universal part-of-speech tagset. In Proceedings
of the Eighth International Conference on Language
Resources and Evaluation (LREC’12), pages 2089–
2096, Istanbul, Turkey. European Language Re-
sources Association (ELRA).

Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias
Springenberg, Josh Merel, Martin Riedmiller, Raia
Hadsell, and Peter Battaglia. 2018. Graph net-
works as learnable physics engines for inference and
control. In Proceedings of the 35th International

Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pages
4470–4479. PMLR.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus
Hagenbuchner, and Gabriele Monfardini. 2009. The
graph neural network model. IEEE Transactions on
Neural Networks, 20(1):61–80.
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Afrikaans Albanian Arabic Armenian Azerbaijani Bashkir
Basque Belarusian Bengali Breton Bulgarian Burmese
Catalan Cebuano Chechen Chinese Chuvash Croatian
Czech Danish Dutch English Estonian Finnish
French Georgian German Greek Gujarati Haitian
Hebrew Hindi Hungarian Icelandic Indonesian Irish
Italian Japanese Javanese Kannada Kazakh Kirghiz
Korean Latin Latvian Lithuanian Low Saxon Macedonian
Malagasy Malay Malayalam Marathi Minangkabau Nepali
Norwegian (B.) Norwegian (N.) Punjabi Persian Polish Portuguese
Punjabi Romanian Russian Serbian Slovak Slovenian
Spanish Swahili Sundanese Swedish Tagalog Tajik
Tamil Tatar Telugu Turkish Ukrainian Urdu
Uzbek Vietnamese Waray-Waray Welsh West Frisian Yoruba

Table 5: List of the 84 languages we used in our experiments.

1396


