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Abstract

Positional encoding plays a key role in
Transformer-based architecture, which is to in-
dicate and embed token sequential order in-
formation. Understanding documents with un-
reliable reading order information is a real
challenge for document Transformer models.
This paper proposes a simple and effective
positional encoding method, learnable sinu-
soidal positional encoding (LSPE), by build-
ing a learnable sinusoidal positional encoding
feed-forward network. We apply LSPE to doc-
ument Transformer models and pretrain them
on document datasets. Then we finetune and
evaluate the model performance on document
understanding tasks in form, receipt, and in-
voice domains. Experimental results show our
proposed method not only outperforms other
baselines, but also demonstrates its robustness
and stability on handling noisy data with incor-
rect order information.

1 Introduction

Document understanding (in some context known
as Document intelligence, Document AI) aims
to extract, recognize, and understand information
from document images. The performance of docu-
ment understanding model is largely benefited from
recent development of large scale pre-training tech-
nique on cross-modality data and effective trans-
former architectures (Cui et al., 2021). Document
Transformer Model, e.g. LayoutLM (Xu et al.,
2020b), is pretrained from visually-rich document
data which consists of text, layout, and visual infor-
mation based on Transformer architecture (Shaw
et al., 2018). Recently, Xu et al. (2020a); Hong
et al. (2021); Appalaraju et al. (2021); Li et al.
(2021a) propose various approaches to further im-
prove the performance of Transformer models on
more challenging document understanding tasks.

Different from recurrent and convolutional based
structures, Transformer based model does not en-
code relative or absolute position information ex-

plicitly since it is solely based on order-invariant
attentional mechanism. In the original Transformer
architecture (Vaswani et al., 2017), both learnable
vector embedding and sinusoidal function are in-
troduced as positional encoding methods for cap-
turing positional information from input tokens. In
order to improve positional representation ability,
Shaw et al. (2018); Huang et al. (2020); He et al.
(2021); Chi et al. (2021) introduce several relative
position strategies into attention computation steps
in the Transformer. Along with sequential read-
ing order from text, visually-rich documents con-
tain more spatial information of text blocks which
poses a greater challenge to understand rich se-
mantic and spatial relationship information at the
same time. To obtain text blocks from document
images, current off-the-shelf methods are borrow-
ing results from existing Optical Character Recog-
nition (OCR) engine while the reading order of
text blocks is mostly arranged by a heuristic man-
ner, top-to-bottom and left-to-right (Clausner et al.,
2013; Wang et al., 2021). For documents with com-
plex layout, such as forms, invoices, or receipts,
the performance of reading order is not consistent
which always leads to irrelevant or embarrassing
predictions (Cui et al., 2021). Moreover, existing
Document Transformer Models suffer from huge
performance degradation on noisy data with unreli-
able reading order information (Hong et al., 2021).
Therefore positional encoding plays an essential
role in document Transformer models, which is to
encode position embedding from data with inherent
reading or spatial information. Thus, it is crucial to
improve the robustness and learnability of position
encoding methods, and therefore boost the model
performance on noisy data with unreliable order
and spatial information.

In this paper, we propose a learnable sinusoidal
position encoding method, LSPE, by building a
learnable fully connected feed-forward sinusoidal
positional encoding network. And we apply it to
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represent multidimensional position information
in the document Transformer model. Compared
with current discrete embedding layer in the Trans-
former model, our method is numeric continuous
for position scales which could improve positional
representation of relative positions or distances be-
tween spatial elements. Our approach keeps the
advantage of extrapolability from sinusoidal func-
tion which could extend to longer position than
training cases. In addition, we build a learnable
sinusoidal position network, which helps the pre-
trained language model to be easily adapted to var-
ious downstream tasks effectively.

We pretrain LayoutLM with various positional
encoding methods and other baselines. Then we
evaluate and compare the models’ performance on
document understanding downstream tasks. Exper-
imental results show that our LSPE method sig-
nificantly outperforms other baselines and recent
document language models on FUNSD, SROIE
and our in-house invoice datasets. In addition, we
evaluate the model robustness on noisy data by
utilizing global and local shuffling augmentation
strategies. Our method shows stable performance
than other positional encoding methods with unre-
liable reading order information. Furthermore, we
visualize and analyze similarity of positional repre-
sentation of each method from 1D to 2D positional
embedding of our pretrained models.

In summary, our contributions could be high-
lighted as follows: 1) We propose a simple and ef-
fective learnable positional encoding method with
better learnability and extrapolability. It can be
applied to any transformer based models to help
them better encode and understand positional in-
formation. 2) We pretrain document Transformer
models with LSPE and other methods, and evalu-
ate model performance on document understanding
tasks. Experimental results show our proposed
method outperforms other baselines and recent
SOTA approaches on FUNSD, SROIE, and a large-
scale invoice dataset.3) By the ablation study of
employing global and local block shuffling augmen-
tations, our method demonstrates optimal perfor-
mance and robustness on noisy data with unreliable
reading order information. Finally, our pretrained
models with implementation of position encoding
code will be publicly available.1

1https://aka.ms/DocLPE

Figure 1: Visualization of 768-dimensional sinusoidal
positional encoding for sequence with the maximum
length of 256. Each position row p represents the em-
bedding vector PEsine(p) as positional representation.

2 Background

Positional Encoding Methods in Transformer
In the original proposal of Transformer architec-
ture (Vaswani et al., 2017), both learnable vector
and sinusoidal function are introduced as positional
encoding methods and perform nearly identically
in their downstream tasks. Although sinusoidal
version with predefined wavelength has unique ex-
trapolability which allows to encode longer sequen-
tial position than pre-training samples, it does not
always perform well on downstream tasks (Shaw
et al., 2018), due to the lack of learnability and
flexibility. In practical, most pretrained language
models, (e.g. (Devlin et al., 2018; Liu et al., 2019)),
utilize learnable vector embedding (Gehring et al.,
2017) as positional representation. Recently, sev-
eral approaches are proposed to enhance positional
representation by adding relative position infor-
mation into attention score computation stage to
improve performance of Transformer based mod-
els (Shaw et al., 2018; Huang et al., 2020; Dai
et al., 2019; Dufter et al., 2021). By leveraging rel-
ative positional encoding and other advanced pre-
training techniques, He et al. (2021) and Chi et al.
(2021) achieve state-of-the-art performance on mul-
tiple nature language understanding tasks. Li et al.
(2021b) explore the position encoding method in
vision domain and propose a learnable Fourier fea-
ture to enhance positional encoding in Transformer.
It outperforms other methods on both accuracy and
convergence speed with vision transformer (Doso-
vitskiy et al., 2020) based model. Since it is non-
trivial to modify or replace backbone of model
structure during fine-tuning stage, some research
works propose auxiliary tasks (Wang et al., 2019;
Pham et al., 2021) or data augmentation approaches
(Wei and Zou, 2019; Dai and Adel, 2020) to lever-

https://aka.ms/DocLPE
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age absolute or relative position information with-
out modifying model structure.

Document Transformer Models In document
understanding area, LayoutLM (Xu et al., 2020b)
utilizes the pretrained language model to resolve
document understanding tasks, and achieves state-
of-the-art performance on multiple document un-
derstanding benchmarks. To represent 2D posi-
tion embedding, it decouples the x- and y- axes
of text bounding box and sums up positional rep-
resentations from each dimension independently.
LayoutLMv2(Xu et al., 2020a) introduces spatial-
aware self-attention mechanism to enhance the lay-
out representation from both 1d and 2d relative
position bias. BROS(Hong et al., 2021) uses rela-
tive position information in attentional mechanism
along with absolute positional encoding from si-
nusoidal function, which perceives more spatial
layout information. Li et al. (2021a) utilizes shared
position information in the text blocks as position
representation which further improves entity extrac-
tion performance by understanding cell information
from layout. Appalaraju et al. (2021) proposes an
End-to-End Transformer based model with 1D rela-
tive position embedding in attentional mechanism.

Document Understanding Tasks RVL-CDIP
(Harley et al., 2015) is a document classification
dataset with 400K gray-scale English document
images in 16 document categories. This dataset is
a subset of IIT-CDIP (Lewis et al., 2006) and has
been widely used for pre-training language model
purpose. Entity extraction is a classic and essen-
tial task in nature language understanding. It is to
locate the boundary of entities and assign prede-
fined classes to them. There are several popular
benchmarks, consisting of multi-modality informa-
tion with text, layout, and visual, to evaluate the
performance of visually-rich document understand-
ing. FUNSD (Guillaume Jaume, 2019) is a form
understanding dataset for key-value extraction re-
search 2 with 199 English forms. SROIE (Huang
et al., 2019) and CORD (Park et al., 2019) are re-
ceipt understanding datasets to extract related entity
types in English. XFUND (Xu et al., 2021) is an
extended multi-lingual FUNSD dataset, which con-
tains visually-rich documents in seven commonly-
used languages.

2
More license and term of use information at https://guillaumejaume.

github.io/FUNSD/work/

Figure 2: Flow of four positional encoding methods
in Transformer based architecture: learnable vector
embedding (LearnV ec), sinusoidal positional encod-
ing (Sine), learnable sinusoidal positional encoding
(LSPE) and LSPESC with skip connection structure.

3 Methodology

In this section, we formulate our positional encod-
ing method LSPE and introduce its applications
on document transformer based language models.
In order to evaluate its robustness and stability on
noisy data with unreliable order information, we
introduce two augmentation strategies: global and
local text-block shuffling during fine-tuning stage.

3.1 Learnable Sinusoidal Positional Encoding

Positional representation is utilized as an induc-
tive bias of positional relevance information by
positional encoding function (PE) in Transformer
model (Vaswani et al., 2017). Sinusoidal positional
encoding is originally proposed and employed in
attentional mechanism as better extrapolability and
spatial correlation from the clean mathematical def-
inition. Figure 1 shows the heatmap of sinusoidal
positional encoding method. The hidden represen-
tation of position p in a sequence could be com-
puted as Equation 1 for hidden dimension d, where
D donates the size of positional representation:

PEsine(p, 2d) = sin
p

100002d/D

PEsine(p, 2d+ 1) = cos
p

100002d/D

(1)

In practical applications, some pretrained Trans-
former language models (Gehring et al., 2017; De-
vlin et al., 2018; Liu et al., 2019; Xu et al., 2020b;
Dosovitskiy et al., 2020) treat each position in-
dex p as a discrete learnable embedding vector

https://guillaumejaume.github.io/FUNSD/work/
https://guillaumejaume.github.io/FUNSD/work/
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(LearnV ec) by learning from pre-training and fine-
tuning data. This approach is generic and effec-
tive to adapt pretrained Transformer models to spe-
cific domains and tasks with various behavior of
spatial sensitivity. However, for more challeng-
ing tasks, such as document understanding tasks,
the performance of document Transfomer models
with existing positional encoding approach drops
significantly on noisy data with unreliable order
information (Hong et al., 2021).

We propose a learnable sinusoidal positional en-
coding (LSPE) method by building a fully con-
nected feed-forward sinusoidal position network,
which consists of two linear transformations with
GeLU (Hendrycks and Gimpel, 2020) as activation
function σ in between as:

FFN(x) = σ(xW1 + b1)W2 + b2

PELSPE(p) = FFN(PEsine(p))
(2)

Skip connection is a generic strategy to sum the
input and output representation from a computa-
tional unit with a skip edge. In transformer based
models, (He et al., 2020) propose a residual atten-
tion layer, which has shown some regularization
effects that could stabilize training and benefit fine-
tuning stages. Inspired by this, we conduct the skip
connection strategy in LSPE module as a variant
of our method. It could be formulated as eq.3.

PELSPEsc(p) = PEsine(p) + PELSPE(p) (3)

Figure 2 visualizes the flow of our proposed
method and baselines in this paper. Compared
with discrete embedding, our method extends from
sinusoidal function and treats position index as a
continuous-valued vector which allows the model
to extrapolate to longer length from training cases.
Meanwhile, the learnable FFN component boosts
the learnability and flexibility of positional repre-
sentation for multidimensional spatial information.

3.2 Positional Representation in Document
Transformer Language Model

Distinct from nature language data which only con-
sist of 1D order information, visually-rich docu-
ment data require more model capacity to represent
both 1D and 2D positional information from in-
dividual element. Given token xi series from a
document D, let pi donate 1D position index and
bi as ((x0, y0), (x1, y1)) present the bounding box
in normalized 2D coordinate system.

Figure 3: An example of text block shuffling augmen-
tation methods, Neighbor Block Swapping and Global
Block Shuffling.

.

As a general and commonly used pre-trained
model for Document AI, LayoutLM (Xu et al.,
2020b) utilizes independent 2D spatial embedding
layers along with 1D position embedding initial-
ized from pretrained BERT (Devlin et al., 2018)
to represent positional information. Its composed
positional representation Ri is computed via:

R2D
i =

k∑
j=0

(PEx(xj) + PEy(yj))

Ri = PE1d(pi) +R2D
i

(4)

Where k donates the count of points in the
bounding box, and PE1d, PEx, PEy are the posi-
tional encoding methods for 1D order and 2D spa-
tial information separately. The original positional
encoding of LayoutLM is a learnable embedding
which is identical to PELearnV ec at section 3.1 in
this paper. The composed positional representation
will be summed up with text embedding and token
type embedding vectors as input of Transformer.

3.3 Text Block Shuffling Augmentations
In practical, understanding documents with incor-
rect reading order is a real challenge for document
Transformer model which always leads to irrelevant
or embarrassing error results. We introduce two
text block shuffling augmentation methods: Global
Block Shuffling and Neighbor Block Swapping,
to simulate the noisy reading order scenario as
shown in Figure 3. We apply these shuffling meth-
ods on text block level to a document, and keep the
relative word order in the same text block. Text
block is defined as a group of continual words in a
spatial region (or a line of words).

In the Global Block Shuffling, we obtain the
block information for each token, and shuffle the
order of block index but keep the relative token
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order of internal OCR line. In the Neighbor Block
Swapping, each text block is swapped to its neigh-
bor block randomly, and the distance d of swapped
block pairs follows a normal distribution function
N (0, σ2).

The intuition of applying augmentation methods
on text block level is to generate samples which
are closed to error cases in real-world document
understanding applications, and the text block in-
formation could be obtained from OCR engines.

4 Experiments

We apply four positional encoding methods
(LearnV ec, Sine, LSPEsc, LSPE) to a rep-
resentative transformer based model: LayoutLM
without visual feature. We conduct pretraining and
finetuning on these models to identify the affect of
different positional encodings to the performance
of transformers on document understanding tasks.

4.1 Pretraining

We pretrain LayoutLM with four positional encod-
ing method as well as baseline methods on a 1M
random subset of IIT-CDIP (Lewis et al., 2006) pre-
training data set. The name of positional encoding
method is used to indicate the pretrained model in
the result table.

All pretraining jobs run on 8 NVIDIA Tesla
V100 32GB GPUs with approximately 150 hours
for each job. The pretraining hyper-parameters are
shown in Table 6. The pretrained models are initial-
ized from Bert-base-uncased except for specified
positional encoding weights.

4.2 Experimental Settings

Then we fine-tune and evaluate the performance of
our pretrained models on three datasets: FUNSD
(Guillaume Jaume, 2019), SROIE (Huang et al.,
2019), and an In-house Invoice Dataset, which are
benchmark datasets for entity extraction in form,
receipt, and invoice domains.

FUNSD 3 consists of noisy scanned documents.
There are 149 scanned forms for training and 50
scanned forms for testing with more than 31K
words, 9.7K entities, and 5.3K relations in combi-
nation. For more fair comparison, we refer the eval-
uation results from LayoutLM, DocFormer, and
BROS with the same text and spatial features as
input and similar model size architecture. The eval-
uation result of LayoutLMv2 is conducted by the

3
https://guillaumejaume.github.io/FUNSD

same settings of our methods but without visual
feature inputs.

SROIE 4 attracts a lot of attention from both re-
search and industry community as an open-source
OCR and information extraction benchmark for
receipt understanding. The dataset consists of
626 receipt images for training and 347 receipt
images for testing with four predefined entities
which are company, date, address, and total.
There is no post-processing strategy before evalu-
ation as we tend to compare the performance gap
caused by different positional encodings only. We
also experiment with official pretrained LayoutLM
and LayoutLMv25 on the same fine-tuning hyper-
parameters but without visual feature inputs for a
fair comparison.

In-house Invoice Dataset To further evaluate
the effectiveness of our positional encoding method
on large scale document understanding tasks, we
collect a large English inovice dataset with 24175
training and 643 testing invoices and 14 annotated
fields. We test our approach on this in-house in-
voice dataset. (More detailed information of dataset
and evaluation results are listed in Appendix A).

We use entity recognition evaluation metrics in-
cluding entity-level precision, recall, and F1-score
for each experiment with the default settings of
seqeval package (Nakayama, 2018).

4.3 Experimental Results
As shown in Table 1, on FUNSD dataset, our
LSPE model achieves 82.04 F1-score and out-
performs other baseline methods. The Sine model
achieves low performance and LSPESC is worse
than LSPE which indicates the sinusoidal func-
tion cannot represent layout positional informa-
tion with skip connection structure. The small
performance gap between our LearnV ec and offi-
cial LayoutLM model with shared model structure
might be from different pretraining data and set-
tings since our pretraining experiments run on a 1M
subset training data and fewer pretraining steps.

We observe similar trend on SROIE as shown in
Table 2. LSPE model achieves F1 score of 93.87
with text and spatial features. With larger scale
of training size on SROIE, the performance gap is
narrowed down between LearnV ec and LSPE in
the testing dataset.

These results illustrate the effectiveness of our
LSPE on document understanding tasks with dif-

4
https://github.com/zzzDavid/ICDAR-2019-SROIE

5
https://github.com/microsoft/unilm/tree/master

https://guillaumejaume.github.io/FUNSD
https://github.com/zzzDavid/ICDAR-2019-SROIE
https://github.com/microsoft/unilm/tree/master
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ferent data scale. And the ability of positional
representation affects the final performance signifi-
cantly on document understanding models.

Method P(%) R(%) F1(%)

LayoutLM(2020b) 75.97 81.55 78.66
DocFormer(2021) 77.63 83.69 80.54
BROS(2021) 80.56 81.88 81.21
LayoutLMv2base(2020a) 80.26 83.26 81.73

LearnV ec 75.97 80.04 77.95
Sine 72.8 77.24 74.95
LSPESC 78.25 82.79 80.46
LSPE 80.4 83.74 82.04

Table 1: Entity level evaluation results on FUNSD
dataset. All models utilize input features of text and
spatial information with "Base" model size architecture.
The evaluation result of LayoutLMv2 is reproduced
without visual inputs.

Method P(%) R(%) F1(%)

LayoutLMbase 91.4 94.24 92.8
LayoutLMv2base 92.3 94.16 93.22

LearnV ec 92.57 94.31 93.43
Sine 87.72 90.06 88.87
LSPESC 89.89 92.87 91.35
LSPE 92.94 94.81 93.87

Table 2: Results on SROIE datasets. All above exper-
iments are fine-tuned with the same hyper-parameter
setting and training environments. We evaluate the
official LayoutLMbase and LayoutLMv2base on the
same settings without visual features.

4.4 Ablation Study

In real-world application, the reading order of text
blocks is not always reliable and consistent. The
incorrect reading order harms the performance of
existing document language models and leads to
embarrassing error of predictions in downstream
tasks. We conduct three ablation experiments to
simulate the impact of such error with the following
augmentation methods.

Neighbor Block Swapping and Global Block
Shuffling We apply these methods to training data
only during fine-tuning which simulates impact of
incorrect block order data. The testing set is kept
as original which allows us to compare the perfor-
mance with original reading order in Table 1. The
σ of neighbor block swapping is set to 1 in all ex-
periments. Note that the augmentation methods in

this paper require block information of each token,
and that might cause leaking of block boundary
information during the model training indirectly.
Besides of data impact, the model receives incon-
sistent reading order during training and it might
benefit the evaluation performance by eliminating
the over-fitting from 1D positional embedding, and
tent to learn more information of relative token
order inside block and 2D spatial information.

In Table 3, with synthetic noisy data gener-
ated by two augmentation methods, our LSPE
method shows better performance than existing dis-
crete LearnV ec embedding and sinusoidal func-
tion Sine consistently on FUNSD data. Similar
observations can be found on the In-house Invoice
dataset in Appendix A. The global block shuf-
fling is harmful for all positional encoding methods
while the performance impact of neighbor block
swapping is marginally. The discrete positional
encoding method shows more sensitive with signif-
icant performance drop by global block shuffling
augmentation.

Removing 1D Position Input We throw the 1D
positional input and only consider the 2D positional
representation R2D in eq. 4 in composed positional
representation for both training and testing datasets.
The model does not receive word order information
on both text block and sub-token levels. We refer
the performance result from BROS (Hong et al.,
2021) with similar settings for comparison.6

On FUNSD dataset, we observe a significant per-
formance degradation across all positional methods
in Table 4. The LearnV ec leads a huge drop from
approximately 79% to 49% on F1 score which in-
dicates the discrete 2D embedding is not well rep-
resented without optimal order information. The
continuous 2D positional encoding methods per-
form better relatively. LSPESC performs the best
with only 2.67% F1 drop, and keeps a reasonable
performance even with none order information.

From Table 5, we observe our LSPE model
achieves 89.98 F1 score with 3.89% absolute drop
(4.14% relatively) from Table 2. The performance
of LSPESC drops 3.2% relatively which shows
better robustness on such extreme condition. There
is significant performance regression with discrete
LearnV ec method on this receipt understanding
data set. The LSPESC performs better with global
block shuffling method on the FUNSD dataset
which might be beneficial from regularization ad-

6
Result from text line in their ablation study paragraph
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Method Neighbor Block Swapping Global Block Shuffling

P(%) R(%) F1(%) P (%) R(%) F1 (%)

LearnV ec 76.43 79.49 77.93 72.32 69.78 71.03
Sine 73.77 78.24 75.94 74.1 74.99 74.54
LSPESC 78.72 81.79 80.23 77.09 80.14 78.59
LSPE 79.9 82.14 81.01 78.03 78.34 78.18

Table 3: Comparison on FUNSD dataset for four positional encoding methods by applying Neighbor Block
Swapping and Global Block Shuffling on training dataset. Evaluation results clearly demonstrate our methods
show stable and robustness under unreliable order information.

(a) Sine (b) official BERT (c) LearnV ec (d) LSPE

Figure 4: Similarity of 1D position embedding from pretrained Sine, official BERT, LearnV ec, LSPE models.

vantage of skip connection structure. Similar ob-
servations can be found on the In-house Invoice
dataset in Appendix A.

Ablation study results further prove that better
learnability and spatial correlation of positional rep-
resentation are essential factors of existing docu-
ment Transformer model. By comparing with other
positional encoding methods and other recent pre-
trained Transformer based solutions, our methods
demonstrate optimal performance and robustness
on noisy data with unreliable order information.

Method P(%) R(%) F1(%)

BROS(2021) − − 70.07

LearnV ec 44.66 54.63 49.14
Sine 69.4 73.74 71.5
LSPESC 75.71 79.99 77.79
LSPE 72.2 77.19 74.61

Table 4: Experimental results by removing 1D posi-
tion inputs on training and testing sets of FUNSD. The
BROS performance is referenced from their ablation
study with similar experimental setting.

5 Position Embedding Similarity Analysis

To further investigate what Transformer encoders
capture about positions after pretraining, we visu-
alize the position-wise cosine similarity of each
position embedding (Wang and Chen, 2020) in the

Method P(%) R(%) F1(%)

LearnV ec 75.12 79.18 77.1
Sine 83.71 87.03 85.34
LSPESC 87.46 89.41 88.42
LSPE 87.9 92.15 89.98

Table 5: Experimental results by removing 1D posi-
tion inputs on training and testing sets of SROIE. The
LSPE achieves best performance and LSPESC keeps
lowest relative performance drop with this extra settings.

pretrained models. Figure 4 shows the position-
wise cosine similarity of 1D position embedding
in our pretrained models with Sine, LearnV ec,
LSPE and in the official BERT model. The point
at (i, j) indicates the similarity between the i-th
position and the j-th position. (i and j are from
0 to 512). First, with regard to Sine, we can only
observe that embedding vectors are similar to the
positions nearby. Both Bert and LearnV ec can ob-
serve similar embedding vectors nearby, but have
no or very limited explainable patterns in long-term
relations. Our LSPE shows obvious periodic pat-
terns along with position orders, which displays its
embedding can actually capture the meanings of
positions in the long-term relations.

The 2D positional representation plays an es-
sential role in document Transformer models with
spatial information. Figure 5 shows position-wise
cosine similarity of each position embedding of
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(a) PEx of LearnV ec (b) PEy of LearnV ec (c) PEx of LSPE (d) PEy of LSPE

Figure 5: Similarity of x and y axes in 2D positional embedding from our pretrained LearnV ec and LSPE models.

(a) official LayoutLM (b) LearnV ec

(c) Sine (d) LSPE

Figure 6: Similarity of 2D positional representation on 5 fixed points ((250, 250), (250, 750), (750, 250), (750,
750), (500, 500)) to the rest positions from official LayoutLM and LearnV ec, Sine, LSPE positional encoding
methods.

x- and y- axes in 2D positional embedding in our
petrained LearnV ec and LSPE models. We can
find our LSPE has obvious periodic patterns along
with both x- and y- position orders in the long-term
relations than the LearnV ec, which can mostly
capture similar embeddings nearby.

Figure 6 demonstrates the position-wise cosine
similarity of R2D representation of five specific
points to the rest positions in our pretrained mod-
els and in the official LayoutLM. Sine captures
close similar embeddings only, where its 2D sim-
ilary map decays rapidly from central point and
shows sharp edge on the border. The official Lay-
outLM model shows boarder vision horizontally
with proper spatial correlation, but still fail to cap-
ture long-term relations. Our LSPE shows higher
wave frequency on both x- and y- axes which tend
to capture the long distance signals with obvious
periodic pattern.

6 Conclusions

In this paper, we propose a simple but effective
learnable positional encoding method LSPE to
improve the positional representation in Trans-
former based models. By building a sinusoidal
position feed-forward network, our method has
better learnability and extrapolability in position
representation. Experimental results on FUNSD,
SROIE and an in-house Invoice datasets clearly
show the effectiveness of our method on document
understanding tasks. By leveraging global and lo-
cal shuffling augmentation methods and removing
order information from inputs, we demonstrate our
method substantially outperforms other positional
encoding methods on noisy data with unreliable
reading order.

For future research, we will employ and evaluate
our method on other tasks or modalities such as
Vision Transformer (Dosovitskiy et al., 2020).



461

References
Srikar Appalaraju, Bhavan Jasani, Bhargava Urala Kota,

Yusheng Xie, and R Manmatha. 2021. Docformer:
End-to-end transformer for document understanding.
arXiv preprint arXiv:2106.11539.

Zewen Chi, Shaohan Huang, Li Dong, Shuming Ma,
Saksham Singhal, Payal Bajaj, Xia Song, and Furu
Wei. 2021. Xlm-e: Cross-lingual language model
pre-training via electra.

Christian Clausner, Stefan Pletschacher, and Apostolos
Antonacopoulos. 2013. The significance of reading
order in document recognition and its evaluation. In
2013 12th International Conference on Document
Analysis and Recognition, pages 688–692. IEEE.

Lei Cui, Yiheng Xu, Tengchao Lv, and Furu Wei. 2021.
Document ai: Benchmarks, models and applications.
arXiv preprint arXiv:2111.08609.

Xiang Dai and Heike Adel. 2020. An analysis of simple
data augmentation for named entity recognition.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc V. Le, and Ruslan Salakhutdinov. 2019.
Transformer-xl: Attentive language models beyond a
fixed-length context.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. 2020.
An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint
arXiv:2010.11929.

Philipp Dufter, Martin Schmitt, and Hinrich Schütze.
2021. Position information in transformers: An
overview. Computational Linguistics, pages 1–31.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N Dauphin. 2017. Convolutional
sequence to sequence learning. In International
Conference on Machine Learning, pages 1243–1252.
PMLR.

Jean-Philippe Thiran Guillaume Jaume, Hazim Ke-
mal Ekenel. 2019. Funsd: A dataset for form under-
standing in noisy scanned documents. In Accepted
to ICDAR-OST.

Adam W Harley, Alex Ufkes, and Konstantinos G Der-
panis. 2015. Evaluation of deep convolutional nets
for document image classification and retrieval. In
International Conference on Document Analysis and
Recognition (ICDAR).

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. Deberta: Decoding-enhanced
bert with disentangled attention.

Ruining He, Anirudh Ravula, Bhargav Kanagal, and
Joshua Ainslie. 2020. Realformer: Transformer likes
residual attention. arXiv preprint arXiv:2012.11747.

Dan Hendrycks and Kevin Gimpel. 2020. Gaussian
error linear units (gelus).

Teakgyu Hong, DongHyun Kim, Mingi Ji, Wonseok
Hwang, Daehyun Nam, and Sungrae Park. 2021.
{BROS}: A pre-trained language model for under-
standing texts in document.

Zheng Huang, Kai Chen, Jianhua He, Xiang Bai, Di-
mosthenis Karatzas, Shijian Lu, and CV Jawahar.
2019. Icdar2019 competition on scanned receipt ocr
and information extraction. In 2019 International
Conference on Document Analysis and Recognition
(ICDAR), pages 1516–1520. IEEE.

Zhiheng Huang, Davis Liang, Peng Xu, and Bing Xi-
ang. 2020. Improve transformer models with better
relative position embeddings.

David Lewis, Gady Agam, Shlomo Argamon, Ophir
Frieder, David Grossman, and Jefferson Heard. 2006.
Building a test collection for complex document in-
formation processing. In Proceedings of the 29th
annual international ACM SIGIR conference on Re-
search and development in information retrieval,
pages 665–666.

Chenliang Li, Bin Bi, Ming Yan, Wei Wang, Songfang
Huang, Fei Huang, and Luo Si. 2021a. Structurallm:
Structural pre-training for form understanding. arXiv
preprint arXiv:2105.11210.

Yang Li, Si Si, Gang Li, Cho-Jui Hsieh, and Samy
Bengio. 2021b. Learnable fourier features for multi-
dimensional spatial positional encoding.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Hiroki Nakayama. 2018. seqeval: A python framework
for sequence labeling evaluation. Software available
from https://github.com/chakki-works/seqeval.

Seunghyun Park, Seung Shin, Bado Lee, Junyeop Lee,
Jaeheung Surh, Minjoon Seo, and Hwalsuk Lee. 2019.
Cord: A consolidated receipt dataset for post-ocr
parsing. In Workshop on Document Intelligence at
NeurIPS 2019.

Thang M. Pham, Trung Bui, Long Mai, and Anh
Nguyen. 2021. Out of order: How important is the
sequential order of words in a sentence in natural
language understanding tasks?

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018.
Self-attention with relative position representations.
arXiv preprint arXiv:1803.02155.

http://arxiv.org/abs/2106.16138
http://arxiv.org/abs/2106.16138
http://arxiv.org/abs/2010.11683
http://arxiv.org/abs/2010.11683
http://arxiv.org/abs/1901.02860
http://arxiv.org/abs/1901.02860
http://arxiv.org/abs/2006.03654
http://arxiv.org/abs/2006.03654
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415
https://openreview.net/forum?id=punMXQEsPr0
https://openreview.net/forum?id=punMXQEsPr0
http://arxiv.org/abs/2009.13658
http://arxiv.org/abs/2009.13658
http://arxiv.org/abs/2106.02795
http://arxiv.org/abs/2106.02795
https://github.com/chakki-works/seqeval
https://github.com/chakki-works/seqeval
http://arxiv.org/abs/2012.15180
http://arxiv.org/abs/2012.15180
http://arxiv.org/abs/2012.15180


462

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. arXiv preprint arXiv:1706.03762.

Wei Wang, Bin Bi, Ming Yan, Chen Wu, Zuyi Bao,
Jiangnan Xia, Liwei Peng, and Luo Si. 2019. Struct-
bert: Incorporating language structures into pre-
training for deep language understanding.

Yu-An Wang and Yun-Nung Chen. 2020. What do
position embeddings learn? an empirical study of pre-
trained language model positional encoding. arXiv
preprint arXiv:2010.04903.

Zilong Wang, Yiheng Xu, Lei Cui, Jingbo Shang, and
Furu Wei. 2021. Layoutreader: Pre-training of text
and layout for reading order detection.

Jason Wei and Kai Zou. 2019. Eda: Easy data augmenta-
tion techniques for boosting performance on text clas-
sification tasks. arXiv preprint arXiv:1901.11196.

Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu
Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha
Zhang, Wanxiang Che, et al. 2020a. Layoutlmv2:
Multi-modal pre-training for visually-rich document
understanding. arXiv preprint arXiv:2012.14740.

Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu
Wei, and Ming Zhou. 2020b. Layoutlm: Pre-training
of text and layout for document image understanding.
In Proceedings of the 26th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data
Mining, pages 1192–1200.

Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yi-
juan Lu, Dinei Florencio, Cha Zhang, and Furu Wei.
2021. Layoutxlm: Multimodal pre-training for multi-
lingual visually-rich document understanding.

A More Information on Training
Hyperparameters

Pretraining We use PyTorch on Nvidia Tesla
V100 GPU for all pretraining experiments. The
training hyperparameters is listed in Table 6.

Finetuning For finetuning tasks, we use stan-
dard cross-entropy loss on the task-specific clas-
sification head layers over pretrained document
transformer model outputs. To make fair com-
parisons on various positional encoding methods,
we use same hyperparameters, same training data,
and same running environment for each task. The
learning rate is set to 3e-5 for FUNSD and 2e-5
for SROIE task with linear decay, and 10% of to-
tal steps are used for warm-up purpose. We use
max_steps as 2k for FUNSD and 1.5k for SROIE
task, and report the evaluation results on the fine-
tuned models. We average evaluation results with
different initial seeds to eliminate bias of shuffling
augmentations.

Parameter Name Value
max_steps 500K
per_device_train_batch_size 12
gradient_accumulation_steps 4
max_seq_length 512
max_2d_position_embeddings 1024
learning_rate 7e-5
warmup_ratio 0.1
fp16 true
fp16_backend amp
fp16_opt_level O1

Table 6: Pretraining hyperparameters for document
Transformer model with our positional encoding meth-
ods.

Field Name Training entity count Testing entity count
BillingAddress 7515 198
CustomerAddress 19317 529
CustomerID 24927 643
DueDate 16319 701
InvoiceDate 26043 676
InvoiceNumber 21441 558
PONumber 2106 56
ShippingAddress 2486 74
Subtotal 6207 169
TotalInvoiceAmount 31075 853
TotalTax 11178 308
VendorAddress 29811 787
VendorName 45685 1208

Table 7: Per field statistics of Invoice dataset.

B Evaluation Result of In-house Inovice
Dataset

To further analyze the effectiveness of various posi-
tional encoding methods on larger scale document
understanding tasks, we collect a large English in-
ovice dataset with 14 fields listed in Table 7. There
are 24175 and 643 invoice documents in its training
and testing sets.

We finetune the same pretrained document Trans-
former models from section 4.1 with LearnV ec
and LSPE positional encoding methods on this
invoice dataset, and report their F1-Score in Table
8 with various 1D position inputs. We also apply
global and neighbor shuffling augmentation meth-
ods on the training dataset from section 3.3. Then
we evaluate the F1-Score performance on the test-
ing dataset. LSPE model shows consistent evalu-
ation result and outperforms the baseline method
on the original position inputs, no positional inputs,
and various shuffling augmentation methods. The
evaluation result clearly illustrates the effectiveness
and robustness of LSPE on handling unreliable
reading order issues.
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Model Original 1D Position No 1D Position Global Shuffling Neighbor Swapping
LearnV ec 91.66 86.55 87.09 90.39
LSPE 92.17 92.27 92.16 91.71

Table 8: F1-Score comparison on the in-house Invoice testing dataset for two positional encoding methods,
LearnV ec and LSPE, with Original 1D Position, No 1D Position inputs and applying Neighbor Block Swapping
and Global Block Shuffling on the training data set.


