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Abstract

Algorithms for text-generation in dialogue can
be misguided. For example, in task-oriented
settings, reinforcement learning that optimizes
only task-success can lead to abysmal lexical di-
versity. We hypothesize this is due to poor the-
oretical understanding of the objectives in text-
generation and their relation to the learning pro-
cess (i.e., model training). To this end, we pro-
pose a new theoretical framework for learning
to generate text in dialogue. Compared to exist-
ing theories of learning, our framework allows
for analysis of the multi-faceted goals inher-
ent to text-generation. We use our framework
to develop theoretical guarantees for learners
that adapt to unseen data. As an example, we
apply our theory to study data-shift within a co-
operative learning algorithm proposed for the
GuessWhat?! visual dialogue game. From this
insight, we propose a new algorithm, and empir-
ically, we demonstrate our proposal improves
both task-success and human-likeness of the
generated text. Finally, we show statistics from
our theory are empirically predictive of mul-
tiple qualities of the generated dialogue, sug-
gesting our theory is useful for model-selection
when human evaluations are not available.

1 Introduction

Generating coherent, human-like text for dialogue
remains a challenge. Yet, it is an inseparable
component of open domain and task oriented dia-
logue systems like Alexa and Siri. Undoubtedly,
it is also a complex process to learn. Generation
based on classification (e.g., next-word prediction)
over-emphasizes the likelihood of text, leading to
bland qualities, which are not human-like (Holtz-
man et al., 2019). Meanwhile, framing dialogue
generation as a Markov decision process is highly
data-inefficient when compared to classification
(Kakade, 2003). Further, without careful design of
rewards, models can suffer from mode-collapse in
dialogue, producing repetitive behaviors that are

not human-like (Shekhar et al., 2019). Even care-
fully designed rule-based systems are brittle in the
presence of unforeseen data-shift.

Theoretical analyses of learning are imperative
as they provide solutions to these issues. For ex-
ample, traditional (PAC) learning theory (Valiant,
1984) studies similar issues arising from computa-
tional algorithms for learning to classify. Progress
in our understanding has been impressive, ranging
from comprehensive guarantees on data-efficiency
(Shalev-Shwartz and Ben-David, 2014) to insights
for algorithm-design when the learner is faced with
data-shift (Zhao et al., 2019; Zhang et al., 2019b;
Tachet des Combes et al., 2020). While traditional
theory may be applicable to simple generation ob-
jectives like next-word prediction, it is unfortu-
nately unable to model more diverse goals. That is
to say, it is insufficient to study replication of the
diverse qualities inherent to human dialogue.

The goal of this paper is to provide a new the-
ory for analyzing the multi-faceted objectives in
computational learning of dialogue generation. In
particular, we propose LEATHER1 based on existing
theories of computational learning. We demon-
strate the utility of LEATHER with a focus on under-
standing data-shift in learning algorithms. We also
show empirical results for a task-oriented visual
dialogue game. In detail, we contribute as follows:
1. In Section 3, we propose LEATHER, our novel

theory for computational learning of dialogue
generation. We use the GuessWhat?! visual dia-
logue game (De Vries et al., 2017) as an exam-
ple to ground abstract terminology in practice.
We conclude Section 3 by applying our theory
to analyze a cooperative learning algorithm for
GuessWhat?!. Our theory unveils harmful shifts
in data-distribution that occur during training.

2. In Section 4, we use LEATHER to study the gen-
eral problem of data-shift in text-generation. We
provide new theoretical study that characterizes
1LEArning Theory for Human-like dialogue genERation
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Figure 1: Examples of human and generated dialogue with original cooperative learning algorithm CL (Shekhar et al., 2019) and
our learning algorithm motivated by our theory (LEATHER). Roughly, LEATHER works by applying a series of tests to generated
dialogue and comparing the test results across the human and generated dialogue. Well-generated dialogue is expected to perform
similarly to human dialogue on these tests. The example tests the % of relevant questions. Compared to CL, LEATHER asks more
relevant questions and therefore behaves more human-like. Aggregate empirical results in Section 5 echo this trend.

statistical energy as an effective empirical tool
for quantifying the impact of data-shift. Aptly,
to conclude Section 4, we use energy to mo-
tivate an improved learning algorithm for our
running example – the GuessWhat?! game.

3. In Section 5, empirically, we demonstrate the
benefits of our LEATHER-inspired algorithm com-
pared to common baselines. Importantly, we
also show our proposed statistic (energy) is pre-
dictive of the quality of generated dialogue; i.e.,
we exhibit a linear relationship. This suggests
LEATHER is useful, not only as a theoretical tool
for algorithm design, but also as an empirical
tool for model-selection.
Our framework is publicly available through ex-

perimental code and a Python package.2

2 Related Works

Theories of Learning to Generate Text Most
widely, text-generation is framed as a classification
problem, in which a model predicts the next word
provided existing context (e.g., previous words).
While common PAC learning analyses do apply
to classification, this theory only describes the
learner’s ability at the next-word prediction task. In
some specific cases, instead, PAC analysis has also
been used to analyze high-level objectives and moti-
vate conversational strategies (Sicilia et al., 2022b),
but this analysis is problem-dependent. In contrast,
our work offers a general problem-independent for-
malism for studying high-level qualities of gener-
ated text. Another frequent formalism comes from
partially observable Markov decision processes
(POMDPs) used to motivate reinforcement learn-

2github.com/anthonysicilia/LEATHER-AACL2022

ing. For example, see Strub et al. (2017). While
POMDPs remedy the issues of typical PAC anal-
ysis by supporting implementation of high-level
objectives, as we are aware, there are no empiri-
cally verified theoretical studies of learning under
data-shift in POMDPs. In contrast, we demonstrate
LEATHER admits such a theory of learning, using
it to predict the human-likeness of generated text
under data-shift (where POMDPs fall short).

Theories of Learning with Data-Shift Early
learning theoretic models of data-shift in classi-
fication and regression are due to Ben-David et al.
(2010a,b) and Mansour et al. (2009). While mod-
ern approaches are generally similar in spirit, new
statistics incorporate increasing information about
the learning algorithm (Lipton et al., 2018; Kuroki
et al., 2019; Germain et al., 2020; Sicilia et al.,
2022a). Ultimately, such techniques tend to im-
prove the predictive capabilities of a theory in prac-
tical application (Rabanser et al., 2019; Atwell
et al., 2022). Diverse additional approaches to de-
scribing the impact of data-shift have also been
proposed, for example, using integral probability
metrics (Redko et al., 2017, 2020; Shen et al., 2018;
Johansson et al., 2019). Unfortunately, existing
works focus on classification and regression which,
as discussed, are not directly applicable to dialogue
generation. Further, this theory does not easily ex-
tend to generation (see Section 3.3). Ultimately,
using LEATHER, our work derives a new statistic (en-
ergy) for predicting changes in model performance,
which is applicable to dialogue generation.

Evaluation of Generated Text There are many
automated metrics for evaluation of generated text
including metrics based on n-grams such as BLEU

https://github.com/anthonysicilia/LEATHER-AACL2022
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(Papineni et al., 2002), ROUGE (Lin, 2004), and
CIDEr (Vedantam et al., 2015). Automated metrics
based on neural models are also becoming more
prevalent including BLEURT (Sellam et al., 2020),
BertScore (Zhang et al., 2019a), and COSMic (Inan
et al., 2021). Bruni and Fernandez (2017) propose
use of an adversary to discriminate between hu-
man and generated text, evaluating based on the
generator’s ability to fool the adversary. Human
annotation and evaluation, of course, remains the
gold-standard. Notably, our proposed framework
encapsulates these techniques, since it is suitable
for analyzing the impact of the learning process
on all of these evaluation strategies and more (see
Section 3 for examples).

3 Theory with Examples

In this section, we develop our new theoretical
framework. To assist our exposition, we use the
GuessWhat?! visual dialogue game – a variant of
the child’s game I Spy – as a running example. We
first describe the game along with our modeling
interests within the game. We continue with a de-
scription of our theory and then apply this theory to
analyze an algorithm that learns to play the game.

3.1 GuessWhat?! Visual Dialogue Game
An image and goal-object within the image are
both randomly chosen. A question-player with
access to the image asks yes/no questions to an
answer-player who has access to both the image
and goal-object. The question-player’s goal is to
identify the goal-object. The answer-player’s goal
is to reveal the goal-object to the question-player
by answering the yes/no questions appropriately.
The question- and answer-player converse until the
question-player is ready to make a guess or at most
m questions have been asked.3 The question-player
then guesses which object was the secret goal.

Notation for Human Games To discuss this
game within our theoretical framework next, we
provide some notation. We assume the possible
questions, answers, and objects are respectively
confined to the sets Q, A, and O. We also as-
sume a set of possible images I. A game be-
tween two human players can be represented by
a series of random variables. The image-object
pair is represented by the random tuple (I,O).
The dialogue between the question- and answer-
player is represented by the random-tuple D =

3By default, m = 8 following Shekhar et al. (2019).

(Q1, A1, . . . , QP , AP ) with some random length
P ≤ m. Each Qi is a random question taking
value from the set Q and each Ai is a random an-
swer from the set A.

Notation for Modeled Games From a modeling
perspective, in this paper, we focus on the question-
player and assume a human answer-player. We
consider learning a model that generates the ran-
dom dialogue D̂ = (Q̂1, Ã1, . . . Q̂m, Ãm) along
with a predicted goal object Ô.4 For example, con-
sider the model of Shekhar et al. (2019) we study
later. It generates dialogue/predicted goal as below:

Ô = Guesα(Encβ(I, D̂))

Q̂i+1 = QGenθ(Encβ(I, Q̂1, Ã1, . . . Q̂i, Ãi)
(1)

where, aptly, the neural-model QGenθ : Rd → Q is
called the question-generator and the neural-model
Guesα : Rd → O is called the object-guesser. The
final neural-model Encβ : I × (Q×A)∗ → Rd is
called the encoder and captures pertinent features
for the former models to share. Subscripts denote
the parameters of each model (to be learned).

Modeling Goals There are two main objectives
we consider. The first is task-oriented:

minα,β E[1{Ô ̸= O}] (2)

which requires the predicted goal-object align with
the true goal. The second objective is more elusive
from a mathematical perspective: the generated dia-
logue D̂ should be human-like. That is, it should be
similar to the human dialogue D. As we see next,
our theory is aimed at formalizing this objective.

3.2 Theoretical Framework (LEATHER)
Now, we present our proposed theory with exam-
ples from the GuessWhat?! game just discussed.

3.2.1 Terminology
Sets Assume a space C, which encompasses the
set of dialogue contexts, and a space D, which
encompasses the set of possible dialogues. In gen-
eral, the structure of these sets and representation
of elements therein are arbitrary to allow wide ap-
plicability to any dialogue system. For particular
examples, consider the Guess What?! game: c ∈ C
is an image-goal pair and d ∈ D is a list of question-
answer pairs. Note, we also allow an additional,
arbitrary space U to account for any unobserved
effects on the test outputs (discussed next).

4Notice, although the answer-player is still human, the
answers may follow a distinct distribution due to dependence
on the questions, so we demarcate this difference by □̃.
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Test Functions To evaluate generated text, we
assume a group of fixed test functions {h1 . . . hL}
where for each ℓ ∈ [L] the function hℓ : D × U →
[0, 1] assigns a [0, 1]-valued score that character-
izes some high-level property of the dialogue. For
example, a test function might be a binary value
indicating presence of particular question-type, a
continuous value indicating the proportion of clari-
fication questions, a sentiment score, or some other
user-evaluation. A test function can also be an au-
tomated metric like lexical diversity, for example.

Random Outputs As noted, the space U primar-
ily allows the test hℓ to exhibit randomness due to
unobserved effects. For example, this is the case
when our test function is a human evaluation and
randomness arises from the human annotator. To
model this, we assume an unknown distribution U
over U , so that for U ∼ U and dialogue d ∈ D, the
score hℓ(d, U) is a random variable. In general, we
do not assume too much access to this randomness,
since sampling from U can be costly; e.g., it can
require recruiting new annotators or collecting new
annotations. Note, U can also be used to encapsu-
late additional (observable) information needed to
conduct the test hℓ (e.g., a reference dialogue).

Goal Distribution Next, we assume a goal distri-
bution G over the set of contextualized dialogues;
i.e., context-dialogue pairs in C × D. Typically, G
is the distribution of contextualized dialogues be-
tween human interlocutors. In the GuessWhat?! ex-
ample, G is the distribution of the random, iterated
tuple ((I,O), D). Recall, I is the random image
and O is the random goal-object, which together
form the context. D = (Q1, A1 . . . QP , AP ) is
the variable-length tuple of question-answer pairs
produced by humans discussing the context (I,O).

Dialogue Learner and Environment We also
assume some dialogue learner parameterized by
θ ∈ Rd. The learner may only partially control
each dialogue – e.g., the learner might only con-
trol a subset of the turns in each dialogue – and
the mechanism through which this occurs is ac-
tually unimportant in the general setting; i.e., it
will not be assumed in our theoretical results. Ul-
timately, we need only assume existence of some
function (θ, c)

E−→ Pθ(c) where θ are the learned
parameters, c ∈ C is the context, and Pθ(c) is a
distribution over dialogues D. In the GuessWhat?!
example discussed previously, the dialogue learner
is QGenθ and the function E is implicitly defined

by Eq. (1). In particular, we have D̂ ∼ Pθ(I,O)
where image I and object O are sampled from
the goal-distribution of contextualized dialogues
((I,O), D) ∼ G. We call E the environment
of the learner and use sans serif in notation. In
the GuessWhat?! example, the environment can
change for a myriad of reasons: the answer-player
could change strategies (inducing a new answer-
distribution), the distribution of image I could
change, or the distribution of the object O could
change. All of which, can impact the function
(θ, c)

E−→ Pθ(c). One implicit factor we encounter
later is the dependence of the environment E on the
encoder parameters β in Eq. (1). In discussion, we
may explicitly write Eβ to denote this dependence.

Formal Objective of Learner As discussed be-
fore, the conceptual task of the dialogue learner
is to produce human-like text. To rephrase more
formally: the task of the learner is to induce a
contextualized dialogue distribution that is indis-
tinguishable from the the goal distribution. Un-
fortunately, this objective is made difficult by the
complexity of dialogue. In particular, it is unclear
what features of the dialogue are important to mea-
sure: should we focus on the atomic structure of
a dialogue, the overall semantics, or maybe just
the fluency? Surely, the answer to this question
is dependent on the application. For this reason,
we suggest the general notion of a test function.
Each test {h1 . . . hL} can be hand selected prior
to learning to emphasize a particular goal for the
dialogue learner; e.g., as in Figure 1, h1 can repre-
sent a user evaluation of question relevance, h2 can
capture lexical diversity, etc. Then, the quality of
the contextualized dialogue distribution induced by
the dialogue learner is measured by preservation of
the output of the test functions. That is, the output
of test functions should be similar when applied
to human dialogue about the same context. We
capture this idea through the test divergence:

TDE(θ) =
∑L

ℓ=1
TDℓ

E(θ)

where TDℓ
E(θ) = E[|hℓ(D,U)− hℓ(D̂, U)|],

(C,D) ∼ G, D̂ ∼ Pθ(C), U ∼ U.

(3)

Notice, the test divergence is not only dependent
on the parameters of the dialogue learner, but also
the environment E which governs the distribution
Pθ(C). Recall, this function is induced by the
learner’s environment and its role in eliciting gen-
erated dialogue. Finally, with all terms defined, the
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formal objective of the dialogue learner is typically
to minimize the test divergence:

minθ TDE(θ). (4)

Example (BLEU/ROUGE) Useful examples of
test divergence are traditional evaluation metrics,
using a human reference – metrics like BLEU,
ROUGE, or accuracy at next-word prediction. To
see the connection, in Eq. (3), let L = 1, let h1 be
one of the metrics, and set U = D. Then, h1(D,U)
computes some form of n-gram overlap between
the human reference and itself, so it evaluates to
1 (full overlap). On the other hand, h1(D̂, U) is
the traditional notion of the metric (e.g., BLEU or
ROUGE). So, the test divergence simply becomes
1 minus the average of the metric. Notice, this ex-
ample shows how U can be used to encapsulate
observable (random) information as well.

Example (GuessWhat?!) We can also consider
a more complicated example in the GuessWhat?!
game. Here, Shekhar et al. (2019) evaluate the
human-likeness of dialogue with respect to the
question strategies. Specifically, the authors con-
sider a group of strategy classifiers si : Q →
{0, 1}, i ∈ [L] which each indicate presence of
a particular strategy in the input question. For
example, s1 might identify if its input is a color
question “Is it blue?” and s2 might identify if its
input is a spatial question “Is it in the corner?”.
Then, one intuitive mathematical description of the
question-strategy dissimilarity may be written

E

[
ℓ∑

i=1

∣∣∣ 1
P

P∑
j=1

si(Qj)−
1

m

m∑
k=1

si(Q̂k)
∣∣∣] (5)

Above captures expected deviation in proportion
of color/spatial questions from the human- to the
generated-text. It also coincides with the definition
of test divergence. To see this, note the above is
Eq. (3) precisely when hi returns the proportion of
questions in a dialogue with type identified by si.

Example (Human Annotation) Human annota-
tion is also an example, in which, human subjects
are presented with two dialogue examples: one ma-
chine generated and one from a goal corpus with
both dialogues pertaining to the same context. The
human then annotates both examples with a score
pertaining to the quality of the dialogue (e.g., the
relevance of questions as in Figure 1). So, hi is
represented by the annotation process, using U to
encapsulate any unobserved random effects. Then,

the test divergence simply reports average absolute
difference between annotations.

3.3 Application to a GuessWhat?! Algorithm

In this next part, we apply the theory just discussed
to analyze a cooperative learning algorithm (CL)
proposed by Shekhar et al. (2019). Recall Eq. (1),
CL generates dialogue/predicted goal as below:

Ô = Guesα(Encβ(I, D̂))

Q̂i+1 = QGenθ(Encβ(I, Q̂1, Ã1, . . . Q̂i, Ãi)
(6)

where QGenθ is the question-generator, Guesα is
the object-guesser, and Encβ is the encoder.

CL Algorithm Conceptually, cooperative learn-
ing encompasses a broad class of algorithms in
which two or more independent model compo-
nents coordinate during training to improve each
other’s performance. For example, this can involve
a shared learning objective (Das et al., 2017). In
the algorithm we consider, Shekhar et al. (2019)
coordinate training of a shared encoder using two
distinct learning phases. Written in the context of
our theory, they are:
1. Task-Oriented Learning: Solve Eq. (2). Up-

date α and β to minimize E[1{Ô ̸= O}].
2. Language Learning: Solve Eq. (4). Update

θ and β to minimize TDEβ
(θ) where the test

measures accuracy at next-word prediction.
The two phases repeat, alternating until training
is finished. As is typical when training neural-
networks, the parameter weights are updated using
batch SGD with a differentiable surrogate loss. To
do so in the task-oriented learning phase, Guesα
is designed to output probability estimates for each
object and the negative log-liklihood of this out-
put distribution is minimized. In the language
learning phase, QGenθ is designed to output prob-
abilities for the individual utterances that compose
each question. Then, the surrogate optimization is:

minθ,β E
[ ∑
i+1≤P

L(Q̂i+1, Qi+1)
]

where

Q̂i+1 = QGenθ(Encβ(I,Q1, A1 . . . Qi, Ai)

(7)

and L sums the negative logliklihood of the individ-
ual utterances. Notice, a form of teacher-forcing
is used in this objective, so that the encoder and
question-generator are conditioned on only human
dialogue during the language learning phase. This
fact will become important in the next part.
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Problem Importantly, the encoder parameters
β are updated in both the task-oriented and lan-
guage learning phases. So, in the language learning
phase, the dialogue learner selects θ to minimize
the test divergence in cooperation with a particu-
lar choice of the encoder parameters – let us call
these βs. Then, in the task-oriented learning phase,
the learned encoder parameters may change to a
new setting βt. Importantly, by changing the pa-
rameters in Eq. (1), we induce a new environment
Eβt ̸= Eβs , which governs a new generation pro-
cess. For brevity, we set T = Eβt and S = Eβs .
This change brings us to our primary issue: the
shift in learning environment does not necessarily
preserve the quality of the generated dialogue. In
terms of our formal theory, we rephrase:

TDS(θ)
?
= TDT(θ). (8)

Without controlling the change in test divergence
across these two environments, it is possible the
two learning phases are not “cooperating” at all.

LEATHER-Inspired Solution In general, it is clear
equality will not hold, but we can still ask how
different these quantities will be. If they are very
different, the quality of the dialogue generation
learned in the language learning phase may de-
grade substantially during the task-oriented learn-
ing phase. More generally, the problem we see here
is a problem of data-shift. In learning theory, the
study of data-shift is often referred to as domain
adaptation. The test divergence on the environ-
ment S – in which we learn θ – is referred to as the
source error, while the test divergence on the en-
vironment T – in which we evaluate θ – is referred
to as the target error. The tool we use to quantify
the change between the source error and the target
error is an adaptation bound, in which we find a
statistic ∆ for which the following is true:5

TDT(θ) ≲ TDS(θ) + ∆. (9)

Then, we can be sure the error in the new environ-
ment has not increased much more than ∆. In this
sense, we say ∆ is a predictive statistic because
it predicts the magnitude of the target error TDT

from the magnitude of the source error TDS. To
put it more concisely, it predicts the change in error

5The inequality is approximate because there are often
other statistics in the bound, but through reasonable assump-
tions, one statistic ∆ is identified as the key quantity of interest.
These assumptions should be carefully made to avoid undesir-
able results (Ben-David et al., 2010b; Zhao et al., 2019).

from source to target. When ∆ is small, the change
should be small too or the target error should be
even lower than the source error. When ∆ is large,
we cannot necessarily come to this conclusion. Im-
portantly, for ∆ to be useful in practice it should
not rely on too much information. In dialogue gen-
eration, it is important for ∆ to avoid reliance on
the test functions, since these can often encompass
costly sampling processes like human-evaluation.

As alluded in Section 2, many adaptation bounds
exist, but as it turns out, none of them are directly
applicable to dialogue generation contexts. This is
because, as we are aware, computation of all pre-
vious bounds relies on efficient access to the test
functions {h1 . . . hL} and samples U ∼ U, which
is not always possible in dialogue. In particular,
these functions, along with the sampling process
U ∼ U, might represent a time-consuming, real-
world processes like human-evaluation. For this
reason, in the next section, we prove a new adap-
tation bound with new statistic ∆, which does not
require access to the test functions.

4 Text-Generation under Data-Shift

Motivated by the GuessWhat?! example and algo-
rithm CL, we continue in this section with a general
study of domain adaptation for dialogue generation.
We begin by proposing a new (general) adaptation
bound for LEATHER. We then apply this general
bound to the GuessWhat?! algorithm CL, motivat-
ing fruitful modifications through our analysis.

4.1 A Novel Adaptation Bound for LEATHER

The Energy Statistic and Computation
Definition 4.1. For any independent random vari-
ables A and B, the discrete energy distance is de-
fined ε01(A,B) equal to

2E[1{A ̸= B}]−E[1{A ̸= A′}]−E[1{B ̸= B′}] (10)

where A′ is an i.i.d copy of A, B′ is an i.i.d. copy of
B, and 1{·} is the indicator function; i.e., it returns
1 for true arguments and 0 otherwise.

The discrete energy distance is a modification of
the energy distance sometimes called the statistical
energy. It was first proposed by Szekely (1989)
and was studied extensively by Székely and Rizzo
(2013) in the case where A and B are continuous
variables admitting a probability density function.
In general, and especially in dialogue, this is not
the case. Aptly, our newly suggested form of the
energy distance is more widely applicable to any



36

variables A and B for which equality is defined.
While general, this distance can be insensitive, es-
pecially when A and B take on many values. To
remedy this, we introduce the following.

Definition 4.2. Let D be any set. A coarsening
function is a map c : D → D such that c(D) =
{c(d) | d ∈ D} is finite, and further, |c(D)| < |D|.

Since D is likely an immensely large set, this
can make the signal 1{a ̸= b} for a, b ∈ D over-
whelming compared to the signal 1{a = b}, and
therefore, weaken the sensitivity of the discrete en-
ergy distance, overall. Coarsening functions allow
us to alleviate this problem by effectively “shrink-
ing” the set D to a smaller set. To do this, the role
of the coarsening function is to exploit additional
context to arrive at an appropriate clustering of the
dialogues, which assigns conceptually “near” dia-
logues to the same cluster. So, the choice of c(d)
should be a “good” representation of d, in the sense
that too much valuable information is not lost. As a
general shorthand, for a coarsening function c and
variables A,B, we write

εc(A,B) = ε01(c(A), c(B)). (11)

In this paper, we implement c using the results of a
k-means clustering with details in Appendix A.

Adaptation Bound With these defined, we give
the novel bound. Proof of a more general version of
this bound – applicable beyond dialogue contexts
(e.g., classification) – is provided in Appendix B
Thm. B.1. Notably, our proof requires some tech-
nical results on the relationship between discrete
energy and the characteristic functions of discrete
probability distributions. These may also be of in-
dependent interest, outside the scope of this paper.

Theorem 4.1. For any θ ∈ Rd, any coarsening
function c : D → D, and all ℓ ∈ [L]

TDℓ
T(θ) ≤ γ + φ+TDℓ

S(θ) +

√
εc(D̃1, D̃2)× δ (12)

where D̃1 ∼ Pθ(C) = T(θ, C), D̃2 ∼ Qθ(C) =
S(θ, C), (C,D) ∼ G, U ∼ U,6

γ =
∑

i∈{1,2}
E[|hℓ(c(D̃i), U)− hℓ(D̃i, U)|]

g ∈ argmin
f∈[0,1]D×U

∑
i
E[|f(c(D̃i), U)− hℓ(D,U)|]

where [0, 1]D×U = {f | f : D × U → [0, 1]}.

φ =
∑

i∈{1,2}
E[|g(c(D̃i), U)− hℓ(D,U)|]

δ = E
[∑

x∈c(D)
|g(x, U)− hℓ(x, U)|

]
.

(13)

6For simplicity, let D̃1, D̃2, U be pairwise-independent.

Unobserved Terms in Dialogue As noted, an
important benefit of our theory is that we need not
assume computationally efficient access to the test
functions {h1 . . . hL} or samples U ∼ U. Yet, the
reader likely notices a number of terms in Eq. (12)
dependent on both of these. Similar to the tradi-
tional case, we argue that our theory is still predic-
tive because it is often appropriate to assume these
unobserved terms are small, or otherwise irrelevant.
We address each of them in the following:
1. The term γ captures average change in test out-

put as a function of the coarsening function c.
Whenever c(D̃i) is a good representative of D̃i

(i.e., it maintains information to which hℓ is
sensitive) γ should be small.

2. The next term φ is the smallest sum of ex-
pected differences that any function of the coars-
ened dialogues c(D̃i) and the arbitrary random-
ness U can achieve in mimicking the true test
scores hℓ(D,U). Since the set of all functions
from D × U to [0, 1] should be very expressive,
this can be seen as another requirement on our
coarsened dialogues c(D̃i). For example, when
c(D̃i) = D̃i ≈ D this term can be close to zero.
When instead |c(D)| is much smaller than |D|
(e.g., a singleton set), we expect φ to grow.

3. The last term δ can actually be large. Fortu-
nately, since δ is multiplied by the energy dis-
tance, this issue is mitigated when the statistical
energy is small enough. Ultimately, the energy
is paramount in controlling the impact of this
term on the bound’s overall magnitude.

A Predictive Theory Granted the background
above, our discussion reduces the predictive aspect
of the bound to a single key quantity: the discrete
energy distance εc(D̃1, D̃2). In particular, besides
the test divergence TDS, all other terms can be
assumed reasonably small by proper choice of the
coarsening function, or otherwise controlled by the
statistical energy through multiplication. Note, the
first issue is discussed in Appendix A. Ultimately,
the main takeaway is that statistical energy plays
the role of ∆ as discussed in Section 3.3.

4.2 A New Cooperative Learning Algorithm
With all theoretical tools in play, we return to the
algorithm CL and the problem raised in Section 3.3.

LEATHER-Motivated Modification Recall, we
are interested in quantifying and controlling the
change in error from source TDS(θ) to target
TDT(θ) across the training phases. Based on our
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Figure 2: Energy between training phases. Energy is predic-
tive of change in test divergence as desired. Dotted line is line
of best fit. Blue circles (CL) indicate use of only generated
dialogue in task-oriented learning phase. Orange triangles
(LEATHER) indicate regularization with human data.

theory, we know we should decrease the statistical
energy between dialogues to reduce this change.
That is, we should reduce the distance between
the generated dialogue distributions across learn-
ing phases. We hypothesize this may be done by
incorporating human dialogue in the task-oriented
learning phase. The encoder in CL sees no human
dialogue when forming the prediction Ô that is
compared to O during task-oriented learning – as
seen in Eq. (1), only the generated dialogue D̂ is
used. In contrast, the encoder sees only the human
dialogue D in the alternate language learning phase
– i.e., as seen in the surrogate objective in Eq. (7).
We hypothesize this stark contrast produces large
shifts in the parameters βs → βt between phases.
Instead, we propose to regularize the task-oriented
learning phase with human dialogue as below:

min
α,β

E[1[Ô ̸= O]] +E[1[Ô′ ̸= O]] where

Ô′ = Guesα(Encβ(I,D)), ((I,O), D) ∼ G
(14)

and Ô is still as described in Eq. (1). Intuitively,
this should constrain parameter shift from βs → βt,
thereby constraining the change in outputs of the
encoder, and ultimately constraining the change in
outputs of the question-generator, which is condi-
tioned on the encoder outputs. As the generated
dialogue distributions from distinct learning phases
will be more similar by this constraint, we hypothe-
size the penultimate effect will be decreased statis-
tical energy (i.e., since energy measures distance of
distributions). Based on our theory, reduced energy
provides resolution to our problem: test divergence
should be preserved from source to target.

5 Experiments

5.1 Cooperative Learning via LEATHER

Setup In general, we use experimental settings of
Shekhar et al. (2019) (e.g., hyperparameters, valida-
tion, etc.) with full details available in the code. CL

denotes the original algorithm proposed by Shekhar
et al. (2019) (Section 3.3). LEATHER denotes our
LEATHER-inspired modification (Section 4.2).

Automated Metrics We report average accuracy
acc of the guesser module in identifying the true
goal-object across three random seeds as well as
average lexical diversity (lexdiv; type/token ra-
tio over all dialogues), average question diversity
(qdiv; % unique questions over all dialogues),
and average percent of dialogues with verbatim
repeated questions (repq). acc quantifies task-
success, while subsequent metrics are designed to
quantify human-likeness of the generated dialogue.
These metrics were all previously computed by
Shekhar et al. (2019) with details in their code.

Human Evaluation We asked two annotators to
help us further evaluate the results. Throughout the
process, human subject guidelines from the authors’
institution were followed and the task was approved
by our institution human subject board. The annota-
tors examined contextualized human dialogues and
generated dialogues from a CL model and LEATHER
model. All dialogues used the same image/goal
context and annotators observed all dialogues for a
specific context in random order without knowing
how each dialogue was created. Across 50+ dia-
logues, average percentage of irrelevant questions
per dialogue (irrq) was determined.7 Average per-
centage of specific questions (spcq) was also de-
termined.8 We report TD, which gives the average
difference in percentages from the corresponding
human dialogue. Sans scaling, these TD metrics
are examples of the test divergence in Eq. (3) using
a human-evaluation test function. Qualitative analy-
sis of errors was also conducted based on annotator
remarks (provided later in this section).

Impact of LEATHER In Table 1, we compare the
cooperative learning algorithms CL and LEATHER.
The former uses only the generated dialogue during
task-oriented learning, while the latter incorporates
human data to regularize the change in parameters
underlying the environmental shift. As predicted by
our theory, regularization is very beneficial, improv-

7An irrelevant question ignores the image or current di-
alogue context. For example, in Figure 1, CL asks about the
man’s “face” (Q5) after learning the goal-object is a car, which
ignores dialogue-context. CL also hallucinates an object “cut
off” on the right side (Q4), which ignores image context.

8A specific question contains two or more modifiers of one
or more nouns. For example, LEATHER modifies “car” with
“behind” and “man” with “the white shirt” in Figure 1 Q7.



38

acc ↑ lexdiv ↑ qdiv ↑ repq ↓ irrq(TD) ↓ spcq(TD) ↓ energy ↓
CL 57.1 (55.9) 9.98 (10.7) 13.5 (14.3) 55.9 (58.2) 30.5 23.3 0.143

LEATHER 58.4 (56.9) 11.4 (12.7) 13.1 (16.0) 53.6 (47.5) 26.2 19.5 0.123
RL 56.3 7.3 1.04 96.5 - - -

Table 1: Comparison of CL and our theory-motivated modification LEATHER. Best epoch based on validation acc is reported
with last epoch in parentheses. Up/down arrows indicate objective. Metrics are on 100 point scale, excluding energy. The first 4
metrics are automated, the next 2 are from human evaluation, and the last is our proposed statistic. LEATHER improves accuracy
and human-likeness of dialogue. Further, our proposed statistic energy is predictive of human-likeness.

ing task-success and human-likeness. For example,
LEATHER decreases % of irrelevant questions by
4.8% compared to CL, which is more similar to
human dialogue according to the test divergence
(TD). Interestingly, LEATHER also decreased % of
specific questions by 1.7%. Based on the TD, this
is also more similar to human dialogue, indicat-
ing humans ask fewer specific questions too. The
design of the TD allows us to capture these non-
intuitive results. Notably, regularization inspired
by LEATHER allows us to train longer without de-
grading task-success or suffering from mode col-
lapse (i.e., repeated questions). Automated human-
likeness metrics for the last epoch (in parentheses)
show substantial improvements over CL in this case.

Cooperative vs. Reinforcement Learning In
Table 1, we compare the two cooperative learning
algorithms CL and LEATHER to the reinforcement
learning algorithm (RL). We use the results reported
by Shekhar et al. (2019) for RL, since we share an
experimental setup. Compared to RL, both coop-
erative learning approaches improve task success
and human-likeness. As noted in Section 2, the
theoretical framework for RL (i.e., POMDPs) is
not equipped to study interaction of the distinct
learning phases within this algorithm (i.e., with
respect to data-shift). Better theoretical understand-
ing could explain poor performance and offer im-
provement as demonstrated with LEATHER, which
improves human-likeness of CL.

Qualitative Analysis In dialogue generated by
CL, questions with poor relevance ignored the im-
age context (e.g., model hallucination). In dia-
logue generated by the LEATHER model, irrelevant
questions ignored current dialogue context (e.g., a
question which should already be inferred from ex-
isting answers). We hypothesize this may be due to
poor faith in the automated answer-player used for
training, which also has problems with model hal-
lucination (e.g., Figure 1). Both models had issues
with repeated questions. In human dialogue, issues
were grammatical with few irrelevant questions.

5.2 LEATHER is Empirically Predictive
Here, we show statistical energy predicts test diver-
gence, empirically. Computation of energy can be
automated, so predictive ability is useful for model-
selection when human evaluation is not available.
We consider test divergence (TD) with 4 groups of
tests: (A) the 9 fine-grained strategy classifiers of
Shekhar et al. (2019) used as in Eq. (5), (B) lexical
diversity computed as type/token ratio per dialogue,
(C) question repetition computed as a binary indica-
tor for each dialogue, and (D) the discussed human-
evaluations of question relevance/specificity. Fig-
ure 2 plots change in TD for (A-C) as a function
of energy. Specifically, change in TD is the dif-
ference TDT(θ) − TDS(θ) where S and T are
defined by the transition from language learning to
task-oriented learning discussed in Section 3. We
plot this change at the transitions after epochs 65,
75, 85, and 95 (out of 100 total). Notably, energy
is predictive and, specifically, is linearly related
to change in test divergence. For (D), in Table 1,
we show average energy across all transitions com-
pared to test divergence. Energy is also predictive
for these human-evaluation tests.

6 Conclusion

This work presents LEATHER, a theoretically moti-
vated framework for learning to generate human-
like dialogue. The energy statistic, which is de-
rived from this theory, is used to analyze and im-
prove an algorithm for task-oriented dialogue gen-
eration. Further, energy is empirically predictive
of improvements in dialogue quality, measured by
both automated and human evaluation. Future work
may involve more experiments to test the utility of
LEATHER in other dialogue settings. Theoretically,
we hope to study sample-complexity in LEATHER,
which is a hallmark of common PAC theories.
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A Novel Adaptation Bound and Computation of Energy Statistic

In this section, we give our novel adaptation bound and details for the accompanying energy statistic.
There is some redundancy between this section and Section 4, but in general, this section is more detailed.
Recall, source error is denoted TDS and is observed on the environment Qθ(c) = S(θ, c). The target error
is denoted TDT and is observed on the environment Pθ(c) = T(θ, c). For the algorithm CL discussed in
the main text, the target is induced by the task-oriented learning phase and the source is induced by the
language learning phase.

A.1 The Problem with Traditional Bounds
Predictive Adaptation Theories An important quality of traditional domain adaptation bounds, pro-
posed for classification and regression problems, is that they offer a predictive theory. Namely, without
observing the target error TDT, we can infer this quantity from ∆ and the source error TDS. The utility
of this is two-fold: first, it allows us to design algorithms that prepare a learner for data-shift by controlling
∆; second, it allows a practitioner to select an appropriate model to deploy in the presence of data-shift by
comparing the different values of ∆ for each model. In general, these use-cases would not be possible
without ∆ because the target error TDT is not observable until it is too late. In contrast, the quantity ∆
should be observable. While this is not always true of ∆, authors typically reduce the main effect of ∆ to
one key statistic, which is observable. For example, Atwell et al. (2022) reduce ∆ to one key statistic
called the h-discrepancy by suggesting the other components making up ∆ are small. This is why we use
an “approximate” inequality in the main text, since other (small) terms may contribute to the bound.

Traditional Theories Are Not Predictive Traditional theories of adaptation are not predictive for
dialogue generation. Namely, computation of ∆ and its key components generally relies on computa-
tionally efficient access to the tests {h1 . . . hL} and requires sampling from the unknown distribution
U ∼ U. While we can always observe the outputs of {h1 . . . hL} with randomness U ∼ U through the
source error TDS(θ), it is not always the case that we have computational efficiently access to these
tests or the randomness. For example, as noted in Section 3.2.1, the group of tests {h1 . . . hL} along
with samples U from the unknown distribution U may represent complex real-world processes such as
human-evaluation. Even for simpler evaluation metrics based on text-classifiers (e.g., like {s1 . . . sL} in
Eq. (5)) algorithms for computing ∆ turn out to be non-trivial, and must be handled on a case-by-case
basis. Thus, in generation contexts, we typically have no way of computing ∆ algorithmically, and when
we do, it can be difficult to implement. If we require an easily implemented, predictive theory, then the
classical theory is ruled out. As a solution, we propose a novel adaptation bound.

A.2 A Novel Adaptation Bound
First, we define some terms.

The Energy Statistic and Computation
Definition A.1. For any independent random variables A and B, the discrete energy distance is defined:

ε01(A,B) = 2E[1{A ̸= B}]−E[1{A ̸= A′}]−E[1{B ̸= B′}] (15)

where A′ is an i.i.d copy of A, B′ is an i.i.d. copy of B, and 1{·} is the indicator function; i.e., it returns 1
for true arguments and 0 otherwise.

The discrete energy distance is a modification of the energy distance sometimes called the statistical
energy. It was first proposed by Szekely (1989) and was studied extensively by Székely and Rizzo (2013)
in the case where A and B are continuous variables admitting a probability density function. In general,
and especially in dialogue, this is not the case. Aptly, we suggest the above form of the energy distance,
which is widely applicable to any variables A and B for which equality is defined. While general, this
energy distance can be strict and insensitive, especially when A and B take on many possible values. To
remedy this, we propose the following addendum.

Definition A.2. Let D be any set. A coarsening function is a map c : D → D such that c(D) = {c(d) |
d ∈ D} is finite, and further, |c(D)| < |D|.
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Figure 3: Comparison of energy statistics and automated test functions as in Section 5. Here, we vary the parameter
k in the k-means clustering used to determine the coarsening function when computing energy. Trends reported in
the main text are robust to variation in k.

Since D is likely an immensely large set, this can make the signal 1{a ̸= b} for a, b ∈ D overwhelming
compared to the signal 1{a = b}, and therefore, weaken the sensitivity of the discrete energy distance,
overall. Coarsening functions allow us to alleviate this problem by effectively “shrinking” the set D to
a smaller set. To do this, the role of the coarsening function is to exploit additional context to arrive
at an appropriate clustering of the dialogues, which assigns conceptually “near” dialogues to the same
cluster. So, the choice of c(d) should be a “good” representation of d, in the sense that too much valuable
information is not lost. As a general shorthand, for a coarsening function c and variables A,B, we write

εc(A,B) = ε01(c(A), c(B)). (16)

Example One example of a coarsening function for dialogues is k-means clustering. In fact, this is
the coarsening function we use to compute energy in Section 5, selecting k = 100. Real-valued vector
representations of dialogues (e.g., from model latent space) can capture semantic information about the
dialogue (Bowman et al., 2015), so we use latent space representations (i.e., the output of the encoder)
to represent each dialogue and conduct a k-means clustering on these representations. For a dialogue
d the output c(d) is then defined by the cluster of d; i.e., we select an arbitrary dialogue to represent
the whole of each cluster and assign this dialogue as the output c(d). In practical implementations, it is
typically easier to just compute the energy distance on the cluster labels themselves; this statistic is always
equivalent to the energy on the coarsened dialogues, since the map between cluster representatives and
cluster labels is bijective. Later, within Lemma B.3, we prove this equivalence for any bijective map.

Of course, regardless of implementation, this clustering is dependent on the choice of k. Figure 3 shows
that the results in Section 5 are robust to different choices of k. In all cases, there is a linear relationship
between the energy and the change in the test divergence.

Adaptation Bound With these defined, we give the novel bound. Proof of a more general version of
this bound – applicable beyond dialogue contexts – is provided in Appendix B Thm. B.1. In particular,
the general version is “backwards compatible” in the sense that it also applies to traditional learning
theoretic settings like classification and regression. Arguably, in these settings, it also remains more
computationally efficient than existing theories. Notably, our proof requires some technical results on the
relationship between discrete energy and the characteristic functions of discrete probability distributions.
These may also be of independent interest, outside the scope of this paper.
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Theorem A.1. For any θ ∈ Rd, any coarsening function c : D → D, and all ℓ ∈ [L]

TDℓ
T(θ) ≤ γ + φ+TDℓ

S(θ) +

√
εc(D̃1, D̃2)× δ (17)

where D̃1 ∼ Pθ(C) = T(θ, C), D̃2 ∼ Qθ(C) = S(θ, C), (C,D) ∼ G, U ∼ U,9

γ = E[|hℓ(c(D̃1), U)− hℓ(D̃1, U)|] +E[|hℓ(c(D̃2), U)− hℓ(D̃2, U)|]

g ∈ argmin
f∈[0,1]D×U

∑
i
E[|f(c(D̃i), U)− hℓ(D,U)|] where [0, 1]X×U = {f | f : X × U → [0, 1]}.

φ = E[|g(c(D̃1), U)− hℓ(D,U)|] +E[|g(c(D̃2), U)− hℓ(D,U)|]

δ = E
[∑

x∈c(D)
|g(x, U)− hℓ(x, U)|

]
.

(18)

Unobserved Terms in Dialogue As noted, an important benefit of our theory is that we need not assume
computationally efficient access to the test functions {h1 . . . hL} or samples U ∼ U. Yet, the reader likely
notices a number of terms in Eq. (17) dependent on both of these. Similar to the traditional case, we argue
that our theory is still predictive because it is typically appropriate to assume these unobserved terms are
small, or otherwise irrelevant. We address each of them in the following:
1. The term γ captures average change in test output as a function of the coarsening function c. Whenever

c(D̃i) is a good representative of D̃i (i.e., it maintains information to which hℓ is sensitive) γ should
be small. Since we choose the coarsening function, the former premise is not a strong requirement. In
practice, if choice of c is unclear, we recommend studying many choices as in Figure 3.

2. The next term φ is the smallest sum of expected differences that any function of the coarsened dialogues
c(D̃i) and the arbitrary randomness U can achieve in mimicking the true test scores hℓ(D,U). In
general, the set of all functions from D×U to [0, 1] should be very expressive; e.g., it contains hℓ itself
and any other function which might mimic hℓ(D,U) better when applied to c(D̃i) and U . So, it is not
unreasonable to expect some good minimizer to exist, and therefore, φ to be small. Using this logic,
one additional constraint is that c(D̃i) has appropriate variance. For instance, if c(D̃i) is constant and
D is not, φ can easily be large. Instead, when c(D̃i) does have variance, the expressiveness of the
function class [0, 1]D×U can be well exploited. For reasonable dialogue learners and a well-chosen c,
the variance of c(D̃i) is a non-issue.

3. The last term δ may actually be large, but we argue this is also a non-issue for interpretation purposes.
In general, because δ is an unnormalized sum, its magnitude grows with the size of c(D), even if the
individual summands may be small. Fortunately, since δ is multiplied by the energy distance, this
issue is mitigated when the statistical energy is small enough. Ultimately, the energy is paramount in
controlling the impact of this term on the bound’s overall magnitude.

A Predictive Theory Granted the background above, our discussion reduces the predictive aspect of the
bound to a single key quantity: the discrete energy distance εc(D̃1, D̃2). In particular, besides the test
divergence TDS (known prior to the environmental change), all other terms can be assumed reasonably
small, or otherwise controlled by the statistical energy through multiplication. Therefore, if the statistical
energy between environments is small, it can be reasonable to assume the dialogue quality has been
maintained or improved. Otherwise, it is possible the quality of the generated dialogue has substantially
degraded. In this way, the statistical energy is an easily observable quantity that assists us in determining
if the source error TDS known before the environmental change is a good representative of the unknown
target error TDT, which is observed after the environmental change.

Use Cases In general, controlling the statistical energy between dialogues ensures we preserve dialogue
quality when the evaluation metrics we care about are not available. As demonstrated in the main text, this
makes it useful in algorithm design; i.e., to inform decisions in model training. Energy can also be useful
for model selection. Namely, the generation model whose dialogues have the smallest energy compared to
goal dialogue should produce the highest quality dialogue. To see this, simply set D̃2 = D in the bound.
Similar logical reduction shows the energy is the dominating term in this case as well.

9For simplicity, let D̃1, D̃2, U be pairwise-independent. When independence does not hold, similar results can be derived
under assumption of context-conditional independence.
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B Proofs

In this section we prove the claimed theoretical results. So that the results may be more broadly applicable,
we prove them in a more general context and then specify to the context of dialogue generation (in the
main text and Appendix A).

B.1 An Adaptation Bound Based on a Discrete Energy Statistic
In this section, we propose an adaptation bound based on the energy statistic. As we are aware, ours are the
first theoretical results relating the statistical energy between distributions to the change in function outputs
across said distributions. Given the use of the discrete energy distance (Def. A.1) and the accompanying
coarsening function (Def. A.2), we appropriately choose to prove our theoretical results for discrete
random variables (i.e., those which take on only a countable number of values and exhibit a probability
mass function). The effect of this choice is that we also contribute a number of new theoretical results
relating the probability mass function of a real-valued, discrete random variable to its characteristic
function (i.e., in similar style to the Parseval-Plancherel Theorem). Furthermore, we expand on the
relationship between the statistical energy of distributions and their characteristic functions. While this has
been well studied in the continuous setting (Székely and Rizzo, 2013) where the distributions of random
variables admit probability densities (i.e., absolutely continuous with respect to the Lesbesgue measure),
it has not been studied in the case of discrete random variables. We start our results using only real-valued
discrete variables, but prove our main results for all discrete random variables using Lemma B.3

B.1.1 Setup
Suppose A and B are discrete random variables taking on values in Rd for some d. Respectively, the
distribution of A is α and the distribution of B is β. The space Ω ⊂ Rd is the countable subset of Rd for
which α or β assigns non-zero probability; i.e., Ω = supp(α) ∪ supp(β). Then, the expectation of any
function f : Rd → R of A is defined:

E[f(A)] =

∫
Rd

fdα =
∑
a∈Ω

f(a)pα(a) (19)

where pα is the probability mass function for A (i.e., α). Expectations of functions of B are similarly
defined.

The characteristic function of A is defined as the complex-conjugate of the Fourier-Stieltjes transform
of the probability mass function pα. More explicitly, it is the function p̂α : Rd → R defined

p̂α(τ) = E[exp{iτTA}] =
∑
a∈Ω

pα(a)exp{iτTa} (20)

where i is the imaginary unit (i.e., i2 = −1) and τTa is the (inner) product between column vectors τ and
a. Note, the characteristic function always exists and is finite for each τ .

B.1.2 Parseval-Plancherel Theorem (Reprise)
One notable use for the characteristic function is the following inversion formula. In the discrete context
we consider, Cuppens (1975) proves the following

pα(a) = lim
τ1→∞

lim
τ2→∞

. . . lim
τd→∞

(
d∏

i=1

1/(2τi)

)∫
B(τ)

p̂α(t)exp{−itTa}λ(dt) (21)

where τ = (τ1, τ2, . . . , τd)
T, B(τ) = {x ∈ Rd | −τi ≤ xi ≤ τi}, and λ is the Lebesgue measure.

This inversion formula highlights the connection between the characteristic function and the general
Fourier transform as alluded to just before Eq. (20), since Fourier transforms are well known for their
own inversion formulas. Another commonly used result in Fourier Analysis (related to inversion) is the
Parseval-Plancherel Theorem. We prove a variation on this result below. As we are aware, it is the first
which uses the transform given in Eq. (20) (i.e., specific to discrete, real-valued random variables).
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Lemma B.1. For any discrete random variables A and B as described, taking values in Rd,

∑
x∈Ω

|pα(x)− pβ(x)|2 = lim
τ1→∞

lim
τ2→∞

. . . lim
τd→∞

(
d∏

i=1

1/(2τi)

)∫
B(τ)

|p̂α(t)− p̂β(t)|2λ(dt). (22)

Proof. For any function f : Rd → R+ such that
∑

x∈Ω f(x) < ∞ for all t ∈ Rd, we prove the following
more general result

∑
x∈Ω

f2(x) = lim
τ1→∞

lim
τ2→∞

. . . lim
τd→∞

(
d∏

i=1

1/(2τi)

)∫
B(τ)

f̂(x)f̂∗(x)λ(dt) (23)

where as before a “hat” denotes the Fourier-Stieltjes transform given in Eq. (20) and the new notation
f̂∗ denotes the complex-conjugate of f̂ . Observe, this proves the desired results because setting f(x) =
pα(x)− qα(x) we have

f2(x) = (pα(x)− qα(x))
2 = |pα(x)− qα(x)|2 (24)

and

f̂(x)f̂∗(x) = ̂(pα(x)− pα(x)) ̂(pα(x)− pα(x))
∗

= (p̂α(x)− p̂α(x))(p̂α(x)− p̂α(x))
∗ = |p̂α(x)− p̂α(x)|2.

(25)

Proceeding with the proof of Eq. (23) we have

lim
τ1→∞

lim
τ2→∞

. . . lim
τd→∞

(
d∏

i=1

1/(2τi)

)∫
B(τ)

f̂(x)f̂∗(x)λ(dt)

= lim
τi→∞

(
d∏

i=1

1/(2τi)

)∫
B(τ)

(∑
x∈Ω

f(x)exp{itTx}

)(∑
x∈Ω

f(x)exp{−itTx}

)
λ(dt)

= lim
τi→∞

(∏
i

1/(2τi)

)∫
B(τ)

∑
x∈Ω

∑
x′∈Ω

f(x)f(x′)exp{i(tTx− tTx′)}λ(dt) (Fubini-Tonelli)

= lim
τi→∞

(
d∏

i=1

1/(2τi)

) ∑
x∈Ω

∑
x′∈Ω

f(x)f(x′)

∫
B(τ)

exp{i(tTx− tTx′)}λ(dt) (Fubini-Tonelli)

= lim
τi→∞

∑
x∈Ω

∑
x′∈Ω

f(x)f(x′)

(
d∏

i=1

1/(2τi)

)[ ∫
B(τ)

exp{i(tTx− tTx′)}λ(dt)

]

= lim
τi→∞

∑
x∈Ω

∑
x′∈Ω

f(x)f(x′)

(
d∏

i=1

[
1/(2τi)

∫ τi

−τi

exp{i(ti(xi − x′i)}dti

])
(Fubini-Tonelli)

= lim
τi→∞

∑
x∈Ω

∑
x′∈Ω

f(x)f(x′)

(
d∏

i=1

χ(xi, x
′
i, τi)

)
where χ =

{
sin τi(xi−x′

i)
τi(xi−x′

i)
if xi ̸= x′i,

1 else

=
∑
x∈Ω

∑
x′∈Ω

f(x)f(x′)

(
lim

τi→∞

d∏
i=1

χ(xi, x
′
i, τi)

)
(DCT)

=
∑
x∈Ω

∑
x′∈Ω

f(x)f(x′)1[x = x′] where 1[arg] =

{
1 if arg holds,
0 else

=
∑
x∈Ω

f2(x).

(26)
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In details: the first equality follows by definition; the second and third by Fubini-Tonelli Theorem;10 the
fourth by simple rules of arithmetic; the fifth again by Fubini-Tonelli Theorem to decompose the volume
calculation into a product; the sixth by evaluating the integral; seventh by the dominated convergence
theorem;11 the eighth by evaluating the limit; and the last by simple arithmetic.

B.1.3 The Energy of Discrete Distributions as Described by their Characteristic Functions

Lemma B.2. For any independent, discrete random variables A and B as described, taking values in Rd,

ε01(A,B) = lim
τ1→∞

lim
τ2→∞

. . . lim
τd→∞

(
d∏

i=1

1/(2τi)

)∫
B(τ)

|p̂α(t)− p̂β(t)|2λ(dt). (27)

Proof. According to Székely and Rizzo (2013), for independent A and B, we have

|p̂α(t)− p̂β(t)|2 = E[cos{tT(A−A′)}+ cos{tT(B −B′)} − cos{tT(A−B)}]
= E{2[1− cos{tT(A−B)}]− [1− cos{tT(A−A′)}]− [1− cos{tT(B −B′)}]}

(28)

where A′ and B′ are i.i.d. copies of A and B, respectively. With the equivalence above, by Fubini’s
Theorem, we may interchange the expectation and integral in Eq. (27). We may also change the order of
integration to arrive at

lim
τ1→∞

lim
τ2→∞

. . . lim
τd→∞

(
d∏

i=1

1/(2τi)

)∫
B(τ)

|p̂α(t)− p̂β(t)|2λ(dt)

= lim
τi→∞

E

[(
d∏

i=1

1

(2τi)

)∫ τ1

−τ1

. . .

∫ τd

−τd

{
2
(
1− cos

d∑
i=1

τi(Ai −Bi)
)

−
(
1− cos

d∑
i=1

τi(Ai −A′
i)
)
−
(
1− cos

d∑
i=1

τi(Bi −B′
i)
)}

dτd . . . dτ1

]
.

(29)

To evaluate the integral we first observe, for any x ∈ Rd,

∫ τd

−τd

1− cos
d∑

i=1

τixidτd = 2τd −
sin
(
τdxd +

∑d−1
i=1 τixi

)
− sin

(
− τdxd +

∑d−1
i=1 τixi

)
xd

= 2τd −
2 cos

(∑d−1
i=1 τixi

)
sin(τdxd)

xd
.

(30)

Notice, the above equation implies an iterative pattern which can be used to solve the multiple integral.

10The primary assumption of Fubini-Tonelli Theorem requires the absolute value of the integrand have finite double or iterated
integral/sum. In the first case, with the iterated sum, it is clear for each fixed t since

∑
x f(x) is bounded and so is exp{−iz}

for all z. In the second and third cases, we simply cite the boundedness of B(τ) for each fixed τ .
11The primary assumption of the DCT is that the sequence of functions being integrated (or summed in our case) is dominated

by some function g with finite integral (i.e., in the sense that the absolute value of every function in the sequence is less than or
equal to g on all inputs). Again, this is easy to see using properties assumed on f and the fact that |χ| ≤ 1 for all inputs.
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Keeping in mind which terms are constants with respect to the differential, we have

∫ τ1

−τ1

. . .

∫ τd−1

−τd−1

(∫ τd

−τd

1− cos
d∑

i=1

τixidτd

)
dτd−1 . . . dτ1

=

∫ τ1

−τ1

. . .

∫ τd−2

−τd−2

(∫ τd−1

−τd−1

2τd −
2 cos

(∑d−1
i=1 τixi

)
sin(τdxd)

xd
dτd−1

)
dτd−2 . . . dτ1

=

∫ τ1

−τ1

. . .

∫ τd−2

−τd−2

(
(2τd)(2τd−1)−

4 cos
(∑d−2

i=1 τixi

)
sin(τdxd) sin(τd−1xd−1)

xdxd−1

)
dτd−2 . . . dτ1

= . . .

=

∫ τ1

−τ1

. . .

∫ τd−j

−τd−j

(
j∏

i=1

(2τd−i+1)−
cos
(∑d−j

i=1 τixi

)∏j
i=1 2 sin(τd−i+1xd−i+1)∏j

i=1 xd−i+1

)
dτd−j . . . dτ1

. . .

=

d∏
i=1

(2τd−i+1)−
∏d

i=1 2 sin(τd−i+1xd−i+1)∏d
i=1 xd−i+1

=
d∏

i=1

(2τi)−
∏d

i=1 2 sin(τixi)∏d
i=1 xi

.

(31)

Now, returning to the RHS of Eq. (29), linearity of the integral implies(
d∏

i=1

1

(2τi)

)∫ τ1

−τ1

. . .

∫ τd

−τd

{
2
(
1− cos

d∑
i=1

τi(Ai −Bi)
)

−
(
1− cos

d∑
i=1

τi(Ai −A′
i)
)
−
(
1− cos

d∑
i=1

τi(Bi −B′
i)
)}

dτd . . . dτ1

=

(
d∏

i=1

1

(2τi)

)∫ τ1

−τ1

. . .

∫ τd

−τd

{
2
(
1− cos

d∑
i=1

τi(Ai −Bi)
)
}dτd . . . dτ1

−

(
d∏

i=1

1

(2τi)

)∫ τ1

−τ1

. . .

∫ τd

−τd

{(
1− cos

d∑
i=1

τi(Ai −A′
i)
)
}dτd . . . dτ1

−

(
d∏

i=1

1

(2τi)

)∫ τ1

−τ1

. . .

∫ τd

−τd

{(
1− cos

d∑
i=1

τi(Bi −B′
i)
)}

dτd . . . dτ1.

(32)

Thus, we can apply the solution in Eq. (31) to solve the integral in Eq. (29). Taking xi = (Ai −Bi) in
Eq. (31), we consider the first integral of Eq. (32) above along with its multiplicative constant:(

d∏
i=1

1

(2τi)

)∫ τ1

−τ1

. . .

∫ τd

−τd

(1− cos

d∑
i=1

τi(Ai −Bi)
)

=

(
d∏

i=1

1

(2τi)

)(
d∏

i=1

(2τi)−

∏d
i=1 2 sin

{
τi(Ai −Bi)

}
∏d

i=1(Ai −Bi)

)

= 1−
d∏

i=1

sin
{
τi(Ai −Bi)

}
τi(Ai −Bi)

= 1−
d∏

i=1

χ(Ai, Bi, τi)

(33)
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where χ is defined in the proof of Eq. (23) (Lemma B.1). Taking xi = (Ai − A′
i) and xi = (Bi − B′

i)
and proceeding as above allows us to resolve the entire integral. In particular, we have

lim
τ1→∞

lim
τ2→∞

. . . lim
τd→∞

(
d∏

i=1

1/(2τi)

)∫
B(τ)

|p̂α(t)− p̂β(t)|2λ(dt)

= lim
τi

E

[
2
(
1−

d∏
i=1

χ(Ai, Bi, τi)
)
−
(
1−

d∏
i=1

χ(Ai, A
′
i, τi)

)
−
(
1−

d∏
i=1

χ(Bi, B
′
i, τi

)]

= E

[
lim
τi

{
2
(
1−

d∏
i=1

χ(Ai, Bi, τi)
)
−
(
1−

d∏
i=1

χ(Ai, A
′
i, τi)

)
−
(
1−

d∏
i=1

χ(Bi, B
′
i, τi

)}]
= E

[
2× 1[Ai ̸= Bi]− 1[Ai ̸= A′

i]− 1[Bi ̸= B′
i]
]
.

(34)

Here, the second equality follows from the dominated convergence theorem and 1[arg] is defined as in
proof of Eq. (23) (Lemma B.1).

B.1.4 Moving from Real-Valued Discrete Variables to Any Discrete Variables
Lemma B.3. Let Ã and B̃ be any independent, discrete random variables over a countable set Ω (i.e.,
not necessarily contained in Rd). Then,∑

x∈Ω
|p̃α(x)− p̃β(x)| = ε01(Ã, B̃). (35)

where p̃α and p̃β are the mass functions of Ã and B̃, respectively.

Proof. Let Π ⊂ Rd with |Π| = |Ω|. Note, Π exists because Ω is countable and Rd is not. Next, let
f : Ω → Π be any bijective map.

Then, supposing pα and pβ are the mass functions of f(Ã) and f(B̃) respectively, by definition of the
pushforward measure, for any y ∈ Π such that y = f(x) for x ∈ Ω

pα(y) = p̃α({a ∈ Ω | f(a) = y}) = p̃α(x). (36)

Notice, bijectivity of f ensures the last step, because each y ∈ Π has a unique inverse x ∈ Ω. From
bijectivity of f , we also have injectivity, which implies 1[a ̸= b] = 1[f(a) ̸= f(b)] for all a, b ∈ Ω. By
simple substitution, the previous two facts tells us

2
∑
a,b∈Ω

1[a ̸= b]p̃α(a)p̃β(b)−
∑

a,a′∈Ω
1[a ̸= a′]p̃α(a)p̃α(a

′)−
∑

b,b′∈Ω
1[b ̸= b′]p̃β(b)p̃β(b

′)

= 2
∑
a,b∈Ω

1[f(a) ̸= f(b)]pα(f(a))pβ(f(b))−
∑

a,a′∈Ω
1[f(a) ̸= f(a)′]pα(f(a))pα(f(a

′))

−
∑

b,b′∈Ω
1[f(b) ̸= f(b′)]pβ(f(b))pβ(f(b

′))

(37)

Since f is surjective too (i.e., along with injective), summation of any function g(f(a), f(b)) over a, b ∈ Ω
and summation of g(c, d) over c, d ∈ Π are equivalent.12 So, we can continue as follows:

2
∑
a,b∈Ω

1[f(a) ̸= f(b)]pα(f(a))pβ(f(b))−
∑

a,a′∈Ω
1[f(a) ̸= f(a)′]pα(f(a))pα(f(a

′))

−
∑

b,b′∈Ω
1[f(b) ̸= f(b′)]pβ(f(b))pβ(f(b

′))

= 2
∑
c,d∈Π

1[c ̸= d]pα(c)pβ(d)−
∑

c,c′∈Ω
1[c ̸= c′]pα(c)pα(c

′)−
∑

d,d′∈Ω
1[d ̸= d′]pβ(d)pβ(d

′)

(38)

12In particular, because f is surjective, we know all pairs (c, d) ∈ Π2 have some pair (a, b) ∈ Ω2 for which (f(a), f(b)) =
(c, d); i.e., we do not “miss” a term in this sum. Because f is injective, we know all pairs (c, d) ∈ Π2 have only one pair
(a, b) ∈ Ω2 for which (f(a), f(b)) = (c, d); i.e., we do not “repeat” a term in this sum.
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In other words, the previous two equations tell us ε01(Ã, B̃) = ε01(f(Ã), f(B̃)). Applying equivalence
of the mass functions, then Lemmas B.1 and B.2, then equivalence of the energies:∑

x∈Ω
|p̃α(x)− p̃β(x)| =

∑
y∈Π

|pα(y)− pβ(y)| = ε01(f(Ã), f(B̃)) = ε01(Ã, B̃). (39)

Note, this uses the fact that functions of independent random variables are also independent.

B.1.5 The Main Bound

Theorem B.1. Let A and B be any independent random variables over any space X and let S, S′ be
random variables over [0, 1]. Let U be a random variable, independent from A and B, over any set U .
Suppose c : X → Ω is a coarsening function (so, Ω ⊂ X ) and let f ∈ [0, 1]X×U . Then,

E[|S − f(A,U)|] ≤ γ + φ+E[|S′ − f(B,U)|] +
√

εc(A,B)× δ (40)

where

γ = E[|f(c(B), U)− f(B)|] +E[|f(c(A), U)− f(A)|],
g ∈ argmin

h∈[0,1]X×U
E[|S − h(c(A), U)|] +E[|h(c(B), U)− S′|],

φ = E[|S − g(c(A), U)|] +E[|g(c(B), U)− S′|],

δ =
∑
x∈Ω

|g(x)− f(x)|2

(41)

Proof. For any g ∈ [0, 1]X×U , by way of the triangle inequality and monotonicity of the expectation,

E[|S − f(A,U)|] = E[|S − f(A,U)|] +E[|S′ − f(B,U)|]−E[|S′ − f(B,U)|]
= E[|S − g(c(A), U) + g(c(A), U)− f(A,U)|] +E[|S′ − f(B,U)|]−E[|S′ − f(B,U)|]
≤ E[|S − g(c(A), U)|] +E[|g(c(A), U)− f(A,U)|] +E[|S′ − f(B,U)|]

−E[|S′ − f(B,U)|]
≤ E[|S − g(c(A), U)|] +E[|g(c(A), U)− f(A,U)|] +E[|S′ − f(B,U)|]

−E[|g(c(B), U)− f(B,U)|] +E[|g(c(B), U)− S′|]
≤ E[|S − g(c(A), U)|] +E[|g(c(A), U)− f(c(A), U)|] +E[|f(c(A), U)− f(A,U)|]

+E[|S′ − f(B,U)|]−E[|g(c(B), U)− f(B,U)|] +E[|g(c(B), U)− S′|]
≤ E[|S − g(c(A), U)|] +E[|g(c(A), U)− f(c(A), U)|] +E[|f(c(A), U)− f(A,U)|]

+E[|S′ − f(B,U)|]−E[|g(c(B,U)− f(c(B), U)|]
+E[|f(c(B), U)− f(B,U)|] +E[|g(c(B), U)− S′|].

(42)

Set B̃ = c(B), Ã = c(A) and set

γ = E[|f(B̃, U)− f(B,U)|] +E[|f(Ã, U)− f(A,U)|],
g ∈ argmin

h∈[0,1]X×U
E[|S − h(Ã, U)|] +E[|h(B̃, U)− S′|],

φ = E[|S − g(Ã, U)|] +E[|g(B̃, U)− S′|].

(43)

Then, Eq. (42) implies

E[|S−f(A,U)|] ≤ γ+φ+E[|S′−f(B,U)|]+E[|g(Ã, U)−f(Ã, U)|]−E[|g(B̃, U)−f(B̃, U)|]. (44)
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Now, suppose p̃α and p̃β are probability mass functions for Ã and B̃, respectively. Then, using basic
properties of the expectation along with other noted facts,

E[|g(Ã, U)− f(Ã, U)|]−E[|g(B̃, U)− f(B̃, U)|]

= E
[∑
a∈Ω

|g(a, U)− f(a, U)|p̃α(a)−
∑
b∈Ω

|g(b, U)− f(b, U)|p̃β(b)
]

(Fubini)

= E
[∑
x∈Ω

|g(x, U)− f(x, U)|(p̃α(x)− p̃β(x))
]
≤ E

[∑
x∈Ω

|g(x, U)− f(x, U)||p̃α(x)− p̃β(x)|
]

≤ E

[(∑
x∈Ω

|g(x, U)− f(x, U)|2
)1/2(∑

x∈Ω
|p̃α(x)− p̃β(x)|2

)1/2 ]
(Cauchy-Schwarz)

≤
√

ε01(Ã, B̃)×E

[(∑
x∈Ω

|g(x, U)− f(x, U)|2
)1/2 ]

(Lemma B.3)

(45)

In the last step, we may apply Lemma B.3 because Ã and B̃ are still independent (i.e., they are functions
of independent random variables) and are now discrete too. Defining δ appropriately yields the result.

B.1.6 Proof of Thm. A.1 and Other Applications of Thm. B.1
Thm. A.1 Thm. A.1 is simply a specification of Thm. B.1 above. In fact, it is better stated as a corollary
of Thm. B.1. We set X = D, leave U and its variable U unchanged, and set S = S′ = hℓ(D,U). Then,
A = D̃1 and B = D̃2. Taking f = hℓ yields the result.

Classification and Regression In adaptation for classification and regression, we consider a source
distribution S governing random variables (XS , YS) and a target distribution T governing random variables
(XT , YT ). In general, the goal is to predict Y□ from X□. We can set S = YT and S′ = YS . We may
also set A = XT and B = XS . Then, we learn f from a pre-specified hypothesis class H ⊆ [0, 1]X×U .
Typically, U is ignored in these settings, but it seems possible to employ this term to model stochastic
(Gibbs) predictors; i.e., in PAC-Bayesian Frameworks (Germain et al., 2020; Sicilia et al., 2022a). Notice,
for regression, our framework only considers a normalized response variable and the mean absolute error.

B.1.7 Sample Complexity
As alluded in Section 6, a key shortcoming of our framework compared to existing frameworks is the
absence of any terms measuring sample-complexity. That is, we do not explicitly quantify the difference
between our empirical observation of the energy and the true energy (i.e., the population version of the
statistic) using the number of samples in our observation. This is a big part of computational learning
theory, as the act of choosing a function f using data – or, in dialogue contexts, choosing the parameter
θ using data – can have significant impact on the difference between our observations of a statistical
processes and reality. In fact, this impact is the basis of overfitting and, besides computational efficiency,
is the main pillar of study in traditional PAC learning13 (Valiant, 1984; Shalev-Shwartz and Ben-David,
2014). In more recent studies of domain adaptation, like our work, the population-only bound can be
just as important for purpose of understanding and interpretation. Furthermore, if we only care about the
empirical samples in-hand, these population-only bounds are directly applicable,14 which partly explains
the empirical effectiveness of our theory in Section 5. Nonetheless, the role of sample-complexity can
be very informative and useful in practice (Pérez-Ortiz et al., 2021) and would be important for model-
selection applications as described at the end of Appendix A. We leave investigation of sample-complexity
as future work. As we are aware, there is currently no appropriate description of sample-complexity for
dialogue generation contexts.

13Probably Approximately Correct learning
14The empirical sample becomes the whole population about which we are concerned.
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C Statistics on Dataset

unique images unique objects words (+1 occurrences) words (+3 occurrences) questions
67K 134K 19K 6.6K 277K

Table 2: Statistics on GuessWhat?!. For more information (e.g., train/test splits) see original proposal (De Vries et al., 2017).

Figure 4: Visualization of object counts and dialogue length in GuessWhat?! dataset.
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