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Abstract

Recent advances in natural language process-
ing have led to the availability of large pre-
trained language models (LMs), with rich gen-
erative capabilities. Although these models
are able to produce fluent and coherent text,
it remains a challenge to control various at-
tributes of the generation, including sentiment,
formality, topic and many others. We propose a
Beam Reweighing (BEAMR) method, building
on top of standard beam search, in order to con-
trol different attributes. BEAMR combines any
generative LM with any attribute discrimina-
tor, offering full flexibility of generation style
and attribute, while the beam search backbone
maintains fluency across different domains. No-
tably, BEAMR allows practitioners to leverage
pre-trained models without the need to train
generative LMs together with discriminators.
We evaluate BEAMR in two diverse tasks: senti-
ment steering, and machine translation formal-
ity. Our results show that BEAMR performs
on par with or better than existing state-of-the-
art approaches (including fine-tuned methods),
and highlight the flexibility of BEAMR in both
causal and seq2seq language modeling tasks.

1 Introduction

Text generation has improved significantly in re-
cent years due to architectural advances in deep
learning (namely, the transformer architecture and
attention mechanism (Vaswani et al., 2017)) and
training paradigms, allowing practitioners to train
large language models on vast, unlabelled corpora,
and transfer knowledge between various domains.

Controllable text generation involves generat-
ing text according to specific requirements, which
may include a specific topic (Baheti et al., 2018),
attribute (Goswamy et al., 2020), reward sig-
nal (Tambwekar et al., 2019), or other potential con-
straints. This task presents significant challenges,
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as large, unlabelled corpora are unlikely to be suf-
ficient for learning domain-specific, controllable
characteristics, and thus transferring knowledge be-
comes substantially more difficult. Moreover, due
to the growing size of recent language models it
is also less feasible to train and finetune them for
many different controllable dimensions.

Recent work in controllable text generation in-
volves various ways of incorporating desired at-
tributes into the text generated by the base LM.
Many approaches (Yang and Klein, 2021; Liu et al.,
2021; Ghazvininejad et al., 2017) rely directly on
decoding-time strategies in order to steer the gener-
ation towards a desired attribute. However, these
approaches typically rely on token-level decoding
which can result in various disfluencies in the out-
put (e.g., repetition) (Holtzman et al., 2020) or
limited generalizability due to tight coupling be-
tween the generation and attribute models. Several
works (Dathathri et al., 2020; Keskar et al., 2019;
Krause et al., 2020; Zeldes et al., 2020; Khalifa
et al., 2021) attempt to tune a portion of the base
LM in order to steer it towards a desired attribute.
This tuning is either performed directly on the LM
(i.e. via a fine-tuning stage), or using an auxiliary
attribute model and applying gradient perturbations
to LM latent states.

In this work, we propose a simple and robust
decoding-based approach to controllable text gen-
eration, allowing practitioners to leverage existing,
pre-trained, generative LMs and existing attribute
models. Our method first uses the beam search
algorithm to propose fluent and relevant candidates
for a given input prompt from a generative language
model. Subsequently, the candidates are scored
by a discriminative model trained for a particular
attribute (e.g., sentiment analysis, emotion detec-
tion, or topic classification). The candidate scores
produced by beam search are combined with the
scores from the discriminative model to produce a
distribution over the candidates. We then sample
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a single candidate generation from this distribu-
tion. Our method solves some of the existing is-
sues in controllable text generation approaches, by
(1) leveraging beam search to produce more fluent
and relevant candidates, (2) expanding the gener-
alizability of controllable generation via a custom
similarity measure that can be selected based on
the discriminative model, and (3) eliminating the
need for tight coupling between the generative and
discriminative models by reweighing at the natural
language level, agnostic to the tokenization scheme,
thereby allowing practitioners to leverage strong
models for generation and scoring.

We perform several experiments with our ap-
proach, compare to several state-of-the-art meth-
ods for controllable text generation and show that
BEAMR is generalizable to various LMs and tar-
get applications. First, we experiment with con-
trolling the sentiment of generations using an at-
tribute model finetuned for sentiment analysis. We
then highlight the generalizability of the BEAMR
method by applying it to the sequence-to-sequence
task of adjusting the formality of text translated
from Spanish to English. In sentiment steering
experiments, BEAMR outperforms the SOTA DEx-
perts model (Liu et al., 2021) in positive steering,
and offers good control ability in negative steer-
ing, while significantly outperforming all baselines
in terms of fluency. We perform a human evalu-
ation study on the sentiment steering task which
aligns with the observations from automated eval-
uations. In machine translation formality experi-
ments, BEAMR outperforms the FUDGE baseline
in both translation accuracy and formality score.
Hyperparameter experiments with BEAMR in both
tasks highlight potential tradeoffs between fluency
and attribute control.

2 Background

Generative language models learn to produce a
distribution for the next token in a sequence given
past context as input. Given a prompt sequence
of tokens, ¢; = {z1,22,...,2;} where x; € V
and V is a vocabulary of tokens, we can produce
a distribution p(z | c;) for the next token in the
sequence,

o = fo(ct)
p(z | ¢t) = softmax(oy) (1)

where oy is the logit vector given by a LM fjy.
Using the distribution in Eqn. (1) there are several

common methods of generating a continuation of
the prompt c;.

Greedy. In this approach, tokens are generated
by iteratively choosing the most likely token from
p(z | ¢¢), and updating the prompt c.

Beam Search. In this approach, a set of most
likely candidates are maintained at each timestep.
First, K possible tokens are sampled or selected
from p(x | c;). At each subsequent step, beam
search expands the search space to K? possible
hypotheses, before pruning back down to K based
on the likelihood of the candidates. For a given
candidate by = {by,bo, ..., b}, the likelihood is
computed as

((b;) = logp(b; | be;) 2)

J<t

Diverse Beam Search. Vijayakumar et al.
(2018) proposed a modified version of beam search
in order to produce more diverse candidates. They
divide the set of all candidates into G disjoint
groups, and incorporate a group dissimilarity met-
ric into the likelihood calculation.

3 Beam Reweighing

We propose to modify the beam search algorithm
by reweighing the candidate likelihoods in order
to control a diverse set of attributes of the text,
such as sentiment, formality, emotion or topic. Our
method first decodes a set of K candidates, using
diverse beam search (Vijayakumar et al., 2018) to
improve variety among the candidates. The can-
didates are then scored using an attribute model.
We then reweigh their likelihoods ¢(b) with the at-
tribute scores s and apply a softmax transformation
to produce a reweighed candidate distribution p,
encoding fluency and attribute characteristics. The
reweighed distribution is used to sample a single
candidate.

More formally, let B; = {b!,..., b%} denote
the set of candidates for iteration 5 of BEAMR and
bk ¢ B; denote the kth candidate, with likelihood
¢(b*). Let g4 : P(V) — R™ represent a discrim-
inator for an m-dimensional attribute. Given a
target attribute vector a € R, we compute a score
for candidate b”:

dx = D(g4(b"), a)

s(b* a) = (1 +dj, + mkindk

”
) 3)
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where D : R™ x R™ — R is an appropriate
similarity measure and v > 0 is a scaling hyperpa-
rameter. Note that Eqn. (3) ensures that the scores
are an increasing function of -, by transforming the
output of D so that R — [1, co) without changing
the ranking order.

Combining the attribute score s = s(b*,a)
with the likelihood ¢(b*) gives us a reweighed dis-
tribution p over B;:

Pr = softmax(£(b¥) + s;,) 4)

A candidate can then be sampled from this dis-
tribution, b ~ p. This formulation is akin to a
product of experts model (Hinton, 2002; Welling,
2007) treating the LM fy as a linguistic expert and
the discriminator g4 as an attribute expert. Fig-
ure 1 presents a diagram of the BEAMR procedure.
The detailed pseudo-code for a single iteration of
BEAMR is presented in Algorithm 1.

Algorithm 1 Beam Reweighing

1: procedure BEAMR(z,a;D, K,T,~)
2 {b}r < DIVERSEBS(z; fy, T, K)
3 for k < 1, K do

4 pr = £(by)

5: dp = D(g¢(bk), a)

6: end for

7 for k< 1, K do

8 Sk = (1 + di + |mink{d}k|)7
9 Pr = softmax(pg + sk)

10: end for
1T~ {phe

12: returnx ® r
13: end procedure

3.1 Generalizability of Beam Reweighing

Our formulation of BEAMR is flexible enough to
accommodate a variety of possible attributes and
discriminator models, including both continuous
and categorical attributes. This can be achieved via
the choice of the similarity measure D.

Continuous Attribute. The simplest case of a
continuous attribute is m = 1, where y = g4(b) is
a regression score, such as a sentiment between —1
(negative) and 1 (positive). In this case we can take
D to be a standard similarity measure on R, such as
the inverse of L; or Ly metrics, namely, D(y,a) =
ly—al "t or D(y,a) = |ly — a||2_1, where a is the
target attribute score.

Categorical Attribute. For categorical at-
tributes with m > 1, such as emotion classes (e.g.,
joy, anger, fear and surprise), g,(b) produces a
vector of logits y € R™. In this case a is a one-hot
encoding of the target class ¢ € {1,...,m}, and
so we can take D to be negative cross-entropy,

exp(ye) >
> im1 exp(yi)

Multiple Attributes. In the case that we want
to control the generated text according to multiple
attributes, for example, joy and surprise, we can re-
frame the problem as a multi-label prediction prob-
lem. Given a classifier g4 that produces a vector
of independent logits y € R™, and a target binary
vector a € {0,1}" such thata; =1 (1 <i <m)
for the desired attributes, we can take D to be the
average of negative binary cross-entropy across the
attributes,

D(y,a) = log ( 5)

1 m
D(y,a) = o ;ai log o(yi)
1=
+(1 —ai)log(1 —o(yi)) (6)
where o(+) is the sigmoid function.

4 Evaluation

We conduct several experiments in order to evalu-
ate BEAMR against SOTA controllable generation
approaches, in various applications. We focus on
(1) a sentiment steering task, whereby we generate
positive or negative continuations to a variety of
prompts (including positive, negative and neutral
prompts), and (2) a machine translation formality
task, whereby input sentences are translated to En-
glish and the translations are adjusted in order to
improve the formality of the text, whilst maintain-
ing the original meaning. We detail the relevant
datasets, baselines and metrics for each experiment.
We also conduct an analysis of hyperparameter se-
lection for both tasks.

4.1 Sentiment Steering

We focus on the task of controlling the sentiment
(positive or negative) of generated text, given a
short prompt as input. For this experiment, we
closely follow the experimental setup outlined
in Liu et al. (2021). We evaluate two variants of
BEAMR: (1) using the base GPT-2 large model and
(2) using the appropriate finetuned expert model
from DExperts (Liu et al., 2021).
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Figure 1: Illustration of BeamR method. An input prompt is fed into a generative LM (fy). Leveraging the diverse
beam search algorithm, several candidate generations are produced, together with their likelihoods (depicted in
blue). Candidates are then scored using a scoring LM (g¢), a similarity measure D, and the desired target attribute
(e.g., positive sentiment). The scores produce an attribute distribution over the candidates (depicted in green). The
candidates’ original likelihoods are reweighed with the attribute distribution to produce p, and a single candidate
b ~ pis sampled (e.g. “and garden world”). Note that darker hues and longer bars indicate more probable candidates

according to each distribution.

4.1.1 Datasets

We use the prompts dataset provided by Liu et al.
(2021), originally collected from OpenWebText
Corpus (OWT) (Gokaslan and Cohen, 2019). We
use the same selections of 250 positive, 250 nega-
tive and 500 neutral prompts from Liu et al. (2021)
as in their PPLM evaluation. For each prompt, we
generate 25 continuations and score them using the
default DistilBERT sentiment classifier.

4.1.2 Baselines

We consider the same baselines as outlined in Liu
et al. (2021). GPT-2 (Radford et al., 2019) is
used without any steering towards a particular sen-
timent. PPLM (Dathathri et al., 2020) is used
together with a sentiment classifier trained on SST-
5 (Socher et al., 2013). CTRL (Keskar et al., 2019)
is used by providing “Reviews” as the control code
combined with a rating of 1.0 for negative steer-
ing and 5.0 for positive steering. CTRL’s original
training included examples from Amazon Reviews.
GeDi (Krause et al., 2020) is used with the original
sentiment-conditioned LMs, originally trained on
IMDb movie reviews. DExperts using both posi-
tive and negative expert LMs is used. We present
the results from the large version of DExperts.

4.1.3 Metrics

In our evaluation, we focus on several key metrics:
steering ability, fluency, diversity and relevance.

Automated Evaluation. We use the DistilBERT
sentiment classifier to evaluate the steering ability
by computing the proportion of continuations for
each type of prompt that succeed in generating the
desired sentiment. We evaluate the fluency of the
generations by computing the average perplexity
under a base GPT2-XL model. We evaluate the
diversity by computing the number of unique n-
grams (Dist-1, 2 and 3 scores) (Li et al., 2016)
across the generations of each prompt.

Human Evaluation. Although automated eval-
uation is easy to perform, it may not accurately
reflect human judgments, especially for fluency
and relevance metrics (Hashimoto et al., 2019; Liu
et al., 2017). To that end, we design a human eval-
uation study to evaluate steering ability, fluency
and relevance. We separately evaluate positive and
negative steering. We randomly sample 10 neutral
and 10 positive/negative prompts for each experi-
ment. For each pair of models for comparison (i.e.
BEAMR paired with another baseline, such as GPT-
2, CTRL, DExperts, etc.), we sample 3 generations
per model. We conduct human evaluations on the

425



Amazon Mechanical Turk (MTurk) platform, with
5 MTurk workers answering 3 questions about each
pair of generations:

1. Which generation is more positive (resp. neg-
ative)?

2. Which generation is more fluent?

3. Which generation is more relevant to the
prompt?

For each question workers may choose one of
the models in the pair, or report that both mod-
els equally exhibit the characteristic in question.
We compute 95% simultaneous confidence inter-
vals (Goodman, 1965) for all three multinomial
proportions for each pair of models and each ques-
tion. We also perform a Z-test on the difference in
proportions between the models in each pair.

4.1.4 Results

Automated Evaluation. Tables 1a and 1b show the
results of the sentiment-based steering task for pos-
itive and negative steering, respectively. BEAMR
scores in the top 2 models in terms of steering abil-
ity in all but one experiment, and outperforms DEx-
perts in producing positive generations for neutral
prompts. Noticeably, BEAMR struggles to achieve
the steering ability of DExperts when tasked to
produce negative generations for positive prompts.
This may be explained by the fact that DExperts
better incorporates negative tokens into its gen-
eration via its negative expert, whereas BEAMR
is less likely to sample negative tokens from the
base generation LM. In order to confirm this intu-
ition, we also present results from BEAMR using
the negative and positive experts as the generation
model. We see that combining BEAMR with an
expert model finetuned on the appropriate senti-
ment greatly improves performance and outper-
forms DExperts in both types of steering.

We also see that BEAMR outperforms all other
models in terms of perplexity. The low perplex-
ity of BEAMR compared to other methods may
be explained by the fact that it utilizes beam
search and reweighs candidate sequences of tokens,
rather than reweighing individual tokens. Previous
work (Holtzman et al., 2020) has shown that beam
search leads to lower perplexity, although it tends
to degenerate to repetition. BEAMR avoids repe-
tition by performing separate iterations of beam
search with shorter candidate lengths and introduc-
ing additional variability by utilizing a diversity

measure (Vijayakumar et al., 2018) and sampling
from the candidate distribution. It is important
to note that combining BEAMR with a finetuned
expert model increases the perplexity of the gener-
ations, likely due to a shift in the language distri-
bution between the finetuned expert model and the
base GPT-2 model.

BEAMR also performs competitively in terms
of diversity, suggesting that it is able to produce
varied generations that on the whole achieve the
correct sentiment. Overall, these results highlight
that BEAMR can achieve a good balance between
generating the correct sentiment and producing flu-
ent text.
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Figure 2: Results of human evaluations in sentiment
steering experiment. For clarity, responses from options
‘Equally positive/negative/fluent/relevant’ are not shown.
95% simultaneous confidence intervals for multinomial
proportion estimates are shown in black. Significance
results from Z-test of the difference between multino-
mial proportions are shown at the edges of the plot, with
corresponding legend below plot.
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Model % Positive Sentiment Perplexity | Diversity (n-gram) 1

Neutral Prompts | Negative Prompts Dist-1 | Dist-2 | Dist-3
GPT-2 50.03 0.00 29.04 0.58 0.85 0.84
PPLM 52.69 8.72 135.55 0.61 0.86 0.85
CTRL 60.77 18.02 44.17 0.51 0.83 0.86
GeDi 85.61 26.54 55.21 0.57 0.80 0.79
DExperts 94.79 34.93 47.62 0.56 0.83 0.83
BeamR 95.26 30.34 19.62 0.53 0.82 0.84
BeamR + Positive Expert 98.87 74.37 51.4 0.56 0.84 0.85

(a) Positive Steering

Model % Positive Sentiment |, Perplexity | Diversity (n-gram) 1

Neutral Prompts | Positive Prompts Dist-1 | Dist-2 | Dist-3
GPT-2 50.03 100.00 28.94 0.58 0.85 0.87
PPLM 39.05 89.74 181.79 0.63 0.87 0.86
CTRL 37.94 80.98 37.04 0.50 0.83 0.85
GeDi 9.06 40.00 80.64 0.63 0.84 0.82
DExperts 3.27 38.37 45.16 0.60 0.83 0.82
BeamR 5.86 72.86 2345 0.55 0.84 0.84
BeamR + Negative Expert 1.99 28.42 53.29 0.57 0.85 0.85

(b) Negative Steering

Table 1: Results of sentiment steering experiment. Given a neutral, negative or positive prompt, the models
are tasked with producing positive or negative generations. % Positive Sentiment is computed as the average
percentage of positive generations out of 25 total generations for each prompt. Perplexity is the average conditional
perplexity of generations given the prompt, using a GPT2-XL model. Diversity is measured using the average
number of distinct uni/bi/tri-grams in the generations for each prompt. Top 2 results are bolded.

Human Evaluation. Figure 2 presents the
results of human evaluation on the sentiment
steering task. We see that BEAMR significantly
outperforms PPLM, GeDi and DExperts in flu-
ency for negative steering, and otherwise per-
forms on par with other models. BEAMR sig-
nificantly outperforms PPLM, GPT-2 and CTRL
in both negative and positive steering ability.
On the other hand, GeDi and DExperts outper-
form BEAMR in steering ability, particularly in
the negative steering experiment, which may sup-
port our earlier observations. BEAMR performs
on par with other models in terms of relevance.

Effects of Hyperparameters. We conducted
additional experiments to quantify the effect of
the scaling hyperparameter v and beam length T'
on both positive and negative steering, in terms
of steering ability and fluency. Figure 3 in the
Appendix Section A.3.1 presents the plots of %
Positive Generations vs. Perplexity for varying set-
tings of v and 7'. As we might expect, increasing
~ allows BEAMR to reach the desired sentiment
in a higher proportion of generations. Moreover,
increasing the beam length 7" leads to a lower per-
plexity, signifying more fluent generations.

4.2 Machine Translation Formality

In this set of experiments, we focus on the task of
controlling the formality of English text that has
been translated from Spanish. Unlike the sentiment
steering task in Section 4.1 where BEAMR was
applied to a causal language model, this involves
applying BEAMR to a seq2seq translation model,
thus further exhibiting the generalizability of our
method. We follow the experimental setup outlined
in Yang and Klein (2021).

4.2.1 Datasets

We use the Fisher and CALLHOME corpus (Post
et al., 2013) of Spanish and English transcribed
conversations, using the Spanish sentences as input
to the Marian Spanish-to-English machine transla-
tion model (Junczys-Dowmunt et al., 2018). We
leverage the pretrained formality classifier provided
by Yang and Klein (2021) as the attribute model
for BEAMR. The classifier was trained on the En-
tertainment/Music portion of the GYAFC formality
corpus (Rao and Tetreault, 2018). For this experi-
ment, BEAMR uses the Marian model as the gener-
ative LM (fy) and the pretrained FUDGE classifier
as the attribute model (g).
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4.2.2 Baselines

We consider the same baselines as in Yang and
Klein (2021). MarianMT base model is used to
generate translations, without any steering towards
more formal text. TS style transfer model (Raffel
et al., 2020) is finetuned on the GYAFC corpus (En-
tertainment/Music portion) and applied post-hoc to
the output of MarianMT translations. FUDGE clas-
sifier is used to guide the translations of MarianMT
in a token-by-token manner.

4.2.3 Maetrics

For evaluation, we consider two important cri-
teria: translation accuracy and formality. We
evaluate the translation accuracy by comput-
ing the BLEU score between the generations
and the gold-standard translations provided in the
Fisher/CALLHOME corpus (Post et al., 2013). We
evaluate the formality using a pretrained formal-
ity classifier provided by Yang and Klein (2021)
that has been trained on the Family/Relationships
portion of GYAFC (Rao and Tetreault, 2018).

4.2.4 Results

Table 2 presents the results of the translation for-
mality experiment. Notably, combining an unfine-
tuned Marian model and FUDGE with BEAMR,
we achieve a higher BLEU score and a higher for-
mality score than FUDGE, signifying more formal
translations which are closer to the gold standard.
Similarly, with a Marian model that was finetuned
on the Fisher training set, we see that BEAMR can
reach FUDGE’s BLEU score while also achieving
a higher formality score.

Model Unfinetuned Finetuned
BLEU 1 | Form. 1+ | BLEU 1 | Form. t
Marian 16.98 0.45 22.03 0.41
+T5 7.87 0.96 9.63 0.97
+ FUDGE 17.96 0.51 22.18 0.48
+ BeamR 18.47 0.63 21.14 0.63

Table 2: Results for the machine translation formality
task. Given a sentence in Spanish, the models are tasked
to produce a formal English translation. BLEU mea-
sures the accuracy of translation via n-gram precision.
Form. is the average formality score provided by the
FUDGE classifier trained on the Family/Relationships
portion of the GYAFC dataset. Top results are bolded.

Effects of Hyperparameters. We conducted
additional experiments to understand the effects
of varying scaling hyperparameter v and beam
length 7" on the quality and formality of transla-
tions. Figures 4a and 4b in the Appendix Section

A.3.2 present BLEU vs. formality score with vary-
ing T" and -, respectively.

We can see that varying - allows for a trade-
off between formality and translation accuracy.
Namely, increasing v improves formality score but
decreases BLEU score. We also see trends in for-
mality and translation accuracy when changing 7.
For shorter beam lengths, BEAMR makes locally
optimal choices for formality, but suffers a signifi-
cant decrease in BLEU score when considering the
full translation. This hints at a similar behaviour
as observed in sentiment steering (Section 4.1),
namely that leveraging beam search can improve
the quality of generation while leaving ample room
for control.

5 Related Work

Recent methods in controllable text genera-
tion (Weng, 2021) may be categorized under decod-
ing methods and tuning methods. Roughly speak-
ing, decoding methods apply controllable charac-
teristics only at the output distribution of a LM,
while tuning methods additionally attempt to en-
code controllable characteristics into the generative
LM itself, by tuning either some or all of its param-
eters.

5.1 Decoding methods

Decoding methods are applied to produce text out-
put from an autoregressive generative language
model. We first outline several general approaches
to decoding from language models.

Typical decoding is done by sampling from the
next token distribution, or picking the most likely
token. However, these approaches lead to unde-
sired output (Holtzman et al., 2020): sampling
may lead to the model producing gibberish while
greedy decoding often leads to repetitions. Sev-
eral basic approaches have been proposed to tackle
these issues, including top-k sampling (Fan et al.,
2018), top-p sampling (Holtzman et al., 2020) and
repetition-penalized sampling (Keskar et al., 2019).
An alternative approach is the beam search algo-
rithm (Graves, 2012) which maintains a collection
of k best sequences at each time step. In order to
promote more diversity in the generated candidates,
Vijayakumar et al. (2018) proposed a diverse beam
search algorithm, which splits the candidates into
separate groups and enforces a dissimilarity metric
across the groups.

Several approaches have been explored to
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guide decoding according to a particular attribute.
Ghazvininejad et al. (2017) modify the beam search
algorithm to incorporate weighted feature functions
during each step. They use several manually de-
signed feature functions including custom word-
lists, repetition penalty, and alliteration metrics
for the problem of poetry generation. More re-
cently Liu et al. (2021); Yang and Klein (2021)
have proposed leveraging multiple language mod-
els to re-rank hypotheses according to a particular
attribute. Liu et al. (2021) achieves this by fine-
tuning generative language models on appropriate
subsets of a dataset (e.g., training experts on toxic
and non-toxic subsets of a dataset) and combining
token-level distributions from the original language
model and expert models. The downside of this
approach is that it requires annotated data and ad-
ditional training of the expert models, which may
not be available for resource-constrained scenarios
and domains. Yang and Klein (2021) propose to
use a binary classifier trained for a particular task,
to reweigh the token-level distribution produced
by a generative LM. They highlight the flexibility
of their approach in a variety of experiments, in-
cluding couplet generation and topic control. Our
method differs from and improves on FUDGE in
several key ways, by:

* Applying reweighing to beam-level decoding
thereby avoiding typical disfluency and repe-
tition issues from token-level decoding men-
tioned in Holtzman et al. (2020)

* Allowing for the choice of a custom similarity
measure D appropriate for the discriminator
(e.g., regressor, classifier), thereby offering
precise control of the desired target attribute
value

* Removing the requirement of shared tokeniza-
tion between the generative LM and the dis-
criminator and instead reweighing natural lan-
guage hypotheses, thereby improving general-
izability to different LMs

5.2 Tuning methods

The majority of recent work on controllable text
generation has focused on fine-tuning some or all
of the parameters of a generative language model.

Keskar et al. (2019) train a transformer model
(CTRL) to learn a conditional distribution over the
data. By prepending different control codes (for
instance, “Wikipedia” or “Reviews”) to raw text

from different sources (Wikipedia, or Amazon Re-
views, respectively), it learns to associate certain
types of text with the control codes. At inference
time, CTRL interprets the first token in the prompt
to be a control code, and can thus generate text in
the corresponding style.

Dathathri et al. (2020) proposed Plug-and-Play
Language Models (PPLM), a method to steer a
subset of the parameters of a generative language
model according to a lightweight auxiliary attribute
model. They achieve this via backpropagation of
the attribute model loss gradient into the past at-
tention key-value pairs of a transformer-based lan-
guage model. They experiment with simple at-
tribute models consisting of a bag-of-words to en-
courage the LM to use words from the bag, as well
as simple classifiers (e.g., sentiment) trained on top
of the generative LM representations.

Zeldes et al. (2020) briefly describe a method
to shift the output distribution of a generative lan-
guage model using an auxiliary model. They com-
bine the logits of both models and train them in
tandem to maximize the likelihood of a certain at-
tribute.

Our method is inspired by PPLM and also re-
sembles a decoding method (Zeldes et al., 2020),
whereby we similarly propose to control the out-
put distribution of the generative language model.
However, unlike those methods, we do not require
that the generative and auxiliary models be trained
together. In fact, our method is flexible and ro-
bust to the choice of the generative and auxiliary
attribute models and can leverage pre-trained mod-
els, avoiding the need to re-train one or both of the
models.

6 Conclusion

We present a simple and modular decoding-based
approach to controllable generation, BEAMR.
BEAMR combines a generative LM with an at-
tribute discriminator and leverages beam search de-
coding in order to steer generated text to the desired
target attribute. We show the results of BEAMR in
two diverse tasks: sentiment-based steering, and
machine translation formality steering. Our results
from automated evaluations show that BEAMR out-
performs strong baselines for both tasks, and hu-
man evaluations for sentiment steering further sup-
port this.

Noticeably, BEAMR struggles with negative sen-
timent steering, especially when compared to GeDi

429



and DExperts. We hypothesize this may be due
to GeDi and DExperts having direct access to
class-conditioned distributions in their generation.
Namely, GeDi trains a class-conditioned LM us-
ing control codes and anti-control codes (including
<negative>) and DExperts trains separate ex-
pert and anti-expert LMs on subsets of the data
(including an anti-expert trained on negative-only
text). Future work on BEAMR may incorporate
additional sources of language and attribute infor-
mation to address this shortcoming.

BEAMR offers a great deal of flexibility by al-
lowing us to plug different and independent gener-
ative LMs and attribute discriminators (with poten-
tially different tokenization schemes). Moreover,
BEAMR generalizes beyond classification tasks to
any type of discriminator by appropriately select-
ing a similarity measure. Leveraging beam search
for text decoding from a LM, BEAMR’s gener-
ations avoid some of the typical problems with
token-based decoding (such as repetition or disflu-
encies). Our work highlights that strong control-
lable text generation can be achieved by mixing
together large pre-trained generative and discrimi-
native models, with a flexible backbone offered by
BEAMR, without sacrificing fluency.

7 Ethics of Controllable Text Generation

Usage of large language models for text generation
can pose various risks, including producing harm-
ful content or misinformation (Sheng et al., 2020;
Gehman et al., 2020; Wallace et al., 2021). Con-
trollable text generation may create additional risks
if used maliciously. However, it can also help re-
searchers and practitioners avoid the biases learned
by large language models and reduce the afore-
mentioned risks (Liu et al., 2021; Dathathri et al.,
2020). Therefore, we believe advancing research
in controllable text generation is valuable in order
to understand the pitfalls of large language models
and develop strong measures to prevent harmful
content generation.

Human evaluation experiments were conducted
on the Amazon Mechanical Turk platform, and
evaluators were compensated above the federal
minimum wage in the country of residence (United
States).
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A Appendix

A.1 Implementation Details

All experiments were conducted on a single NVidia
Tesla T4 GPU. Transformers package (Wolf et al.,
2020) version 4.8 was used to implement all algo-
rithms and experiments. Table 3 presents average
amount of time to run each experiment.

Experiment Avg. Time (in minutes)

1.19 per batch of 8

Sentiment Steering
Machine Translation
Formality (Training)'
Machine Translation
Formality (Inference)

1.22 per epoch (20 epochs)

0.0033 per 1 generation

! Corresponds to training of the FUDGE classifier on
the Entertainment/Music portion of the GYAFC for-
mality corpus (Rao and Tetreault, 2018)

Table 3: Average time taken (per example or per
epoch) to run each experiment in Section 4.

A.2 Hyperparameters
A.2.1 Sentiment Steering

Table 4 presents the full hyperparameter configu-
rations for the sentiment steering task in Section
4.1.

Name Values

Generation Model
Discriminator Model

GPT2-Large (774M params.)
DistilBERT (66M params.)

Generation Length 20
Temperature 1.0
Diversity Penalty 10.0
Scaling () {1,2,3}
Beam Length (T') {1,3,5,7}
Number of Candidates (K) 5
Beam Length Penalty 1.0
Batch Size 8

Table 4: Models and hyperparameters used for senti-
ment steering experiments with BEAMR. Best-found
hyperparameters are bolded, where applicable.

A.2.2 Machine Translation Formality

Table 5 presents the full hyperparameter configura-
tions for the machine translation formality task in
Section 4.2.

A.3 Additional Experiments

This section contains additional results for the ex-
periments in Sections 4.1 and 4.2.

A.3.1 Sentiment Steering Hyperparameters

Figure 3 shows the results of hyperparameter ex-
periments from 4.1.

Name Values
Generation Model MarianMT (74M params.)
Discriminator Model FUDGE (~2M params.)
Generation Length 512
Temperature 0.5

Diversity Penalty 10.0

Scaling () {1,2,3,4}

Beam Length (T') {1,3,5,7,10}
Number of Candidates (K) 5

Beam Length Penalty 1.0

Batch Size 1

Table 5: Models and hyperparameters used for machine
translation formality experiments with BEAMR. Best-
found hyperparameters are bolded, where applicable.

A.3.2 Machine Translation Formality
Hyperparameters

Figures 4a and 4b show the results of beam length
(T') and scaling hyperparameter (vy) experiments
(resp.) from 4.2.

A.3.3 Visualization of Reweighing

In order to better understand the effects of the
reweighing step in Eqn. (4), we selected a prompt
from the sentiment steering task, and ran BEAMR
to get 15 generations for each set of hyperparame-
ters (v,7T) € {0.1,0.3,1,3} x {3,5,7,15}.

Figure 5 shows the average candidate, attribute
and reweighed distributions across 15 generations,
from a single step in the BeamR algorithm. We see
that for small values of v < 1, the reweighed distri-
butions closely resemble the original candidate dis-
tributions while the attribute distribution is almost
flat. When v > 1, we see the reweighed distribu-
tions take the shape of the attribute distributions,
signifying a stronger effect of the attribute score.
We also see some effect of the beam length hy-
perparameter on the reweighing. In particular, for
small 7', the reweighed distributions closely match
the attribute distributions, however as T' increases,
there is a larger gap between the distributions. This
gap is offset by increasing the value of ~.

A4 Qualitative Examples
A4.1 Sentiment Steering

Tables 6a and 6b show some qualitative examples
from positive and negative steering (resp.) compar-
ing BEAMR and baseline models.

A.4.2 Machine Translation Formality

Table 7 shows some qualitative examples compar-
ing BEAMR and FUDGE with reference transla-
tions (Salesky et al., 2019).
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Figure 4: Results of hyperparameter experiments in machine translation formality task. Different coloured lines
correspond to pretrained or finetuned versions of the MarianMT model.

A.5 Human Evaluation

Figure 6 shows an example screenshot of the hu-
man evaluation instructions from MTurk.

A.6 Dataset Details

Table 8 presents the size of datasets used in our
experiments in Section 4.

Dataset Label Number of examples
Senti ¢ Positive 250
Pf(‘)’r;mt‘zn Neutral 500
PE Negative 250

Formal 50967/1019/1000 (train/test/val.)
GYAFC Informal ~ 50967/1332/1000
Inference
(Ent./Music)

Formal 51595/1082/1000
GYAFC Informal ~ 51595/1416/1000
Evaluation
(Fam./Relation.)

Table 8: Dataset sizes used for experiments in Section 4.
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Prompt: Until then, we should start

Model Generation

GPT-2 Until then, we should start| collaborating. I’d love it if you could set up a foundation with the common
interests of digital creators

PPLM Until then, we should start| thinking of this awkwardness as largely just an blessings-and-worries life
being shaped out

CTRL Until then, we should start| by looking at the overall performance of both systems. If you want to know
what makes one better than another,

GeDi Until then, we should start| enjoying each other very much! :)\n\n\nThank you so much for visiting our
shop! Happy New

DExperts Until then, we should start| by appreciating the powerful sights and sounds of Japan’s ancient forests and
take pleasure in sampling traditional food

BeamR Until then, we should start| the new year with a simple message of gratitude for the world we have. As

BeamR + Positive Expert

we open our hearts
Until then, we should start| by acknowledging that the remarkable success of former boxing champion
Mike Tyson’s trilogy with Evander Holyfield

(a) Positive Steering

Prompt: Until then, we should start

Model Generation

GPT-2 Until then, we should start| collaborating. I’d love it if you could set up a foundation with the common
interests of digital creators

PPLM Until then, we should start| thinking about scaling any application down.\n\n\nWhat a stubborn
jerk!\n\n\nFigure this out if

CTRL Until then, we should start| considering that this book was just a vehicle for his message - the Bible is
God’s Word, and it is

GeDi Until then, we should start| testing for other reasons. Unfortunately, the lack of function over multiple
visits is what makes this test bad

DExperts Until then, we should start| loading vanilla content from somewhere else. The only solution is to dump
something in oblivion.\n\n\n

BeamR Until then, we should start| investing in fixing problems.\n\n\nUnfortunately the agenda to make the

BeamR + Negative Expert

world go green is destroying the economy
Until then, we should start| thinking of this as just another lame, uninspired, and under-the-radar
procedural,”

(b) Negative Steering

Table 6: Example generations from sentiment steering task, comparing BEAMR with baseline methods.

Spanish si hay gente no que decir que no no hagan suficientes peliculas pero hacen tantas que no hay que ir a ver

todas es es

Reference  There are so many movies made, you don’t have to see them all.

Marian yes, there are people that don’t want to say that they don’t make enough movies, but they make so many
that you don’t have to go see all of them, is, is

FUDGE yes there are people that don’t want to say that they don’t make enough movies but they make so many
that you don’t have to go see all of them is is

BeamR If there are people, right?, who want to stop making enough movies, but they make so many movies that
you don’t have to watch. It is

Spanish también el veinti y el veintinueve también yo me acuerdo que méds o menos en la misma vez se me
acuerdo que estdn toda la misma fecha
Reference  Also the twenty nine. I remember that everybody were there in the same date

Marian also on the twenty-nine and the twenty-nine also I remember that more or less at the same time |
remember that they were all the same date

FUDGE also on the twenty- and the twenty-nine also I remember that more or less at the same time I remember
that they were all the same date

BeamR Also, on the twenty-ninth, I also remember that more or less at the same time, I remember that they were

all the same date.

Table 7: Example translations from machine translation formality task, comparing FUDGE and BEAMR with
reference translations (Salesky et al., 2019).
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Carefully read each of the generations below.

fthird option

hich generation is more positive?
CA

> B

> Equally positive

hich generation is more fluent?
OA

OB

= Equally fluent

hich generation is more relevant to the prompt?
CA

> B
O Equally relevant

(Two text generation models were provided the following prompt

Prompt: The negative income tax is much more politically

For each question, choose the generaticn that best reflects the desired
property. |f both generations equally reflect the property, please select the

Generation A: The negative income tax is much more politically feasible
than VAT," said Mr. Wijnhuis, who co-founded the Fijian

Generation B: The negative income tax is much more politically lucrative
fthan the positive income tax. But there is a certain logic to it, if you're thinking

Figure 6: Example of human evaluation instructions

from MTurk experiments. For negative steering, the
first question is phrased: “Which generation is more

negative?”
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