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Abstract

While variational autoencoders (VAEs) have
been widely applied in text generation tasks,
they are troubled by two challenges: insuffi-
cient representation capacity and poor control-
lability. The former results from the posterior
collapse and restrictive assumption, which im-
pede better representation learning. The lat-
ter arises as continuous latent variables in tra-
ditional formulations hinder VAEs from inter-
pretability and controllability. In this paper,
we propose Dictionary Prior (DPrior), a new
data-driven prior that enjoys the merits of ex-
pressivity and controllability. To facilitate con-
trolled text generation with DPrior, we pro-
pose to employ contrastive learning to separate
the latent space into several parts. Extensive
experiments on both language modeling and
controlled text generation demonstrate the ef-
fectiveness of the proposed approach.

1 Introduction

As one of the representative deep generative mod-
els, variational autoencoders (VAEs) (Kingma and
Welling, 2014) have been widely applied in text
generation tasks, such as dialog generation (Wu
et al., 2020; Zhao et al., 2017), machine transla-
tion (Shah and Barber, 2018; McCarthy et al., 2020;
Sheng et al., 2020) and poetry generation (Li et al.,
2018b; Yi et al., 2020). Despite the success, VAEs
still suffer from two challenges: insufficient repre-
sentation capacity and poor controllability.

The challenge of insufficient representation ca-
pacity in variational models arises from two aspects.
One is the posterior collapse, a notorious issue that
generally exists in VAEs especially serious in auto-
regressive text generation (Bowman et al., 2016),
which leads to degenerate local optimums during
the training of VAEs (He et al., 2019). Another is
the restrictive assumption for priors and variational

* Corresponding author. This work was done when Xi-
anghong was an intern at Huawei Noah’s Ark Lab.
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Attributes
Positive

Samples
this is followed by good movies, great food.

Negative | for me it looks crappy and understaffed.
Present this restaurant has an excellent view.
Past i was able to get the delicious sushi!

Table 1: Examples of controlled text generation in sec-
ond column where sentence attributes indicated by col-
ored words are consistent with user-specified attributes
in the first column.

posteriors (Ding and Gimpel, 2021), which gen-
erally follow Gaussian distribution and spherical
Gaussian distributions with diagonal co-variance
matrices, respectively (Higgins et al., 2017; He
et al., 2019; Li et al., 2019a). Such predefined
forms would hinder VAEs from larger optimization
space (Fang et al., 2019), thus restricting the ex-
pressivity of the model (Ding and Gimpel, 2021)
and further leading to the posterior collapse (Fang
etal., 2019). Therefore, a potential solution is to try
more expressive distribution forms for priors and
variational posteriors to improve the representation
capacity (Fang et al., 2019; Tomczak and Welling,
2018; Ding and Gimpel, 2021).

Another challenge of VAEs is poor controllabil-
ity. The challenge is rooted in the continuous latent
variables that hinder VAEs from interpreting the
discrete attributes like sentiments or topics (Zhao
et al., 2018; Shi et al., 2020). Thus it is difficult
to generate text with user-specified attributes, as
the examples in Table 1. To approach controlled
text generation in variational models, Hu et al. (Hu
et al., 2017) propose to disentangle the latent repre-
sentations by separately modeling discrete attribute
and continuous content representations. Neverthe-
less, it is hard to completely disentangle attribute
and attribute-independent content, resulting in poor
readability in text generation (Wang et al., 2019;
Higgins et al., 2017). A natural choice is to employ
discrete representations as each of them could well
correspond to one of the discrete attributes. Recent
studies also reveal learned discrete representations
by K-means and self-organization map (Kohonen,

Findings of the Association for Computational Linguistics: ACL 2022, pages 97 - 111
May 22-27, 2022 (©)2022 Association for Computational Linguistics



1995) display great clustering performance and in-
terpretability (van den Oord et al., 2017; Fortuin
et al., 2019), showing the potential to be manipu-
lated and split latent space for controlled text gen-
eration.

In this paper, we follow the practice of learning
discrete representations and propose a new data-
driven prior that enjoys the merits of expressivity
and controllability. Specifically, we deploy a set
of learnable vectors and interpolate the learnable
vectors to form the prior, which we call Dictionary
Prior (DPrior). Each learnable vector is dubbed
an atom in the dictionary. To facilitate generative
models with DPrior, dual-form KL-divergence (Dai
et al., 2018) is employed to make the prior distri-
bution spanned by dictionary atoms approximate
the posterior distribution. Our DPrior is model-
agnostic and could be combined with pre-trained
models such as BERT/GPT to enrich posterior rep-
resentations (Li et al., 2020a). To enforce control-
lability to the DPrior, we separate the dictionary
atoms into several disjoint subsets according to
the natural language attributes. Then, we propose
to employ contrastive learning to incorporate the
attribute information, which can cluster different
subsets of dictionary atoms into different semantic
subspaces.

We demonstrate the superiority of DPrior against
recent VAE variants on the language modeling task.
We also validate our DPrior in controlled text gen-
eration where DPrior shows its effectiveness over
several advanced counterparts. The main contribu-
tions of this paper can be summarized as:

* We propose an expressive Dictionary Prior
(DPrior) within VAEs framework, which con-
sists of learnable dictionary atoms and inter-
polating the atoms as latent variables.

DPrior is model-agnostic and can be com-
bined with pre-trained language models. By
doing so, DPrior achieves SOTA language
modeling performance on four benchmarks.

We enforce controllability to DPrior by sep-
arating dictionary atoms into disjoint subsets
and applying contrastive learning to incorpo-
rate attribute information.

2 Related Work

Controlled Text Generation Controlled text
generation is a task aiming to generate realistic
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sentences with desired attributes, e.g., sentiments
or topics. Most efforts for controlled text gen-
eration are based on conditional pre-trained lan-
guage models (Keskar et al., 2019; Dathathri et al.,
2020). CTRL (Keskar et al., 2019) employs a GPT-
2 like pre-trained language model and trains it from
scratch on a large corpus containing various con-
trol codes. Subsequently, controlled generation is
accomplished by using the control codes as prompt-
ing words. PPLM (Dathathri et al., 2020) seeks to
avoid the further training process and combines the
GPT-2 model with several simple attribute classi-
fiers whose gradients can update the latent repre-
sentations.

Another line of work tries to explore limited la-
beled data via learning latent representations (Hu
et al., 2017). Hu et al. (Hu et al., 2017) propose
to approach controlled text generation by learn-
ing disentangled latent representations including
independent content and attribute parts. In this pa-
per, we learn entangled latent representations and
approach controlled text generation by separating
prior space into several parts.

Expressive Prior and Posterior In VAEs VAEs
usually employ simple Gaussian distribution as the
prior and spherical Gaussian distributions with di-
agonal co-variance matrices as the variational pos-
teriors (Higgins et al., 2017; He et al., 2019; Fu
et al., 2019). Such predefined forms in traditional
formulations hinder VAEs from the expressivity of
the model (Ding and Gimpel, 2021), thus further
inducing the posterior collapse (Fang et al., 2019).
To improve the representation capacity, some ef-
forts try more expressive priors. MoG-VAE (Ding
and Gimpel, 2021) considers a uniform mixture
of Gaussians as the prior, Vamp-VAE (Tomczak
and Welling, 2018) introduces ““Variational Mixture
of Posteriors” prior (VampPrior). APo-VAE (Dai
etal., 2021) adopts VampPrior to learn a hyperbolic
latent space. FlowPrior (Ding and Gimpel, 2021)
tries a new prior through normalizing flows. It is
noted that VQ-VAE (van den Oord et al., 2017)
introduces an auto-regressive prior via learning
discrete representations, which enjoys the merits
of learnability and expressivity. Nevertheless, the
auto-regressive prior has low generation efficiency
and no ability of latent manipulation (Fang et al.,
2021). In this paper, we propose a data-driven
prior via learning discrete representations but have
same generation efficiency and the ability of latent
variable manipulation to traditional VAEs.



Another line of work is to seek more expressive
posteriors. Fang et al. (Fang et al., 2019) adopts
implicit posterior representation. APo-VAE (Dai
et al., 2021) and our DPrior also employ the im-
plicit posterior representations to match the flexible
priors thus further improve representation capacity.

3 Methodology

In this section, we first review the basics of deep
generative models in Section 3.1, then introduce
Dictionary Prior (DPrior) in Section 3.2 which is
built on a set of learnable vectors. We further ap-
proach controlled text generation in Section 3.3.
The overall illustration of our proposed approach is
shown in Figure 1. More details will be explained
in the following sections.

3.1 Deep Generative Models

VAE:s are one of the most representative deep gen-
erative models for language modeling. Given a
text x z1.7 with length T', VAEs seek to in-
fer latent variable z that explains the observation.
Towards this end, VAEs maximize the marginal log-
likelihood log pp(x), which is usually intractable
due to the complex true posterior p(z|x). Con-
sequently an approximate posterior g, (z|x) (i.e.
the encoder) is introduced, and the evidence lower
bound (ELBO) of the marginal likelihood is maxi-
mized as follows:

log po(x) >Eyrq, (z/x)[log po(x(2)]

— Dir(ge(zx)llp(2)), (1)

where pg(x|z) represents likelihood function con-
ditioned on z, also known as the decoder.

VAESs usually adopt simple Gaussian distribution
as the prior and spherical Gaussian distributions
with diagonal co-variance matrices as the varia-
tional posterior. However, predefined distribution
forms in traditional formulations of VAEs restrict
representation capacity. As discussed before, we
turn to learning an expressive prior via discrete
representations instead of predefined prior.

3.2 Data-driven Dictionary Prior

We define the prior via a set of learnable vectors,
ie., ¥ = {ey,...,en}, and each vector is dubbed
as a dictionary atom. Intuitively, we could sam-
ple one dictionary atom and feed it to the decoder,
i.e., pp(x|e). However, the generation capacity is
always restricted by the dictionary size m. To facili-
tate larger generation capacity, we further introduce
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a continuous random variable 7T = (7q,...,T,) "
that follows the Dirichlet distribution parameter-

ized by an m-dimensional vector «:

IO W“)ka“”“_l.
T (yx) F

Then we interpolate all dictionary atoms with 7
to form the latent variable: z = ZZ ;- €. Al-
though atoms in ¢ are discrete and finite, the latent
variable z is continuous and has infinitely possible
realizations via sampling 7 according to the Dirich-
let distribution. We call the prior defined on these
dictionary atoms as Dictionary Prior (DPrior), or
Py (2|7y). Note that v is a hyper-parameter and we
set «v the same in each dimension. Dirichlet dis-
tribution would approximate one hot distribution
when 7, — 0, and approximate uniform categor-
ical distribution when v — co. In general, The
smaller ~y;, produces more diverse text from our
proposed DPrior.

As part of the network parameters, the dictio-
nary ¢ would be differentially updated according
to various training samples. Such a data-driven
prior would produce larger optimization space, en-
forcing to learn better representations.

7 ~ Dir(w|y) = ()

Dual Form of KL divergence It is intractable to
deploy vanilla KL divergence to train DPrior as
in Equation 1, since learnable discrete atoms in
1) make it difficult to explicitly estimate the den-
sity of py,(z|v). To address the issue, we propose
to employ its dual form based on Fenchel duality
theorem (Rockafellar et al., 1966), which can ef-
fectively narrow the distribution gap between the
prior py(z|7y) and posterior g4(z) when the den-
sity of the priors and/or variational posterior are
unknown (Fang et al., 2019; Dai et al., 2021).

Specifically, we follow (Fang et al., 2019) and
introduce an auxiliary dual function v(-), param-
eterized by a neural network with weights ¢, to
optimize the KL divergence as:

L% = Dicr(gp(2)||py (2]7)) 3)

= max Esngy(2)00(2) = Egnp, (zy)) €XP(v4(2)),

where g4(z) = [ q(x)qy(z|x)dx is the aggregated
posterior. To make the posterior match the ex-
pressive DPrior, we also employ implicit posterior
representations as (Fang et al., 2019). Specially, we
adopt white noise ¢; ~ N(0,I) and concatenate
it with hidden representations of x to obtain i-th
latent variable as z; = G(x, ;).
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Figure 1: The overall illustration of our proposed method, which consists of an encoder-decoder network, a learn-
able dictionary, and a deep dual function network. ® and & represent interpolation and sum operator respectively.
Different colors in the dictionary denote different attributes. Block 1 represents the training process of DPrior, con-
sisting of the reconstruction loss £ and the dual-form KL divergence £p. Block 2 denotes contrastive learning
applied to the dictionary with the contrastive loss L. Block 3 denotes the controlled text generation after training.

During training, we choose « near 0 as it con-
sistently performs better than other values in our
experiments. Together with the reconstruction loss,
ie., E%e = —E,q,(zlx) log po(x[2), the objective
function of DPrior for language modeling can be
summarized as:

1 ¢70 (107(2571»[)
min max Ly + 1 % L , 4
i max L+ PrxLp @

where (31 is a regularization parameter.

Combined with Pre-trained Models Our
DPrior is model-agnostic and could be com-
bined with various neural networks such as
LSTM (Hochreiter and Schmidhuber, 1997) and
Transformer (Vaswani et al., 2017). To improve
representation capacity, we propose the combina-
tion of DPrior and a large-scale pre-trained deep
latent variable model, i.e., OPTIMUS (Li et al.,
2020a), which adopts the pre-trained BERT and
GPT-2 as the encoder and decoder, respectively.
Since extra large-scale text corpus was exploited,
more diverse and even out-of-domain sentences
that exploit more words are able to be generated.

3.3 DPrior for Controlled Text Generation

In this section, we enforce interpretability and con-
trollability to DPrior to approach controlled text
generation. Specifically, we separate the dictionary
1 into L disjoint subsets, i.e. 11, 19, ..., ¥, given
L different attributes in the dataset. For example,

we have two subsets to represent positive and nega-
tive sentiments as in Figure 1. The number of atoms
in each subset is set according to the attribute pro-
portion in the dataset. To accomplish controlled
text generation, we can then choose a certain dic-
tionary subset and interpolate atoms in this subset
as the latent variable z for decoder generation.

To effectively incorporate the attribute informa-
tion into dictionary atoms, we propose to employ
contrastive learning such that sentences generated
from a certain subset accurately correspond to the
desired attribute. During the training of DPrior,
The semantic space of the dictionary could be grad-
ually clustered into several parts according to the
natural language attributes.

Contrastive Learning for DPrior Given a la-
tent variable z from encoder ¢4(z|x) with its at-
tribute label ¢ € {1, ..., L}, we denote z as an an-
chor a. Therefore, atoms in the subset 1/, with the
same attribute constitute positive samples (denoted
as a™) of anchor a, and atoms in other subsets
() are negative samples (denoted as a™) of an-
chor a. A contrastive loss (van den Oord et al.,
2018; Hoffer and Ailon, 2015) is a distance metric
to enforce the anchor a to be similar to positive
samples a™ and dissimilar to negative samples a ™.
With the supervised attribute information contained
in anchor a, the positive samples would learn to
cluster into the same semantic subspace with the
anchor while negative samples into other seman-
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tic subspaces. The contrastive loss will gradually
enlarge the gap among different subspaces.

As shown in Block 2 of Figure 1, we employ
InfoNCE loss (van den Oord et al., 2018) where we
randomly sample one positive sample from 7). and
K negative samples from ¢¢_; for each anchor
a. Then the objective is to produce the log loss of
a (K+1)-way softmax-based classifier that tries to
classify a as a™:

‘r-a~a+

L% = ~Eglog (5)

)

eTraat +

K

E e’r-au;
i=1

where S = {a,a™,a"} and 7 is a temperature
hyper-parameter and we set 7 = 1 in all experi-
ments. Together with the loss function of DPrior
introduced in Equation 4, the overall objective for
controlled text generation can be summarized as:

min max L9048 % LYY 4+ By« L&Y, (6)
b b (p

where Lg denotes the reconstruction loss, £p de-
notes the dual-form KL-divergence, Lo denotes
the contrastive loss, 31 and (3; are the hyper-
parameters.

Controlled Text Generation from DPrior Af-
ter the training phase of DPrior, as Block 3 of Fig-
ure 1, given any attribute label ¢ € {1, ..., L}, we
select all atoms from the corresponding subset .,
sample 7 from the Dirichlet distribution, interpo-
late these atoms with 7r to produce a latent variable
z, and finally feed it to the decoder for text gener-
ation. In this way, controlled text generation with
the user-specified attributes can be achieved.

4 Experiments

In this section, we apply DPrior model to two tasks:
(1) language modeling, where DPrior shows its
advantage in expressive prior in comparison with
state-of-the-art VAE methods. (ii) controlled text
generation, where DPrior shows its superiority in
controllability with desired attributes. We also con-
duct a series of analyses and visualizations to shed
more light on the proposed approach.

4.1 Language Modeling

Following (Li et al., 2020a), we consider four
benchmark datasets of language modeling for
evaluation: Penn Tree (Marcus et al., 1993),
SNLI (Bowman et al., 2015), Yahoo Answers (Xu
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and Durrett, 2018) and Yelp corpora (Yang et al.,
2017). A summary of dataset statistics is shown in
Appendix A.

Baselines We compare the proposed DPrior
against following baselines: (i) auto-regressive
models such as LSTM-LM (Mikolov et al.,
2010) and GPT-2 (Radford et al., 2019). (ii)
VAE (Kingma and Welling, 2014) with simple
Gaussian prior, and its advanced variants for bet-
tering training and avoiding posterior collapse, in-
cluding Annealing VAE (Bowman et al., 2016),
Free Bits (FB)-VAE (Kingma et al., 2017), Lag-
VAE (He et al., 2019), and AE-FB (Li et al., 2019a).
(iii) VAEs with expressive prior choices, includ-
ing MoG-VAE (Ding and Gimpel, 2021), Vamp-
VAE (Tomczak and Welling, 2018), APo-VAE (Dai
et al., 2021), FlowPrior (Ding and Gimpel, 2021).
(iv) iVAE (Fang et al., 2019) considers implicit
posterior representation instead of explicit form.
(v) OPTIMUS (Li et al., 2020a), a large-scale pre-
trained VAE model.

Metrics We evaluate language modeling from
two perspectives: Generation capacity measured
by perplexity (PPL) and representation learning ca-
pacity measured by Active Units (AU) of z and its
Mutual Information (MI). Note that LSTM-LM and
GPT-2 has exactly PPL, while VAEs do not. Fol-
lowing (Fang et al., 2019), our calculation of PPL
is slightly different from exact PPL in two ways: (i)
we approximate log p(x) to report PPL; (ii) the KL
term in the bound is estimated via samples, rather
than a closed-form. We also report results with
ELBO, KL, and Reconstruction in Appendix B.

Main Results As the results shown in Table 2,
our proposed DPrior achieves state-of-the-art lan-
guage modeling performance in terms of PPL and
MI in all datasets. In comparison with vanilla VAE
and its variants in the middle block that employ
explicit posterior representations, iVAE, APo-VAE,
and DPrior that adopt implicit posterior represen-
tations achieve better performance, indicating the
importance of expressive posterior representations.
Moreover, our DPrior achieves further improve-
ments upon iVAE, which we attribute to the pro-
posed data-driven prior and improving the repre-
sentation capacity.

In comparison with VAEs implemented by
LSTM layers in the middle block of Table 2, VAEs
based on the OPTIMUS framework in the bottom
block achieve impressive results by large margins.



Dataset PTB Yelp Yahoo SNLI
Methods LM Repr. LM Repr. LM Repr. LM Repr.
PPL| | MIt AUt | PPL| | MIT AU?T | PPL] | MIT AU?T | PPL] | MIT AUt
LSTM-LMT 100.47 | - - 4260 | - - 60.75 | - - 2144 | - -
GPT-21 2423 | - - 2340 | - - 22.00 | - - 19.68 | - -
VAES 101.39 | 0.01 O 40.56 | 0.00 0 61.52 1 0.00 O 21.67 | 0.03 1
Annealing—VAEJr 101.40 | 0.00 0 40.39 | 0.13 61.21 | 0.00 2150 | 145 2
Lag—VAEJf 99.83 | 0.83 4 3984 | 2.16 12 59.77 | 290 19 21.16 | 1.38 5
FB-VAES(\ = 5.0) | 101.42 | 4.80 4 62.78 | 5.00 21.58 | 495 6
s AE—FB§(/\:5.0) 96.86 | 5.31 32 4797 | 7.89 32 59.28 | 8.08 32 21.64 | 771 32
; MoG-VAE® 97.50 | 0.68 32 64.60 | 0.00 O 28.05 | 041 1
~ Vamp-VAE® 97.83 | 0.72 32 74.81 | 0.00 0 2598 | 0.00 0
Flow-Prior® 93.58 | 2.83 31 68.29 | 0.61 25 26.19 | 3.16 32
APo-VAE* 53.02 | 450 32 3291 | 6.20 32 46.61 | 490 32
iVAE! 5344 | 1220 32 36.88 | 11.00 32 47.93 | 10.70 32 740 | 993 32
DPrior (Ours) 46.08 | 12.59 32 32.79 | 11.35 32 45.18 | 10.93 32 6.44 | 10.02 32
. AE-FBT(A = 1.0 3553 | 8.18 32 2459 | 9.13 32 2492 1 9.18 32 29.63 | 9.20 32
= AE—FBT()\:O.5) 26.69 | 7.64 32 2279 | 7.67 32 23.11 | 8.85 32 16.67 | 8.89 32
E AE-FBf(A =0.05) | 23.58 | 3.78 32 2199 | 2.54 32 2234 | 534 32 1347 | 349 32
% iVAE 1549 | 15.86 32 1544 | 15.07 32 15.04 | 12.52 32 5.65 | 14.28 32
DPrior (Ours) 14.74 | 15.96 32 14.52 | 17.05 32 14.67 | 12.99 32 5.54 | 1442 32

Table 2: Language modeling performance comparison on PTB, Yelp, Yahoo, and SNLI datasets. "LSTM" indicates
autoencoder architectures are built with two-layer LSTMs, while "OPTIMUS" employs pre-trained BERT and
GPT-2 as the encoder and decoder. t: results from (Li et al., 2020a). : results from (Fang et al., 2019). §: results
from (Li et al., 2019a). *: results from (Dai et al., 2021). : results from (Ding and Gimpel, 2021). "-" indicates
the models are improper to report these values. Empty cells indicate the results were not reported in the literature.

A potential explanation is that the latter could incor-
porate natural language understanding knowledge
into generation tasks, and then learn a more struc-
tured semantic latent space with the combination
of strengths of VAE, BERT, and GPT-2. Overall,
DPrior achieves the lowest PPL and highest MI
among all datasets based on the OPTIMUS frame-
work, which further verifies the superiority of the
data-driven prior via learnable dictionary atoms.

Analysis We conduct a set of analyses including
the influence of the dictionary size, atom analysis,
latent interpolation, and sentence transfer. We find
that the results on the PTB dataset are insensitive
to the size of the dictionary. To gain a comprehen-
sive understanding of the prior, we also conduct
atoms analysis. Specifically, we randomly choose
an atom from the dictionary and search top-9 near-
est atoms via euclidean distance to this atom. Then
we feed the sampled atom and top-9 nearest atoms
to the decoder for sentence generation. The re-
sults are illustrated by the red and blue sentences in
Table 3. We conduct latent interpolation to demon-
strate DPrior could learn a smooth latent space. We
also conduct sentence transfer to imply DPrior has
great ability of high-level sentence editing in latent
space. More details are illustrated in Appendix C.

~

a dog is running on the plant

a chicken is chasing off animals.

a girl flings a dog on water.

a dog is on athletic grounds.

a small white dog runs under the grass.
a dog goes alone from his village.

a dog plays with a play on a grassy field.
the brown dog is attacking other people.
three puppies are eating right inside.

a black pup on monkey jump.

O 001NN B WN—

Table 3: Atom analysis on SNLI dataset.

4.2 Controlled Text Generation

In this section, we conduct controlled text genera-
tion on the Yelp (Li et al., 2018a) and Arxiv (Sergio,
2019) datasets. Yelp dataset (Yelp-s) consists of
business reviews that are labeled as either positive
or negative according to their sentiment. To gain
the tense attributes (present or past) from Yelp, we
use the Stanford Parser to extract the main verb
from a sentence to constitute a new dataset (Yelp-t).
We also consider the combination of sentiment and
tense attributes (Yelp-st) for multi-set controlled
text generation. Arxiv dataset extracts the abstract
from arxiv articles regarding three topics: ar-
tificial intelligence, computer vision, and natural
language process. Appendix A shows the detailed
dataset statistics.

Baselines We compare the proposed DPrior with
constrastive loss (denoted as DPrior+c) against
several baselines:(i) CVAE, the conditional-VAE
model (Sohn et al., 2015) where each attribute is
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Yelp-s Yelp-t Yelp-st
Methods =0+ PPIi Dist} | Acct PPIi DistT | Acct PPE¢ Dist}
CVAE 852 | 5.87 | 0.384 | 869 | 5.66 | 0.350 | 75.6 | 5.75 | 0.270
S CVAE+c | 969 | 572 | 0354 | 983 | 573 | 0.368 | 96.6 | 5.69 | 0.263
S Semi-VAE | 968 | 582 | 0375 | 982 | 5.66 | 0351 | 942 | 577 | 0.282
§ Disentangle | 97.7 | 5.81 | 0.377 | 98.5 | 5.63 | 0.343 | 945 | 5.82 | 0.297
&  DPrior+c | 99.2 | 545 | 0313 | 99.9 | 5.63 | 0298 | 98.4 | 554 | 0.195
Reference | 98.4 | 6.01 | 0.552 | 99.5 | 5.94 | 0.560 | 98.0 | 5.93 | 0.481
£ GPT2 96.4 | 5.00 | 0.436 | 977 | 4.93 | 0.422 | 932 | 5.05 | 0.359
S CVAE+c | 951 | 6.02 | 0.629 | 960 | 595 | 0.633 | 88.8 | 5.94 | 0.556
& DPrior+c | 98.6 | 5.82 | 0.498 | 99.4 | 592 | 0.467 | 95.1 | 596 | 0.489

Table 4: Automatic evaluation results of controlled text generation on Yelp dataset. "Transformer" indicates au-
toencoder architectures are built with transformer layers, while "pre-train" employs pre-trained models such as
GPT-2 or OPTIMUS. Reference represents samples from the test dataset. 1/] means the larger/smaller the better.

Methods sentiment tense

Acct Agreel | Flut Agreet | Acct Agreet | Flul Agreet
Reference | 4.32 803% | 430 67.2% | 488 963% | 443 68.4%
GPT-2 415 785% | 4.12 642% | 474 923% | 419 65.1%
CVAE+c 430 79.8% | 4.08 643% | 476 92.8% | 3.89 655%
DPrior+c | 4.51 82.6% 4.23 66.6% 490 97.2% | 439 69.2%

Table 5: Human evaluation results of controlled text generation on Yelp dataset in terms of sentiment and tense
attributes. Reference represents samples from the test dataset. 1 means the larger the better.

Arxiv
Methods =0T BpL] | Dist]
Reference | 86.2 | 3.79 | 0.556
GPT-2 81.8 | 3.08 | 0.377
CVAE+c 95.8 | 4.39 | 0.555
DPrior+c | 98.7 | 4.28 | 0.575

Table 6: Automatic evaluation results of controlled text
generation on Arxiv dataset. Reference represents sam-
ples from the test dataset. 1/] means the larger/smaller
the better.

represented by a separated Gaussian distribution.
(il) CVAE+c, which applies constrastive loss as
DPrior+c to the conditional-VAE model. (iii) Dis-
entagle (Hu et al., 2017), which disentangles the
latent representations into content and attribute
parts for controlled text generation; (iv) Semi-
VAE (Kingma et al., 2014), semi-supervised VAE
model with independent discrete and continuous
latent variables; (v) a fine-tuned GPT-2 (Radford
et al., 2019) model using attribute labels as the the
prompt. We deploy the test dataset as Reference
for comparison. To demonstrate the influence of
constrative loss, we also consider an ablation where
no constrative loss is applied on DPrior. Implemen-
tation details are discussed in Appendix D.

Metrics We evaluate the performance of con-
trolled text generation from three aspects, i.e., con-
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trollability, fluency and diversity. For controllabil-
ity, we fine-tune a BERT classifier (Devlin et al.,
2019) on the training data as attribute predictor,
which measures the accuracy (Acc) of correctly
generated sentences with desired attributes. Note
that the BERT classifier achieves an accuracy of
98.4%, 99.5%, 98.0%, and 86.2% on Yelp-s, Yelp-
t, Yelp-st, and Arxiv respectively, being a good
automatic evaluator. For fluency, we adopt a pre-
trained GPT-2 model (Radford et al., 2019) as the
fluency evaluator, which takes the generated sen-
tences as input and returns the corresponding per-
plexity scores (PPL). For diversity, distinct met-
ric (Dist) is employed which calculates the number
of distinct bigrams in generated sentences (Li et al.,
2016). A better-controlled generation generally has
higher Acc, lower PPL, and higher Dist.

Main Result The results are listed in Table 4, 5,
and 6, including automatic evaluation and human
evaluation. From the results, we can conclude
that: (i) in terms of controllability, our proposed
DPrior+c consistently achieves the best generation
accuracies (Acc) on all four datasets via either auto-
matic evaluation or human evaluation. (ii) In terms
of fluency, there is no doubt that GPT-2 produces
the best PPL scores since it is pre-trained on lan-
guage modeling tasks. Though not the best, our
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Figure 2: Tllustration of subspace separations on the Arxiv dataset.

DPrior+c also achieves better PPL scores against
other methods. Note that fluency is a very subjec-
tive metric, and the use of the GPT-2 PPL score
may not be a reliable measurement. We also con-
duct human evaluation, reported in Table 5, and
our DPrior+c always achieves the best fluency ex-
cluding the reference. (iii) In terms of diversity,
our DPrior+c can also attain comparable distinct
metrics (Dist) against other methods. Note that
DPrior+c achieves the best distinct metrics (Dist)
in the Arxiv dataset, as shown in Table 6. With
the help of pre-trained OPTIMUS, DPrior+c could
generate more diverse long sentences with more
words exploited in the vocabulary.

In comparison with DPrior+c, DPrior always at-
tains the worst controllability as shown in the top
block of Table 4, which can be explained that dic-
tionary atoms cannot receive supervised informa-
tion without contrastive learning. We also find that
Transformer-based models always achieve a little
better controllability but worse diversity compared
with pretrain-based models, as shown in Table 4. A
possible explanation is that pretrain-based models
can always leverage extra large-scale text corpus
and generate out-of-domain sentences that exploit
more words, even their attributes cannot be distin-
guished by the BERT classifier.

Visualizations To gain a better understanding of
how contrastive learning benefits the prior subspace
separations, we visualize dictionary atoms with
different attributes. Specifically, we focus on the
Arxiv dataset and sample all atoms from DPrior
and DPrior+c models. We reduce the dimension-
ality from 32 to 2 using PCA and plot them in
Figure 2. As shown in Figure 2(a), the subspace
for Al, CV, and NLP parts are highly overlapped
without contrastive loss. This can also explain the
poor controllability of DPrior in Table 4. By con-
trast, DPrior+c model clearly separates the prior
space into the Al, CV, and NLP parts, as shown
in Figure 2(b), indicating that the contrastive loss
could effectively enlarge the gap among different

subspaces. Therefore, text generated from the in-
terpolation of the disjoint dictionary subsets will
be highly consistent with the desired attributes.

We further analyze the advantages of contrastive
learning from two perspectives: the accuracy of dic-
tionary atoms, where we directly feed all atoms to
the decoder and measure the accuracy of predicted
attributes by the BERT classifier; and the distance
between the mean of the three disjoint subsets. As
shown in Figure 2(c) and Figure 2(d), when no
contrastive loss is applied, the atom accuracy and
subset distance keep almost unchanged, i.e., 33%
and O respectively. By contrast, when contrastive
learning is deployed, the atom accuracy quickly
increases to 91.9%, and the distance gradually en-
larges during the model training.

Other Analysis We show some sampled sen-
tences from DPrior+c including short controlled
text generation trained on Yelp dataset in terms of
sentiment, tense, and the combination of them, and
long controlled text generation trained on Arxiv
dataset. All samples can be found in Appendix E.

We also analyze the influence of Dirichlet distri-
bution for text generation in terms of controllability,
fluency, and diversity. Details can be found in Ap-
pendix G.

5 Conclusion

In this paper, we propose the Dictionary
Prior (DPrior), a new data-driven prior that en-
joys the merits of expressivity and controllability.
The proposed prior deploys a set of learnable vec-
tors dubbed as dictionary atoms and interpolate the
atoms to form the prior. We apply dual-form KL-
divergence to make the prior distribution spanned
by dictionary atoms approximate the posterior dis-
tribution. Contrastive learning is further deployed
to the disjoint dictionary subsets to enable control-
lability and interpretability. Empirical results on
benchmark datasets demonstrate the superiority of
our approach in both language modeling and con-
trolled text generation.
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Nevertheless, the proposed approach has limita-
tions. While the Gaussian distribution employed in
standard VAESs has an infinite support region, the
support region of DPrior is finite as it corresponds
to the convex hull of the dictionary atoms. There-
fore, future work considers extending our frame-
work to the more general infinite support region.
We will also apply DPrior to more text generation
tasks like poetry generation (Yi et al., 2020) and
machine translation (Li et al., 2020b, 2019b).
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A Dataset Statistics

We list the data statistics of all experiments in Ta-
ble 7. PTB, Yelp, Yahoo, and SNLI datasets are
used in the language modeling experiments in Sec-
tion 4.1. Yelp-s, Yelp-t, Yelp-st, and Arxiv datasets
are used in the controlled text generation experi-
ments in Section 4.2.

B Language Modeling Results

The language modeling performance was evaluated
by perplexity(PPL), Mutual Information(MI), Ac-
tive Units(AU), Evidence Lower Bound(ELBO),
KL divergence(KL), and Reconstruction(Rec) on
PTB, SNLI, Yelp, and Yahoo datasets are shown in
Table 8 and 9.

C Analysis on Language Modeling

The Influence of Dictionary Size To analyze
how the dictionary size m influences the language
modeling performance, we vary m = 2F k €
{8,9,10,11,12,13,14, 15}, and conduct experi-
ments on the PTB dataset. The curves shown in
Figure 3 present slight fluctuations in terms of PPL,
MI, ELBO, and Rec, indicating the experiment re-
sults are insensitive to the size of the dictionary.
We set m to 2048 for all language modeling ex-
periments in Table 2, 8 and 9 for the highest MI.
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Figure 3: Influence of various dictionary sizes m for
language modeling on PTB dataset.

Atoms Analysis To gain a better understanding
of the prior space, we conduct atoms analysis on
the SNLI dataset, i.e., we randomly choose an atom
from the dictionary and search top-9 nearest atoms
via euclidean distance to this atom, and then feed
the sampled atom and top-9 nearest atoms to the de-
coder to obtain red and blue sentences respectively,
as shown in Table 3 and 10, which show similar se-
mantics, grammar and text length are well clustered
in the prior space.

Latent Interpolation To demonstrate DPrior
can learn a smooth latent space that captures sen-
tence semantics, we implement linear interpolation
between latent vectors on the SNLI dataset, i.e., we
take two sentences x; and X2, and use their poste-
rior as the latent features z; and zo, respectively.
We interpolate a path z, = z1 - (1 —7) + 29 - T
with 7 increases from O to 1 by a step size of 0.1.
As shown in Table 11, the interpolated sentences
using greedy decoding conditioned on z, exhibit
smooth semantic evolution.

Sentence Transfer To testify the ability of high-
level sentence editing in latent space, we also con-
duct a one arithmetic latent vector operation on
the SNLI dataset. Specially, given source sentence
x 4 and target sentence x g, the goal is to re-write
the input sentence ¢ as output in analogy to the
transition from x 4 to & g. We take encoded latent
features z 4, zp, zc from T 4, g, T, then apply
the arithmetic operator zp = zp — z4 + Z¢, and
generate « p conditioned zp using greedy decod-
ing. As shown in Table 12, two style transitions
are well achieved, i.e., from singular to plural sub-
ject and from daily-life activity to sport, indicating
DPrior can well support the sentence editing.

D Implementations for Controlled Text
Generation

We implement all the baselines on our own un-
der the same protocols as there is hardly any ref-
erence code for controlled text generation. For
transformer-based models, reported in the top block
of Table 4, all encoders and decoders are stacked
by two transformer layers. These models share the
same hyper-parameter settings, including the di-
mension of latent space, word embedding, and self-
attention module. The dimension of latent variable
and dictionary atom is set to 32. Adam (Kingma
and Ba, 2015) optimizer is employed with an ini-
tial learning rate of 0.001. Among pretrained-based
models in the bottom block, CVAE+c and DPrior+c
adopt OPTIMUS framework (Li et al., 2020a) that
employs BERT as the encoder and GPT-2 as the
decoder with an initial learning rate of 1e-5. GPT-2
model is fine-tuned on the above datasets with an
initial learning rate of le-5 directly. We prepend
the attribute label words (e.g., positive, negative) to
each sentence such that GPT-2 learns to treat them
as prompt words. For Yelp-s, Yelp-t, and Yelp-st
datasets, the size of the subset for each attribute in
the dictionary is set to 2048, and v = 1/ 29, and
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we sample 1000 sentences each attribute for auto-
matic evaluation. Similarly, the size of each subset
in the dictionary is set to 256 for Arxiv dataset,
and v = 1/2, and we sample 200 sentences each
attribute for automatic evaluation.

E Case Study on Controlled Text
Generation

We show some sampled sentences from DPrior+c
trained on the Yelp dataset in terms of sentiment
and tense, and the combination of them. Each
attribute is paired with two sentences, and we high-
light the corresponding salient words in Table 13.
We also choose three long controlled text gener-
ations from DPrior+c trained on Arxiv dataset in
Table 14.

F Human evaluation for controlled text
generation

We also conduct human evaluation for the con-
trolled text generation besides automatic evalua-
tion. Due to the limited budgets, here we only com-
pare DPrior+c with Reference, GPT-2, CVAE+c,
as shown in Table 5. And we experiment on the
Yelp-s and Yelp-t datasets in terms of sentiment and
tense attributes. We randomly select 50 samples for
each attribute, so there is a total of 200 sentences
from each model.

Four annotators with well linguistic background
were invited to assess each sentence with desired
attributes in a blind manner. The evaluation is on
a scale of 1-5 regarding two criteria: accuracy and
fluency. Better controlled generation would come
with higher accuracy and higher fluency. For exam-
ple, given a generated sentence "the price is great
and i recommend them!" with desired "positive”
sentiment, the accuracy scores [5, 5, 5, 5] were
annotated as the sentiment of the sentence could
be easily assessed. When it is hard to determine
the sentiment of the sentence, annotators might
differ their opinions. An example is that [3, 2, 3,
4] were annotated for the sentence "this was abso-
lutely the first time for me."” with desired "negative"
sentiment. The fluency scores were assessed in
the same manner. Each sentence was reviewed by
four judges and the average scores are reported in
Table 5. We can see that our DPrior+c achieves
the best accuracy, as well as best fluency score ex-
cept for the Reference. We also set an agreement
metric on accuracy and fluency via the percentage
of the scale that most annotators agree with. For

annotated scores [5, 5, 5, 5] and [3, 2, 3, 4], the
agreement would be 100% and 50%, respectively.
As seen, humans have a higher agreement when
the model performance is high.

G Influence of Dirichlet Distribution

As v in Equation 2 determines the density of
the Dirichlet distribution which further determines
the interpolation coefficients 7r, here we analyze
its influences on text generation from three as-
pects, i.e., controllability, fluency, and diversity
as in the main results in Section 4.2. We vary
v =1/27,5 € {4,5,6,7,8,9,10,11,12,13, 14},
and conduct controlled text generation on the Yelp-
s dataset on the transformer-based architecture. We
sample 2000 sentences for each v and employ met-
rics introduced in Section 4.2 for automatic eval-
uation. As shown in Figure 4(a), when we set
a comparatively large value to =y, the DPrior+c
model achieves great performance on controlla-
bility, while DPrior gains very poor accuracy, indi-
cating the importance of contrastive learning in our
framework. We also take generation fluency into
consideration which is measured by GPT-2 PPL
score. As in Figure 4(b), the PPL score increases
gradually on both models when v declines, show-
ing larger v would lead to more fluent generations.
Finally, the influence of «y on generation diversity
is depicted in Figure 4(c). We can see the two mod-
els have similar trends, i.e., the diversity evaluated
by Dist increases rapidly when ~ decreases from
1/2% to 1/2'2, then diversity has a slight decline.
Comprehensively considering the controllability,
fluency, and diversity of text generation, we set
v = 1/2Y for all experiments on Table 4.

We also analyze the influence of Dirichlet dis-
tribution on the OPTIMUS-based architecture that
could leverage extra large-scale text corpus. The
most salient change is that the diversity measured
by Dist significantly increases from 0.1 to 0.5
when ~y equals 1/2, as shown in Figure 4(c) and
Figure 4(f), indicating the combination of DPrior
and the pre-trained model could generate out-of-
domain sentences that exploit more words. In terms
of controllability, the OPTIMUS-based architec-
ture exhibits the same trend but slightly lower con-
trollability, as illustrated in Figure 4(a) and Fig-
ure 4(d). In terms of fluency, shown in Figure 4(e),
OPTIMUS-based architecture presents more simi-
lar fluency to the test dataset as reported in Table 4.
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Figure 4: Influence of Dirichlet distribution on text generation controllability, fluency and diversity. (a) (b) (c) are
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Dataset Attributes #Train | #Dev | #Test | #Vocab | Max-Length | Mean-Length
PTB (Marcus et al., 1993) None 42068 | 3370 | 3761 10000 82 21.1
Yelp (Yang et al., 2017) None 100000 | 10000 | 10000 | 19994 200 96.0
Yahoo (Yang et al., 2017) None 100000 | 10000 | 10000 | 19998 200 78.8
SNLI (Bowman et al., 2015) None 100000 | 10000 | 10000 | 9987 70 9.7
. Negative 177218 | 2,000 | 500
Yelp-s (Li et al., 2018a) Positive 266041 | 2.000 | 500 9355 15 8.9
. Present 298524 | 2594 577
Yelp-t (Li et al., 2018a) Past 133460 | 1290 394 9355 15 8.8
Negative Present | 96944 | 1091 244
. Negative Past 76153 860 244
Yelp-st (Lietal., 2018a) Positive Present | 201580 | 1503 | 333 | > 15 88
Positive Past 57307 430 150
Al 9981 200
Arxiv (Sergio, 2019) CV 14382 200 162239 567 139.3
NLP 14314 200
Table 7: Data Statistics
Dataset PTB SNLI
Method PPL] | MIf | AUT | -ELBOJ | KLT | Rec| | PPL] | MIf | AUT | -ELBO} | KLt | Recl
LSTM-LMT 100.47 - - - - - 21.44 - - - - -
GPT-2f 24.23 - - - - - 20.24 - - - - -
VAE 101.39 | 0.01 0 101.27 | 0.00 | 101.27 | 21.67 | 0.03 1 33.12 0.04 | 33.08
Annealing—VAET 101.40 | 0.00 0 101.28 0.00 | 101.28 | 21.50 | 1.42 2 33.07 1.42 | 31.66
Lag-VAEJr 99.83 | 0.83 4 101.19 0.93 | 100.26 | 21.16 | 1.38 5 32.95 142 | 31.53
FB-VAES(\ = 5.0) | 101.42 | 4.80 4 102.21 5.10 | 97.12 | 21.58 | 4.95 6 33.49 5.10 | 28.38
= AE-FBS(\ = 5.0) 96.86 | 5.31 32 102.41 6.54 | 95.87 | 21.64 | 7.71 32 34.47 9.53 | 24.94
; MoG-VAE® 97.50 | 0.68 32 101.79 2.35 | 99.44 | 28.05 | 0.41 1 41.40 0.44 | 40.96
~ Vamp—VAE<> 97.83 | 0.72 32 101.84 231 99.53 | 25.98 | 0.00 0 41.35 0.00 | 41.35
Flow-Prior® 93.58 | 2.83 31 106.41 7.21 99.20 | 26.19 | 3.16 32 51.15 7.59 | 43.56
APo-VAE* 53.02 | 4.50 32 87.00 8.90 | 78.10
iVAE! 5344 | 1220 | 32 87.20 12.51 | 74.69 | 7.40 | 9.93 32 21.54 10.19 | 11.35
DPrior (Our) 46.08 | 12.59 | 32 83.95 12.62 | 71.33 | 6.44 | 10.02 | 32 20.04 10.04 | 10.00
n AE-FBT(\ = 1.0) 35.53 | 8.18 32 77.65 28.50 | 77.65 | 29.63 | 9.20 32 47.35 28.96 | 18.39
2 AE-FBf(\=05) 26.69 | 7.64 32 96.82 15.72 | 81.09 | 16.67 | 8.89 32 38.50 1635 | 22.14
E AE-FBT(A = 0.05) | 23.58 | 3.78 32 91.31 4.88 | 86.43 | 1347 | 3.49 32 33.08 3.92 | 29.17
% iVAE 1549 | 1586 | 32 74.19 16.07 | 58.11 5.65 | 1428 | 32 19.54 1430 | 5.24
DPrior (Our) 14.74 | 1596 | 32 72.84 1596 | 56.88 | 5.54 | 1442 | 32 19.33 14.42 | 4.90

Table 8: Language modeling performance comparison on PTB and SNLI datasets. "LSTM" indicates autoencoder
architectures are built with two-layer LSTMs, while "OPTIMUS" employs pre-trained BERT and GPT-2 as the
encoder and decoder. T: results from (Li et al., 2020a). *: results from (Fang et al., 2019). 8: results from (Li et al.,
2019a). *: results from (Dai et al., 2021). ©: results from (Ding and Gimpel, 2021). "-" indicates the models are
improper to report these values. Empty cells indicate the results were not reported in the literature.
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Dataset Yelp Yahoo
Method PPL| | MIT | AUt | -ELBOJ} | KLt | Rec| | PPL| | MIt | AUt | -ELBO| | KL1 | Rec|
LSTM-LMT 42.60 - - - - - 60.75 - - - - -
GPT-2f 2340 | - - - - - 2200 | - - - - -
VAE 40.56 | 0.00 0 357.90 | 0.00 | 357.90 | 61.52 | 0.00 0 329.10 | 0.00 | 329.10
Annealing-VAE? 4039 | 0.13 1 357.76 | 0.14 | 357.62 | 61.21 | 0.00 0 328.80 | 0.00 | 328.80
Lag-VAE! 39.84 | 2.16 12 59.77 | 29 19 328.40 | 5.70 | 322.70
FB-VAES(\ = 0.5) 62.78 | 5.00 3 331.32 | 5.07 | 326.26
= AE-FBY(\ =5.0) | 47.97 | 7.89 32 59.28 | 8.08 32 329.31 | 10.76 | 318.55
& MoG-VAE® 64.60 | 0.00 0 33290 | 0.00 | 332.90
—~ Vamp-VAE® 74.81 | 0.00 0 344.61 0.00 | 344.61
Flow-Prior® 68.29 | 0.61 25 356.67 | 10.99 | 345.68
APo-VAE* 3291 | 6.20 32 46.61 | 4.90 32
iVAE! 36.88 | 11.00 | 32 348.70 | 11.60 | 337.10 | 47.93 | 10.70 | 32 309.10 | 11.40 | 297.70
DPrior (Our) 32.79 | 11.35 | 32 337.35 | 11.36 | 325.99 | 45.18 | 10.93 | 32 304.34 | 10.94 | 293.40
n AE-FBT(\ = 1.0) 24.59 | 9.13 32 353.67 | 27.89 | 325.77 | 24.92 | 9.18 32 301.21 | 30.41 | 270.80
2 AEFBI(A=05) | 2279 | 7.67 32 344.10 | 15.09 | 329.01 | 23.11 | 8.85 32 293.34 | 17.45 | 275.89
E AE-FBT(A = 0.05) | 21.99 | 2.54 32 337.41 3.09 | 33431 | 22.34 | 5.34 32 28270 | 6.97 | 282.84
% iVAE 15.44 | 15.07 | 32 294.55 | 15.35 | 279.19 | 15.04 | 12.52 | 32 246.26 | 12.95 | 233.31
DPrior (Our) 14.52 | 17.05 | 32 287.92 | 17.05 | 270.87 | 14.67 | 12.99 | 32 244.01 | 13.00 | 231.01

Table 9: Language modeling performance comparison on Yelp and Yahoo datasets. "LSTM" indicates autoencoder
architectures are built with two-layer LSTMs, while "OPTIMUS" employs pre-trained BERT and GPT-2 as the
encoder and decoder. T: results from (Li et al., 2020a). *: results from (Fang et al., 2019). 8: results from (Li et al.,
2019a). *: results from (Dai et al., 2021). ©: results from (Ding and Gimpel, 2021). "-" indicates the models are
improper to report these values. Empty cells indicate the results were not reported in the literature.

a man in white shirt is jogging on an iron horse in a women’s path.

aman in a green and white outfit is racing a motocross machine.

a man in a white shirt in his silk blue robe with animals.

a skier in blue jeans is jousting on a pier in a city.

a man in blue shirts is holding up cans and laying at a skateboard drawing.
a male basketball players is led by another male as the waves on the beach.
a man wearing a shirt does his legstand on a hovering horse.

a man dressed in a white shirt and black hat is using sticks.

the man in the men’s pants and helmet beats a rugby on a wave at their race.
the blond man will race two dogs back to shore in their same boat.
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Table 10: Atom analysis on SNLI dataset.

0.0 ayoung woman with a black hairbrush brushes her teeth while a man in a white shirt watches.
0.1 ayoung woman with a black hairnet brushes her teeth while a man in a gray shirt watches her.
0.2 ayoung woman with a black shirt brushes her teeth in a house while a family watches.

0.3 ayoung woman with a black shirt cuts her teeth in a yard while a man watches.

0.4 ayoung man in a blue shirt with a black hair grabs a rag on her shoulder while other people work in the background.
0.5 ayoung man in a gray shirt holds a bottle of food with his two dogs in a distance.

0.6 aman in a brown shirt is holding a blue bag with a body of water in front of him.

0.7 aman in a blue shirt is holding a small dog with a bag in the grass.

0.8 aman in a blue shirt is holding a small dog in a area of grass.

0.9 aman in a blue shirt is holding a bag of food in a grassy area.

1.0 aman in a blue shirt is holding a bag of food in a small area of grass.

Table 11: Interpolating latent space z, = z; - (1 — 7) + 22 - 7. Each row shows 7, and the generated sentence (in
blue) conditioned on z..

Source x 4 Target x

a girl makes a silly face two soccer players are playing soccer

Input ¢ Output zp

e a girl poses for a picture e two soccer players are posing

e a girl in a blue shirt is taking pictures of a microscope e two boys are wearing soccer uniforms in a soccer field
e a woman with a red scarf looks at the stars e two men in green jerseys are at rugby

e a boy is taking a bath e two players are running

e a little boy is eating a bowl of soup e two soccer boys are playing a soccer ball

Table 12: Sentence transfer via arithmetic operator zp = zp — z 4 + Z¢. The output sentences are in blue.
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Types Attributes Samples
positive [s] this is followed by good movies, grez}t food. [/s]
sentiment [s] for sure. the burrito is amazing and atfordable. [/s]
negative [s] for me it looks crappy and understaffed. [/s]
[s] i must have seen the disgusting and overpriced boxes. [/s]
present [s] this res_taurant l.las an excellent view. [/s]
tense [s] plus this place is clean and genuine customer service. [/s]
past [s] 1 was able to get the delicious sushi! [/s]
[s] plus my car was messed up but our expectations were extremely low. [/s]
positive present [s] drinks are excellent as well as wine. [/s]
[s] the haircut is completely worth the price! [/s]
positive past [s] the environment‘was a})vesom(.i and friendly. [/s] .
multi-set [s] ﬁnall.y gota pf:r?ect.hz.nrcut with great cgstomer service. [/s]
negative present [s] well in my opinion it is a waste of calories. [/s]
[s] probably the worst haircut they have ever had. [/s]
. [s] to my surprise, the plate was empty. [/s]
negative past [s] it might have been worst haircut you called or even asked for. [/s]

Table 13: DPrior+c case study on the Yelp dataset. Red and blue words indicate the sentiment and tense of
sentences respectively.

Attributes | Samples

[s] the paper studies the use of generative adversarial networks (gans) for natural language
parsing applications. upon retrieval of natural text digits, with a gan fixed-sized dictionary
and a small set of rules, contextual grammar is generated for a given input group. this
contextual grammar offers various incremental mechanism for gans to capture context,
including a violation-theoretic scheme for the recognition rate of contextual grammars,
exacerbated by accounts of its integration with quantitative metrics such as ver studies or
globally-confluent grammars. our approach is primarily agnostic to concepts. furthermore,
with real world examples, we show that with just a simple implementation we can expect to
improve word parsing performance, carry out a state-of-the-art sequence learning algorithm,
and finally generate an effective lexical prop grounding from its trace on the text data. [/s]
[s] the topic of computer vision that attempts to predict gestures (i.e., hands) using prob-
ability distributions is rapidly gaining popularity. additionally, binary constraints lead to
efficient finite state machine (fsm) composition strategies that tend to preserve image corre-
spondences, since intuitive expressions of the departing fsm mechanisms only require a few
trace steps from a given fsm state. we introduce a general cnn architecture that efficiently
processes images with probabilistic hand model elements. we present a novel classification
setting where the fsm parameters only need to be confirmed at a small level of training and
test to improve the classification performance. we perform experiments (toads, limitation,
handdisc) on datasets with numbers varying from about 320k samples to a relatively small
amount of activity on a held-out dataset of collections of well-known hand gestures. through
experiments, we have validated the effectiveness of our architecture; and we discovered that
our gated knuckle-less fsm constraints selectively preserve image correspondences. [/s]

[s] one of the problems in real-world monte carlo tree search problems (mcts) is the
generation of promising algorithms and performing efficient learning of mcts parameters.
parameters distributional constraints induced by a large number of observations are difficult
to generate and therefore a way to overcome this issue is posed in this paper. through an
empirical analysis of a prototype mct based on the control-box machine learning (cbm)
and kleywagatoff-lofert satisfiability problems, we advocate deep belief learning (dl),
Al a procedure with epistemic discretization to kickstart training. dl operates through an
abstraction tree which enables better reasoning, language understanding, and preference
of trained models. we introduce a number of different psychometric specifications to infer
behavioral potentials. as a remedy, we propose an approach that starts with belief processes
simultaneously. we present dl mouth-to-teeth behaviors that show considerably better
soundness and recall compared to the current state-of-the-art mct based approaches as well
as artificial neural networks (anns), and that satisfactorily generates better algorithms. [/s]

NLP

CvV

Table 14: DPrior+c case study on the Arxiv dataset. Blue words indicate the attributes.
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