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Abstract

Tagging in the context of online resources is a
fundamental addition to search systems. Tags
assist with the indexing, management, and re-
trieval of online products and services to an-
swer complex user queries. Traditional meth-
ods of matching user queries with tags either
rely on cosine similarity, or employ semantic
similarity models that fail to recognize concep-
tual connections between tags, e.g. ambiance
and music. In this work, we focus on subjec-
tive tags which characterize subjective aspects
of a product or service. We propose concep-
tual similarity to leverage conceptual awareness
when assessing similarity between tags. We
also provide a simple cost-effective pipeline to
automatically generate data in order to train the
conceptual similarity model. We show that our
pipeline generates high-quality datasets, and
evaluate the similarity model both systemati-
cally and on a downstream application. Ex-
periments show that conceptual similarity out-
performs existing work when using subjective
tags.

1 Introduction

As products and services proliferated the Internet in
recent years, tagging came into prominence to facil-
itate the consumption of online information (Smith,
2007). Tagging is the practice of assigning labels
and keywords to online resources. It plays a piv-
otal role in the indexing, management and retrieval
of factual information. On the other hand, recent
years have witnessed a major shift in people’s ex-
pectations when searching online (Li et al., 2019).
Beside the factual data such as a restaurant’s cui-
sine type or a camera’s resolution, the search trend
evolved to be more experiential (Li et al., 2019).
Common search queries include attributes such as
delicious food for restaurants or long-lasting bat-
tery for cameras. Previous work (Li et al., 2019;
Gaci et al., 2021) called this new set of attributes
as subjective tags because they are short phrases

that hint towards the subjective quality of products
and services.

Subjective tags are particularly useful in enhanc-
ing online experiential search. In this context, users
who are seeking subjective experiences, include
sets of tags they care about in their queries, and it is
the search system’s responsibility to fetch products
and/or services that have been previously described
with matching tags. Deciding whether two given
subjective tags match or not implies using a similar-
ity measure, for which cosine similarity remains a
convenient, yet arbitrary default (Zhelezniak et al.,
2019; Li et al., 2019; Chang et al., 2019). Recent
search systems such as OpineDB (Li et al., 2019) or
SearchLens (Chang et al., 2019) rely mostly on co-
sine similarity when it comes to comparing tag-like
short phrases, since it is easy to use and provides
simple geometric interpretations (Zhelezniak et al.,
2019). However, recent studies (May et al., 2019;
Zhou et al., 2022) argue that this interpretability
becomes fogged when dealing with sentences or
phrases, and cosine similarity suffers from severe
limitations when used to compare multi-word tex-
tual inputs.

A lot of research has been directed toward
proposing supervised methods for textual similarity,
spanning a diverse set of paradigms, e.g. Siamese
networks (Bromley et al., 1993; Ranasinghe et al.,
2019), Aggregation-Matching models (Wang and
Jiang, 2016; Wang et al., 2016, 2017), or the re-
cent cross-sentence attention paradigm which was
made possible by the advent of the transformer ar-
chitecture (Vaswani et al., 2017). Although these
models work fairly well on syntactically-correct
sentences (Bethard et al., 2017), they lack effec-
tiveness when used with shorter-spanned phrases
such as subjective tags. A reason behind this is
that subjective tags do not share the same struc-
ture of full sentences and hence require different
treatment. As will be discussed later in this pa-
per, our experiments confirm this limitation. A
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second drawback is that current similarity models
are not explicitly trained to recognize conceptual
similarities between the compared textual entities
(e.g., meal and pizza share the concept of food; or
background music and lighting share the concept
of ambiance). Therefore, all conceptual reason-
ing is disregarded. In this work, we compel our
own similarity model to encode more conceptual
relationships as provided by a human (whom we
call the designer) and further expanded by popu-
lar knowledge bases such as WordNet (Fellbaum,
2012) or ConceptNet (Speer et al., 2017).

To illustrate the importance of capturing concep-
tual similarities between subjective tags, suppose
a user searches for a restaurant serving delicious
meals. A search system should be able to suggest a
restaurant which has been tagged with tasty chicken
wings among its search results, because meal and
chicken wings share the same concept (that of food)
even though meal and chicken wings are not se-
mantically similar. As a result, traditional semantic
similarity models (Bethard et al., 2017; Li et al.,
2019; Ranasinghe et al., 2019) usually fail to meet
this expectation and provide low similarity scores
for the tags in the example. The same reasoning
applies to other subjective tags, like high-autonomy
camera and long-lasting battery, or romantic am-
biance and low-beat music bar.

Aiming to solve the aforementioned drawbacks,
we propose a new similarity model that focuses on
learning and then using conceptual relationships as
reflected in the training data. Given the new nature
of subjective tags (Li et al., 2019; Gaci et al., 2021),
we are not aware of the existence of datasets that
suit our needs. Besides, manually annotating data
is expensive, and extending to other application do-
mains (e.g. from restaurants to electronics) usually
necessitates re-annotating from scratch. Therefore,
the main contribution of this paper is a pipeline to
automatically generate large synthetic datasets for
the conceptual similarity task. First, we prompt
the dataset designer to provide seed words for the
concepts she needs her conceptual similarity model
to learn about. Second, we exploit the simple struc-
ture of subjective tags (Gaci et al., 2021) to expand
the seeds with conceptually related terms using
knowledge bases, or the implicit knowledge en-
coded in existing language models to automatically
generate large training data.

Our second contribution is the similarity model
itself. Capitalizing on the latest advances in se-

mantic similarity research (Ranasinghe et al., 2019;
Wang et al., 2017; Devlin et al., 2018), we propose
a new similarity model by combining insights from
aggregation-matching and cross-sentence attention
paradigms. We show that conceptual similarity
is better than cosine similarity with a margin of
17.42% in terms of Pearson correlation, or BERT-
based similarity models through systematic eval-
uations. We also plug different similarity models
into a tag-based search system and show that con-
ceptual similarity outperforms them all. Also, we
evaluate the quality of the automatically generated
dataset through various experiments. We release
our code and data in GitHub 1.

2 Related Work

2.1 Synthetic Dataset Generation

Acquiring training data is increasingly the largest
and most pressing bottleneck in deploying machine
learning systems (Ratner et al., 2017). The tradi-
tional way of doing so calls a team of experts to
manually create and then label the data, incurring
tremendous costs. Crowdsourcing alleviates part of
this burden by proposing to a group of individuals
of varying knowledge and expertise, the undertak-
ing of the labeling task (Brabham, 2013; Howe,
2006). However, crowdsourcing runs the risk of
corrupting the precision of the gold labels, and
may inflict noise in the labeling process, especially
when uneducated, careless or malicious workers
are involved. A recent trend for acquiring training
data is devising methods to automatically create,
generate and label these critical building blocks of
supervised learning systems with little effort (Rat-
ner et al., 2016, 2017; Varma and Ré, 2018). When
one speaks of generating data, two problems are
implicitly addressed: (1) generation of features (i.e.
unlabeled raw data), and/or (2) generation of gold
labels (i.e. automatic labeling).

First, we discuss the generation of features, for
which two techniques are mainly used: template-
based generation (Dev et al., 2020; Nadeem et al.,
2020; Ribeiro et al., 2020) and data augmentation
(Zhao et al., 2018; Zmigrod et al., 2019; Taylor
and Nitschke, 2017; Nie et al., 2020; Kaushik et al.,
2019). In template-based generation, a set of tokens
iteratively replaces the placeholders in templates,
creating a separate example each time. Dev et al.
(2020) provide templates such as "The [PLACE-

1https://github.com/YacineGACI/conceptual-similarity-
for-subjective-tags
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HOLDER] is a doctor", and insert words like man,
woman, muslim, christian to create different ex-
amples to study social biases and stereotypes. In
the same spirit, Nadeem et al. (2020) construct an
evaluation dataset of biases through the use of tem-
plates and crowdsourcing, whereas Ribeiro et al.
(2020) designed a framework to test NLP systems
where users construct their own test benchmarks
via the use of templates. On the other hand, data
augmentation techniques expect an already avail-
able set of data, that they augment and expand
to create larger sets. This is usually achieved by
searching for similar inputs in the feature space,
applying small perturbations to the existing data
without changing the labels (Kaushik et al., 2019),
or through seed expansion techniques (Fast et al.,
2016; Li et al., 2019; Huang et al., 2020) via similar-
ity in word embeddings or with knowledge bases.

Our own data generation is a mix of both tech-
niques. While it is fundamentally a seed expansion
method where aspect and opinion terms that we
use to express subjective tags are expanded into
conceptually related terms, it also derives from
template-based generation since we use the tem-
plate "<opinion> <aspect>" (as in delicious food
or romantic ambiance) to construct subjective tags.
The closest work to ours in terms of seed expansion
is Empath (Fast et al., 2016) for studying topic sig-
nals in text. In Empath, a topic is defined by a set of
seeds that are later expanded by either using word
embeddings or crowdsourcing, to enrich each topic
category. In contrast, we use the expansions to
build sufficiently large labeled datasets. Moreover,
we propose five different expansion techniques to
increase the diversity of generated subjective tags.

The second problem in automatic data genera-
tion is generating the ground truth labels. Data pro-
gramming (Ratner et al., 2016) is a recent paradigm
that enables the programmatic creation of large-
scale training sets in which different weak super-
vision sources (e.g. heuristics, knowledge bases,
crowdsourcing) are combined. In Snorkel (Rat-
ner et al., 2017) and Snuba (Varma and Ré, 2018),
combination is done with a generative model that
takes into consideration several properties of the
weak classifiers including accuracy, coverage, and
inter-correlations. Our work is different in two
main aspects. First, Snorkel and Snuba are general
frameworks that present general guidelines aiming
to build labeling functions, whereas our method is
much more specific, and focuses on similarity for

subjective tags. Second, in this work, we generate
and label training sets at the same time, in con-
trast to Snorkel whose purpose is to assign labels
to already existing unlabeled data.

2.2 Textual Similarity

Apart from cosine similarity, we identify several
similarity paradigms in the literature: (1) Siamese
networks (Bromley et al., 1993; Ranasinghe et al.,
2019) where the same encoder is used to project
inputs into the same embedding space. Then, the
similarity decision is made based on the vector
representations alone. (2) Aggregation-matching
paradigm (Wang and Jiang, 2016; Wang et al.,
2016, 2017) which adds explicit matchings be-
tween the representations of inputs, before aggre-
gating them and computing similarity. (3) Cross-
sentence attention paradigm which is enabled by
finetuning transformer models such as BERT on a
similarity task (Devlin et al., 2018; Peinelt et al.,
2020). (4) Combining several weak similarity mod-
els such as simple neural networks, tree-based
and/or probabilistic models through an ensemble
(Bethard et al., 2017; Tian et al., 2017; Lair et al.,
2020). However, all these works focused solely on
semantic similarity between syntactically correct
sentences, whereas we focus on conceptual sim-
ilarity between tag-like short phrases, similar to
Anuar et al. (2015); Zhu and Iglesias (2016). In
contrast, we use knowledge graphs to generate data
and train a supervised model. More details about
our similarity model are provided in Section 4.

3 Pipeline to Generate Training Datasets

Borrowing from the Aspect-Based Sentiment Anal-
ysis literature (Liu, 2012; Gaci et al., 2021), we
define a subjective tag as the concatenation of an
aspect term with an opinion term. The aspect term
designates the component or the feature being de-
scribed and the opinion term characterizes this fea-
ture. For example, delicious food is a subjective
tag wherein food is the aspect while delicious is the
opinion. This definition is sufficiently expressive
to allow a wide range of subjective tags such as ro-
mantic ambiance, clean hotel rooms, long-lasting
battery, great camera or amiable dentist.

Specific to this work, we define a concept as
a set of aspect terms conceptually related to each
other. For example, the concept of food can be
described with the following set of terms: {food,
plates, dishes, pizza, chicken wings, meal, pasta}
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Figure 1: Labeled dataset generation pipeline

while the concept of ambiance can be defined with
{ambiance, atmosphere, lighting, background mu-
sic, dance floor}. The goal of conceptual similarity
is to consider the aspects belonging to the same
concept as similar when described with similar
opinions.

We cast conceptual similarity as a binary classi-
fication problem, where the positive label denotes
similarity. These specifications enable automatic
generation of high-quality labeled datasets for con-
ceptual similarity of subjective tags, with minimal
costs. To do so, the dataset designer provides a list
of concepts. We then leverage seed expansion tech-
niques to generate the dataset, through the pipeline
illustrated in Figure 1. In the following, we de-
scribe each step of the pipeline in detail.

3.1 Providing Concept Seed Words
The first step in the pipeline is to provide seed
words for the concepts that the dataset designer
wants to take into consideration. For each concept i,
the designer provides a list of aspect seed words Ai,
and mi lists of opinion seed words Oj

i where j ∈
{1...mi}; mi depends on the concept and the level
of granularity the dataset designer aims to reach.
For the sake of illustration, say that the designer
wants to include the concept of food with three
classes of opinions (delicious, horrible, healthy).
She may provide the following:
Ai = {"food", "dish", "lunch", "pizza", "snack"}
O1

i = {"good", "delicious", "excellent"}
O2

i = {"bad", "horrible", "not seasoned"}
O3

i = {"healthy", "organic", "high quality"}
Ai lists aspect terms related to the concept of

food. Each of Oj
i lists some opinion terms of the

same nature, but different from one set to another.
In the example above, O1

i describes tasty food, O2
i

characterizes bad food, and O3
i deals with healthy

food. In this particular scenario, conceptual sim-
ilarity trained on a dataset to be generated from
these seed words considers the tags "good food"
and "healthy food" as dissimilar because the terms
good and healthy belong to different opinion sets.

If the dataset designer needs a more granular simi-
larity model (like spicy food described as its own
class), she only has to add another set with seed
words depicting spiciness. Following these guide-
lines, the designer can express a wide range of
concepts such as price, service, hygiene, and in
other domains too (hotels, electronics, books, etc.)

3.2 Seed Word Expansion
We propose five different techniques to expand the
set of seed words given by the dataset designer. We
illustrate these techniques in Figure 2 and describe
them in the following:

WordNet Expansion. For every seed, we collect
its corresponding synsets from WordNet (Fellbaum,
2012). Then, for every synset, we retrieve its hy-
ponyms, hypernyms, meronyms and sister terms as
illustrated in Figure 2(a). We control the number
of expansions through the use of hyperparameters
such as the maximum number of synsets to include,
and different booleans each telling whether we take
hyponyms, meronyms, etc. respectively.

ConceptNet Expansion. For every seed, we
obtain its is-a (i.e. parent concepts) and type-of
(child concepts) relations. For example, meat and
food are parent concepts for the word of interest,
i.e. chicken. We also retrieve other children of the
parent concepts as is shown in Figure 2(b). We
control ConceptNet expansion with three hyperpa-
rameters: capacity which is the maximum number
of relations to consider; minimum weight which
specifies the relevance of the relation (high weights
in ConceptNet (Speer et al., 2017) correspond to a
strong relation); and a boolean specifying whether
to include children of parent concepts into the ex-
pansion.

Word Embedding Expansion. The goal is to
find the top_k words in the vocabulary that min-
imize the total distance between them and seed
terms. Taking the example in Figure 2(c), pasta is
less distant from all the seeds than morning is, thus
pasta constitutes a better expansion. The parame-
ters of this technique is the number of expansions
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(a) (b)

(c) (d) (e)

Figure 2: Different expansion techniques: (a) WordNet, (b) ConceptNet, (c) Embedding, (d) Language generation,
(e) Masked Language Modeling

top_k, the word embedding model under use, and
the distance function, e.g. euclidean.

Language Generation Expansion. This
method plugs seed words into a template such as
"These concepts are related: <seed_1>, <seed_2>,
... <seed_n>, and ", then asks an autoregressive
language model to generate a continuation for this
sentence. We then take the top_k words having
the highest probabilities to be correct continuations.
The hyperparameters are: the language model (e.g.
GPT2, T5), the number of generations, and the
maximum length of each generated expansion.

Masked Language Modeling Expansion. Sim-
ilar to the previous expansion technique, we use
a masked language model (Devlin et al., 2018),
where the template takes the following form:
"<seed_1>, <seed_2>, ... <seed_n> and [MASK]
are all related concepts." The masked language
model produces, for every word in the vocabulary,
its likelihood to replace the mask. So terms having
the same concept as the seeds have higher probabil-
ities. The parameters of this method are the number
of top_k terms to take, and the masked language
model under use, e.g. BERT, Albert...

For every expansion technique, we can have as
many expanders as there are parameter configu-
rations. For example, two word embedding ex-
panders, one based on Word2vec while the other
on GloVe, are two different expanders. Or one that

uses an euclidean distance while the other uses co-
sine similarity are also different expanders. We
give the full list of parameter configurations we
used for every expansion method in our experi-
ments in Section A.2. For a new word to be consid-
ered as a correct expansion, we require that at least
a sufficient number of expanders suggest the word.
We specify this with min_consensus_rate which
defines how many expanders need to produce the
word in order to include it in the final expansions.

3.3 Random Sampling

We randomly choose an aspect term from one of
the expanded aspect sets, and an opinion term from
one of its associated opinion sets. These two terms
are concatenated to form a subjective tag. For ex-
ample, we may sample the aspect term waiters and
the opinion term nice to form the tag "nice wait-
ers". We repeat this process to construct as many
subjective tags as the dataset designer needs.

3.4 Filtering

Random sampling from automatically generated
sets of terms may lead to arbitrary tags. For
instance, it may construct tags such as "helpful
duty".2 We eliminate those tags by using a lan-
guage model which assigns likelihoods to sen-

2This may be the result of expanding service to duty
through WordNet, even though service in this case refers to
the waiters in a restaurant
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tences so that semantically sound sentences are
given high likelihoods and low quality sentences
get low likelihoods. We use GPT2 language model
(Radford et al., 2019) by feeding it with subjec-
tive tags formatted according to this template: "the
aspect is opinion". GPT2 should assign low prob-
abilities to sentences such as "the duty is helpful",
and high probabilities to sentences such as "the
service is helpful" or "the waitstaff is agreeable".
We manually select the probability threshold above
which sentences make sense, and keep the gener-
ated tags that score above that threshold.

3.5 Pairing and Labeling

We randomly sample two subjective tags t1 and
t2 from the filtered list. If the aspect and opinion
terms of t1 and t2 have been sampled from the
same sets, the tags are considered similar (label
is 1). In all other cases, the label is 0. To avoid
class imbalance in the dataset, the dataset designer
provides the minimal ratio of positive examples.
We enforce this constraint by deliberately sampling
similar tags from the same aspect and opinion sets.

Figure 1 summarizes our dataset generation
pipeline with an example. This algorithm allows
us to create high-quality training datasets with min-
imal effort. It can also be adapted to any domain.
In Section 5.2, we evaluate the quality of datasets
generated with this pipeline.

4 Conceptual Similarity Model

In this section, we present our approach to com-
pute conceptual similarity for a pair of subjective
tags. Following guidelines from the aggregation-
matching paradigm (Wang and Jiang, 2016), our
model encodes explicit interactions between tags,
e.g. whether the tags correspond to the same con-
cept; whether they use the same opinions but with
different aspects; whether the choice of words in
the tags is similar but the tags themselves are not.
To this end, we propose a novel bilateral match-
ing model which automatically encodes such in-
teractions and relationships before making a sim-
ilarity decision. Given two subjective tags t1 and
t2, this model estimates their similarity by com-
puting their probability of being perfectly similar
P (sim = 1|t1, t2). Figure 3 illustrates the differ-
ent layers of this model.

We begin by feeding t1 and t2 into BERT (De-
vlin et al., 2018). This serves two purposes: First,
we get word embeddings for each word in the tags;

Figure 3: Similarity model architecture

second, we have a CLS vector that captures the
relationship between t1 and t2 as a vector. Given
BERT embeddings [u1, ..., um] and [v1, ..., vn], we
utilize mean pooling to obtain fixed-sized embed-
dings for each tag (uall and vall). The next layer in
the network matches each word embedding of one
tag with all the word embeddings of the other tag.
The matching is done in two directions (hence the
bilateral aspect): (1) We match each ui with vall to
compare each word ui in t1 with all the words in t2,
and encode their relationship. (2) We match each
vi with uall to do the same in the reverse direction.

The matching function we use is the element-
wise multiplication which has long been used in
the NLP community as a proxy for similarity. Thus,
we use it to match word embeddings of t1 and t2.
After the matching layer, we aggregate [u′1, ..., u

′
m]

and [v′1, ..., v
′
n] to obtain fixed-length vectors for

each tag via Bidirectional LSTM (BiLSTM) lay-
ers (Hochreiter and Schmidhuber, 1997), taking
the last hidden states as tag embeddings u and v.
At this step, we have encoded the relationship be-
tween t1 and t2 using two different paradigms: (1)
aggregation-matching through the use of element-
wise multiplication for matching and BiLSTM for
aggregation (vectors u and v), and (2) the cross-
sentence attention paradigm through CLS vector,
because BERT uses self-attention (Vaswani et al.,
2017) to compute its vectors. We concatenate u, v
and CLS and feed it to a classification head (FFNN
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layer) to estimate similarity.

5 Experiments

We use Restaurants as the test domain. We
consider nine concepts that we use to automati-
cally generate the training dataset: Food, Service,
Price, Atmosphere, Location, Cleaning, Environ-
ment, Menu and Parking. Each concept consists
of one set of aspect terms, and two to three sets of
different opinion terms. The choice of concepts,
and seed words for aspects and opinions was in-
spired by previous work (Moura et al., 2017) who
conducted surveys and qualitative experiments on
many restaurant-seeking participants, and identi-
fied the most important factors taken into account
by these same participants in their decision-making
process for choosing a restaurant. The full list of
concepts and their seeds is in Section A.3, while the
hyperparameter details for the similarity model are
in Section A.1. In the following, we first compare
conceptual similarity to various baselines. Next,
we evaluate the quality of the automatically gener-
ated dataset. Finally, we assess the practical value
of conceptual similarity by measuring its impact
on a downstream search system proposed by Gaci
et al. (2021) that uses subjective tags.

5.1 Evaluating Conceptual Similarity

Existing similarity benchmarks provide similarity
ground truth for syntactically correct sentences
(Bethard et al., 2017). Hence, we cannot use them
given that subjective tags are short phrases which
do not draw from the same syntactically-complete
sentence distribution. To the best of our knowl-
edge, no benchmark for subjective tags exists. For
this reason, we create our own test set by automati-
cally extracting tags from Yelp’s restaurant online
reviews3 using the tag extractor of SACCS (Gaci
et al., 2021). Given a snippet of text, SACCS ex-
tracts subjective tags as concatenations of aspects
and opinions. We then map these extracted tags
randomly into pairs. We select 500 such pairs and
ask three participants to assign a similarity score be-
tween 0 and 5 for each pair of subjective tags. We
then normalize the similarity scores to squash them
into the unit range before taking the mean across
the participants. As in standard similarity evalua-
tions, we use three metrics: Pearson and Spearman
correlation, and Mean Absolute Error (MAE).

3https://www.yelp.com/dataset

Similarity Model Pearson Spearman MAE

Cosine (Word2vec) 0.6770 0.6190 0.2083
Cosine (BERT MEAN) 0.3449 0.3312 0.5313
Cosine (BERT CLS) 0.0497 0.0848 0.6920
BERT Classif 0.5946 0.5404 0.1703
Random Forest 0.6271 0.6324 0.2614
Siamese 0.7058 0.6141 0.1903
Conceptual Sim 0.8512 0.7388 0.1134

Table 1: Evaluation of similarity models

We compare our conceptual similarity model
to several baselines: A Siamese network (Ranas-
inghe et al., 2019) and a random forest classifier
with hand-crafted features (Tian et al., 2017), both
trained on the same dataset we use to train our own
model. Also, owing to the universality of cosine
similarity, we compare against it both with Para-
gram embeddings (Wieting et al., 2015) and on
BERT embeddings with different pooling methods,
MEAN and CLS as in Devlin et al. (2018); Li et al.
(2019). Finally, we train a BERT-based model that
we augment with a classification head (BERT Clas-
sif) and finetune on the same training data we used
to train our conceptual similarity to make it more
competitive. Table 1 summarises the results.

We can see that conceptual similarity outper-
forms cosine similarity by a large margin (0.1742
points in Pearson correlation). This demonstrates
that cosine should no longer be perceived as the
default when it comes to measuring similarity for
subjective tags. We also show that BERT alone can-
not cater for a task as ambiguous as similarity for
subjective tags, even when finetuned on the same
training set that we use.

This sheds light on the necessity to design cus-
tom models especially tailored for tag similarity.
We argue that the effectiveness of our method stems
from its ability to match different words of subjec-
tive tags using both attention and element-wise
multiplication.

Existing information retrieval and tag-based
search systems like Li et al. (2019) and Chang et al.
(2019) blindly trust cosine similarity or a finetuned
BERT without investigating their implications on
the overall system performance. Our work high-
lights the limitations regarding main stream text
similarity techniques for subjective tags and short
phrases, as it gives guidelines as to how to design
robust similarity models.
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Noise level Pearson Spearman MAE

Original 0.8512 0.7388 0.1134
5% noise 0.7341 0.6641 0.1958
10% noise 0.7788 0.7101 0.1898
25% noise 0.7418 0.7055 0.2879
50% noise -0.1209 -0.0943 0.4078

Table 2: Evaluating similarity on noisy training data

5.2 Evaluating the Quality of Training Data

We measure the quality of the automatically gen-
erated training dataset by injecting artificial noise
in the data and checking whether it degrades in
quality (Jassar et al., 2009). We define noise in this
context as swapping the labels in the training set.
For example, if the original line in the dataset was
{t1, t2, 1}, the new noisy line would be {t1, t2, 0}
and vice versa. We perturb fixed percentages of
the training data ( 5%, 10%, 25% and 50%) and
retrain the similarity model each time. The ratio-
nale of this experiment is that the introduction of
noise should degrade the quality of training. In this
spirit, if the similarity model trained on noisy data
is of comparable accuracy to the one trained on the
original unperturbed data, we argue that the orig-
inal data was merely noise. On the other hand, if
introducing noise degrades the performance of the
similarity model, one can assume that the original
data was of good quality. Table 2 shows the sim-
ilarity correlations with human-defined scores as
described in Section 5.1. We observe that instilling
noise drops the accuracy of conceptual similarity.
This reflects that the original unperturbed dataset
is of high quality.

5.3 Experiments on a downstream System

In the following, we demonstrate the effectiveness
of conceptual similarity when plugged into a down-
stream search application Gaci et al. (2021). We
give a brief overview of the application, describe
the baselines, benchmarks and evaluation metrics.

System overview. SACCS (Gaci et al., 2021)
is a subjectivity-aware system to search for restau-
rants online. From their reviews, SACCS automat-
ically extracts subjective attributes of restaurants
offline in the form of subjective tags. Then, when
users provide their search queries, they can include
subjective tags as search filters. SACCS uses an
underlying similarity model to compare between
user-provided tags and those describing each restau-

Similarity Model Short Medium Long

Cosine (word2vec) 0.7956 0.8579 0.8750
Cosine (Paragram) 0.8072 0.8602 0.8741
Cosine (BERT MEAN) 0.7807 0.8512 0.8740
Cosine (BERT CLS) 0.7807 0.8498 0.8738
BERT Classif 0.7968 0.8543 0.8744
Random Forest 0.8048 0.8623 0.8790
Siamese 0.7961 0.8618 0.8823
Conceptual Sim 0.8232 0.8717 0.8839

Table 3: Evaluating the ranking quality of a tag-based
search system with different similarity models

rant. The final output of SACCS is a ranked list of
restaurants ordered by relevance to the user query.

Baselines. We replace the similarity model used
in SACCS with our conceptual similarity and the
baselines we used in Section 5.1, to create as many
baselines for this experiment.

Evaluation benchmark. We follow the same
experiment used in Gaci et al. (2021) to assess
the overall quality of the search system, and hence
evaluate the practical value of conceptual similarity.
Mainly, we use the same crowdsourced evaluation
benchmark as in Gaci et al. (2021), consisting of
subjective search queries with three levels of diffi-
culty: Short queries have only one subjective tag;
Medium queries have two; Long queries with three.
Each difficulty level contains 100 different search
queries, and each query is associated with a ranked
list of relevant restaurants that best answer it.

Evaluation metric. We evaluate the final search
quality using the popular Normalized Discounted
Cumulative Gain (NDCG) (Christopher et al.,
2008). The closer the score is to 1 using this met-
ric, the better are the search results overall. Given
that we use the same system in all the baselines of
this experiment, and that these differ only in the
underlying similarity model in use, we infer that
the NDCG scores directly reflect the quality of the
similarity models. Table 3 shows the results.

Results. Table 3 demonstrates the effectiveness
of conceptual similarity, outperforming all other
similarity models on all levels of difficulty, espe-
cially the universal cosine similarity which per-
forms worse by a margin of 2.76%. This experi-
ment proves that conceptual similarity is efficient
when plugged in tag-based search applications.

6 Conclusion

In this work, we propose conceptual similarity for
subjective tags. We also propose a methodology to



62

automatically generate training datasets for concep-
tual similarity with minimal effort given a domain
and a set of concepts. Unlike traditional seman-
tic similarity, our model is trained with conceptual
signals as reflected in the generated dataset. In-
trinsic and extrinsic experiments demonstrate the
superiority of our approach on subjective tags.

On the other hand, we acknowledge the follow-
ing limitations. Although the method is indepen-
dent from the application domain, we constrained
our evaluations to the Restaurants domain for rea-
sons related to unavailability of test data. So we
were forced to create our own test benchmark by
asking three participants to give ground truth labels
for 500 pairs of subjective tags. This may seem
small-scale, which risks putting into question the
conclusions regarding the superiority of our simi-
larity approach. However, the extrinsic experiment
that we conduct by using relatively larger crowd-
sourced data shows that our approach is efficient
and outperforms other similarity models, which
assuages our concern. As future work, we plan to
apply our methods on other domains, e.g. hotels,
or electronics.

In this paper, we build the whole argument of our
contributions against the blind use of cosine simi-
larity in tag-based search systems, and to replace
it with our newly proposed conceptual similarity.
However, we employ BERT and LSTMs in our
model which incur a much higher computational
cost than cosine similarity. The adoption of our
model in practice depends on whether efficiency
is a major concern in the downstream search ap-
plication, i.e. whether a poor search inflicts major
negative consequences in critical domains such as
finances or regulations. It also depends on the un-
derlying infrastructure into which conceptual sim-
ilarity will be deployed, e.g. are there any GPUs
in use? Is memory space enough to hold BERT
and LSTMs? So whether to adopt our contribu-
tions in practice is a compromise between cost and
efficiency.
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A Appendix

A.1 Similarity Model Details &
Hyperparameters

We use a hidden dimension of 128 for the LSTM
layer, and 512 for the 2-layer classification FFNN.
We apply dropout with a ratio of 0.3. To train
the model, we minimize cross entropy of the train-
ing set, and use Adam optimizer (Kingma and Ba,
2014) to update the parameters with 5e−6 as learn-
ing rate. For hyperparameter search, we pick the
hyperparameters which work best on a develop-
ment set that has been generated in the same way
as the training set.

We implemented conceptual similarity in Python
using standard packages such as PyTorch4 for neu-
ral networks, HuggingFace transformers library5

for BERT and GPT2.

4https://github.com/pytorch/pytorch
5https://github.com/huggingface/transformers

A.2 Parameter Configurations of Expanders

To generate the dataset used in the experiments of
this paper, we use all the expansion techniques de-
scribed in Section 3.2. For each technique, we use
different parameter configurations to increase the
diversity of the generated expansions. For example,
GloVe and Paragram embeddings do not generate
the same words given that each embedding model
has been trained differently, and thus encode the
representation of words in a unique way. Also, in
Language Generation Expansion, we use different
language models with different allowed lengths.
This is to enable the generation of n-grams, in ad-
dition to words. We give the list of the expanders
we use, and their parameters in Table 4.

We have a total of 28 different expanders. We
set the parameter min_consensus_rate to 0.3. Con-
sequently, for a new token to be included in the
final set of expansions and passed down to the sub-
sequent steps of the dataset generation pipeline
(see Section 3 and Figure 1), the token has to be
suggested by at least 30% of expanders (9 dif-
ferent expanders in this case). We selected this
value by doing a manual hyperparameter search
over the following values of min_consensus_rate:
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. We
took the value (i.e. 0.3) that maximized the quality
of the final generated dataset, as evaluated in Sec-
tion 5.2. However, we chose the parameters of the
respective expansion techniques manually without
conducting a hyperparamter search for the follow-
ing reasons: (1) There are too many parameters
to test, which would make the search space expo-
nentially larger, and thus expensive to explore. (2)
The parameter selection of expansion techniques
is subjective by nature. We manually chose the pa-
rameters such that they make sense (e.g. a negative
capacity in ConceptNet Expansion or a very large
top_k in Masked Language Modeling Expansion
would not be useful), and such that the final ex-
panders would generate a diverse set of expansions
from a limited lexicon of seeds.

A.3 Concepts Used in this Work and their
Seeds

We select 9 different concepts to include in the
conceptual similarity model described in the exper-
iments. We base our choice of concepts on substan-
tial research in behavioral psychology (Moura et al.,
2017) whose authors surveyed restaurant seekers
and asked them about which factors influence their
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WordNet Expansion

num_synsets hyponym meronym hypernym sisters

3 true true true true
10 true true true false
5 true false true true

ConceptNet Expansion

capacity minimum_weight second_level_expansion

3 2.0 true
5 3.0 true
10 1.0 false

Word Emebedding Expansion

embedding_model num_words distance_metric

Word2vec 20 euclidean distance
Word2vec 20 cosine similarity
GloVe 20 euclidean distance
GloVe 20 cosine similarity
Fasttext 20 euclidean distance
Fasttext 20 cosine similarity
Paragram 20 euclidean distance
Paragram 20 cosine similarity
ConceptNet 20 euclidean distance
ConceptNet 20 cosine similarity

Language Generation Expansion

model top_k max_length num_beams

GPT2 20 1 200
GPT2 20 2 200
T5 base 20 3 200
T5 base 10 3 50

Masked Language Modeling Expansion

model top_k

BERT base 10
BERT base 20
BERT large 10
BERT large 20
RoBERTa large 10
RoBERTa large 20
ALBERT large 10
ALBERT large 20

Table 4: The full list of expansion techniques and their
parameter configurations that we used to expand the
seed words in our experiments

decision-making process when they chose between
restaurants. In Table 5, we describe the concepts
that we use, and give their corresponding seeds for
aspects and opinions.
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Price

aspects price, cost, payment
opinions 1 (good) low, good, fair, acceptable, cheap, not too expensive, affordable, great
opinions 2 (expensive) expensive, exaggerated, costly, overpriced, high, pricy

Food

aspects food, menu, plate, cuisine, meal, lunch, dinner, breakfast, cooking, snack, beverage, drink,
pizza, pasta, chicken, meat, steak, rice, soup, dessert, dish, fish, salad

opinions 1 (good) tasty, good, excellent, succulent, okay, delicious, well seasoned, perfectly cooked
opinions 2 (bad) bad, flavorless, bland, not seasoned, cold, disgusting, unappetizing, flat, gross, boring,

awful, terrible, dry
opinions 3 (healthy) healthy, organic, high quality, fresh
opinions 2 (creative) novel, interesting, creative

Service

aspects staff, waiter, waitress, cashier, service
opinions 1 (warm) friendly, smiling, good, helpful, likable
opinions 2 (competent) knowledgable, quick, fast, efficient, high quality, professional
opinions 3 (bad) grumpy, horrible, slow, irritating, bad

Cleaning

aspects place, hygiene, kitchen, bathroom, utensils, plates, cutlery, silverware, trays, dishes, table,
chair, furniture

opinions 1 (clean) clean, impeccable, bright, lavish, luxurious, washed, shining
opinions 2 (dirty) dirty, bad, in bad shape, stained, greasy, not washed, poor, disgusting

Parking

aspects parking, parking lot, parking area, parking convenience, parking space
opinions 1 (good) free, available, empty, safe, large
opinions 2 (bad) unavailable, poor, narrow, small, hard to find

Environment

aspects place, environment, setting, surroundings, decor, lighting, music, ventilation, furniture, air
conditioning, air conditioner

opinions 1 (good) good, excellent, great, cozy, comfortable, sophisticated, good taste, pleasant, memorable,
adequate, beautiful, soothing, calming, fancy, attractive, happy, relaxing, nice, charming

opinions 2 (bad) bad, horrible, bad taste, uncomfortable, dark, noisy, terrible, crowded, sad, depressing,
boring

Location

aspects location, area, place, address
opinions 1 (good) near, good, downtown, lively, touristy, popular, secure, safe, good, trustable
opinions 2 (bad) far, bad, polluted, remote, dark, unsafe, unsecure, dangerous

Ambiance

aspects ambiance, atmosphere, air, experience, environment, setting, decor, lighting, music, venti-
lation, furniture

opinions 1 (good) cozy, good, excellent, romantic, nice, upscale, trendy, loved, enjoyed, fun
opinions 2 (bad) horrible, terrible, disgusting, bad, not good, disappointing, noisy, dark, depressing, boring

Menu

aspects menu, selection, list, choice, choices, option, options
opinions 1 (large) wide, large, varied, variety, good, excellent, creative
opinions 2 (small) small, shabby, narrow, bad

Table 5: The full list of seeds (aspects and opinions) per concept used in our experiments


