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Abstract

In recent years, many studies using deep learn-
ing have been conducted to elucidate the mech-
anism of information representation in the brain
under stimuli evoked by various modalities. On
the other hand, it has not yet been clarified how
we humans link information of different modal-
ities in the brain. In this study, to elucidate
the relationship between visual and language
information in the brain, we constructed en-
coding models that predict brain activity based
on features extracted from the hidden layers
of VGG16 for visual information and BERT
for language information. We investigated the
hierarchical characteristics of cortical localiza-
tion and representational content of visual and
semantic information in the cortex based on the
brain activity predicted by the encoding model.
The results showed that the cortical localiza-

tion modeled by VGG16 is getting close to that
of BERT as VGG16 moves to higher layers,
while the representational contents differ sig-
nificantly between the two modalities.

1 Introduction

In recent years, many studies have been conducted
to elucidate the information representation mecha-
nisms of the human brain using deep learning. Stud-
ies using convolutional neural networks (CNNs)
have confirmed the hierarchical processing of vi-
sual information in the brain (Yamins et al., 2014;
Eickenberg et al., 2017). In addition, studies using
deep learning models that deal with language have
confirmed that it is possible to model the represen-
tation of semantic information in the brain (Nishida
et al., 2021). However, most studies are conducted
separately, and the similarities and differences in
the brain information representation of both modal-
ities have not been sufficiently discussed.

With this background, the objective of this study
is to investigate on how the information localization
and representation of both modalities are related
to each other in the brain – we particularly aim to

investigate the hierarchical characteristics of the
cortical localization and representation contents of
visual and language information in the cerebral
cortex by using representational similarity analysis
(RSA) (Kriegeskorte et al., 2008).

2 Related research

In pioneering work in modeling brain represen-
tations using deep learning, Yamins et al. (2014)
showed that there is homology between hierarchi-
cal information representations in the human cor-
tex under visual stimuli and those in CNNs, and
Güçlü and van Gerven (2015) showed that com-
plexity gradually increases with higher layers in
hierarchical processing. In a study using functional
magnetic resonance imaging (fMRI) and magne-
toencephalography, Cichy et al. (2016) used deep
learning model to show that spatio-temporal dy-
namics in the human brain cortex during visual
object recognition is a hierarchical response. Eick-
enberg et al. (2017) have revealed the functional
organization of the visual cortex of the human brain
by analyzing brain activity with the aid of a deep
learning model. Nonaka et al. (2021) introduced
the brain hierarchy score, which indicates the de-
gree of hierarchical response based on encoding
and decoding to brain activity, and discussed what
kind of deep learning models accurately represent
the structure of the visual cortex of the human brain,
showing that deep learning models with high ac-
curacy in image identification do not necessarily
represent the behavior of the visual cortex of the
human brain.

On the other hand, in a study that models brain
representations from semantic features of language,
Huth et al. (2012) used fMRI to observe brain activ-
ity of subjects watching a two-hour natural video
and labeled them using 1705 WordNet (Fellbaum,
1998)-based categories for objects and actions in
the video, showing that these categories are not rep-
resented in specific brain regions but as locations
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in a continuous semantic space. Huth et al. (2016)
constructed semantic maps in brain regions from
brain activity induced by natural speech stimuli,
and found that in most regions of the semantic sys-
tem, there are specific semantic regions and groups
of related concepts. Nishida et al. (2021) clari-
fied that quantitative modeling of meaning using
word2vec (Mikolov et al., 2013) and other meth-
ods is an effective means of estimating language
activity in the brain through comparison with se-
mantic structures evaluated from human behavior.
Jain and Huth (2018) introduced LSTM (Hochre-
iter and Schmidhuber, 1997) to extract vectors for
each word, used them in their encoding model, and
achieved more accurate estimation than conven-
tional models. In recent years, the construction of
computational models that explain language pro-
cessing properties in the brain using distributed se-
mantic representations has played an important role.
In this context, Sun et al. (2021) scrutinized the still
unexplored relationship between the brain represen-
tation of sentences and distributed representations,
and whether the linguistic features captured by dis-
tributed representations can better explain the cor-
relation between brain activities in which sentences
are given as linguistic stimuli, and showed the char-
acteristics of distributed representations and their
effectiveness.

Most of the above studies have explored the prop-
erties of visual and semantic brain processing sepa-
rately. Therefore, the hierarchical processing from
visual to semantic information in the brain is not
well understood. In this study, we construct and
compare encoding models based on these two dif-
ferent modalities, and investigate the characteristics
of information localization and information repre-
sentation content in the hierarchical processing of
visual and semantic information.

3 Brain information analysis with RSA

3.1 Overview

Figure 1 illustrates an overview of our study.
Firstly, we use fMRI to collect brain activity data
while subjects are watching movies with either fix-
ation or free viewing. We then extracted image
features from the images cropped from the movies
given to the subjects as stimuli using VGG16 (Si-
monyan and Zisserman, 2014) and linguistic fea-
tures from the annotations assigned to the images
using BERT (Devlin et al., 2019).

To predict the brain activity from the features

extracted by those deep learning models, we con-
struct encoding models using Ridge linear regres-
sion. Then, to investigate the hierarchical character-
istics of cortical localization and representational
contents of visual and linguistic information on the
cerebral cortex, we apply RSA to analyzing the
brain states predicted by the encoding models.

3.2 Encoding model

In this study, we employ the method by Naselaris
et al. (2011) for the construction of encoding mod-
els. When constructing the encoding model, the
target feature space and brain activity patterns are
linearly regressed, and weights are learned so that
the measured brain activity patterns and predicted
brain activity patterns are close. The constructed
encoding model is then applied to the evaluation
data, and the prediction accuracy is evaluated. In
general, Ridge liner regression is used as the re-
gression method, and by observing the regression
coefficients, it is possible to observe the behavior
with respect to voxels.

3.3 Representational Similarity Analysis

RSA is a framework for characterizing representa-
tions of various modalities by representational dis-
similarity matrices (RDMs) and comparing RDMs.
An RDM is a matrix that allows us to retrieve the
representational distance (or dissimilarity) of each
modality. The dissimilarity in our study is calcu-
lated by correlation distance (1 - Pearson’s cor-
relation coefficient). Creating RDMs makes us
possible to measure things that cannot be directly
measured for similarity. In addition, RSA has the
property that it does not require the definition of
mappings, which is necessary when directly com-
paring activity patterns.

4 Experiments

We have conducted the following three experiments
to investigate whether or not:(i) predictable brain
regions are similar to both vision and language
stimuli; (ii) cortical localization patterns are sim-
ilar; (iii) representational content is similar. The
numbers on the right side of Figure 1 correspond
to the numbers of the experiments.

4.1 Experimental settings

fMRI data Brain activity data were obtained by
fMRI at the Center for Information and Neural
Networks, National Institute of Information and
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Figure 1: An overview of the experiments

Communications Technology (NICT). The brain
activity data were collected by fMRI which is a
3T MRI (Siemens MAGNETOM Prisma), and the
imaging parameters are TR 1 second and voxel
size 2× 2× 2mm. T1 structural images were also
taken separately from the fMRI images, and were
registered with the fMRI images using FreeSurfer
(Dale et al., 1999). Only the voxels of the cere-
bral cortex extracted by this method were used in
the analysis. Seven subjects (three males and four
females, mean age 24.1 years) participated in the
fMRI experiment. The experimental protocol was
approved in advance by the Ethics Review Com-
mittee and Safety Review Committee of NICT, and
written consent was obtained from all subjects be-
fore the experiment. Each subject watched a 2 hour
40 minutes compiled movie with sound in the fix-
ation condition (gazing at a fixed point of view in
the center of the screen) and the free viewing con-
dition (moving the gaze freely). Of the 2 hours
and 40 minutes of data obtained in each condition,
2 hours were used as training data for the model.
The remaining 40 minutes of data consisted of four
repetitions, which were averaged to 10 minutes and
used as the evaluation data for the model.

Annotation data To extract linguistic features
from the movies, we obtained written scene de-
scriptions from five to six annotators for each one-
second video scene. The annotators were native
speakers of Japanese and did not participate in the
fMRI experiment.

Encoding models for the experiments The
same method was used to create encoding mod-
els based on image features and language features.
A total of 40 encoding models were constructed us-
ing the features extracted from each of the VGG16
(using 8 layers) and BERT (12 layers in total) under
fixation and free viewing conditions. A model that
predicts the time series of brain activity using the

time series of features as explanatory variables was
trained by Ridge regression. In order to take into
account the hemodynamic delay in the responses,
we regressed the fMRI-observed brain activity data
with the 3, 4, 5, and 6 seconds precedence fea-
tures. In addition, 10-split cross-validation was
conducted by shuffling the training data with 50
chunks, and the regularization term with the best
average correlation coefficient was adopted. Using
the learned encoding models, we evaluated the pre-
diction accuracy of each voxel by obtaining Pear-
son’s correlation coefficient between the predicted
and measured fMRI signals to the same stimuli.
In doing so, we rejected voxels with significant
p-values (p < 0.05) corrected for false discovery
rate.

4.2 Experimental results
In the following, we indicate total number of layers
as n_layers, total number of voxels as n_voxels.
We employ the rejected voxels with significant p-
value in at least one of the 40 encoding models as
the data used in all the following experiments.

(i) Predictable regions This analysis was per-
formed to determine the similarity of brain regions
that can be predicted by a total of 40 encoding
models using features extracted from all targeted
hidden layers of VGG16 and BERT as input. Pre-
diction accuracies of all encoding models were
used to create an RDM (n_layers × n_layers)
for each subject and averaged over all subjects.
The upper figure of Figure 2 shows the RDM of
(n_layers×n_layers) and the lower figure shows
it compressed into (n_layers × 3) using multi-
dimensional scaling (MDS) and plotted on a 3-
dimensional space. The closer the models are dis-
played to each other, the more similar brain re-
gions they can predict. Both VGG16 and BERT
are color-coded in the fixation and free viewing
conditions, and visualized in a total of four col-
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ors according to the deep learning models and its
conditions. The lighter colors indicate the lower
layers and the darker colors the higher layers, and
the numbers next to the dots indicate the number
of the layer. From this result, it can be seen that
brain regions where models are predictable become
similar to that of BERT as the hierarchy of VGG16
increases from lower to higher layers.

Figure 2: Similarity of predictable brain regions by the
models

(ii) Cortical localization patterns We per-
formed this analysis to see the similarity of cortical
localization patterns for the VGG16 high layers
and BERT. The brain activity predicted by each
encoding model (time × n_voxels) was used to
create an RDM (n_voxels × n_voxels) of each
layer for each subject. Figure 3 shows the visu-
alization results of the predicted brain activity of
one subject from the 8th layer, the highest layer
among the targeted layers in VGG16 and the 12th
layer of BERT under free viewing conditions. The
RDM is reduced in dimensionality by uniform man-
ifold approximation and projection (UMAP), and
the colors are plotted on a flat map of the cortex

created by means of Pycortex1, with the colors of
near objects being close to each other and distant
objects being far apart. The results show that the
pattern of similarity of the contents of voxel-wise
information representation in the cortex is similar
between the higher layer of VGG16 and that of
BERT.

Layer 8 of VGG16 under free viewing

Layer 12 of BERT under free viewing

Figure 3: Similarity of cortical localization patterns

From (i) and (ii), we find that cortical localiza-
tion becomes more similar to BERT as one moves
from the lower to higher layers of VGG16. We now
perform the experiment (iii) to see if the representa-
tional content also approaches BERT as one moves
from the lower to higher levels of VGG16.

(iii) Representational content We performed
this analysis to determine the similarity of repre-
sentational content for 40 encoding models. Using
the predictions of brain activity, we created RDMs
of (time× time) for each encoding model. All of
these RDMs were then used to create an RDM of
(n_layers× n_layers) for each subject and aver-
aged over all of them. Figure 4 shows the RDM
among layers of VGG16 and BERT in terms of
representational contents and the result of dimen-
sionality reduction of the RDM with MDS and
visualization on a 3-dimensional space. Figure col-
oring is the same as (i) of 4.2. From this result,
it can be seen that there is a significant difference
in the representation content between VGG16 and

1https://github.com/gallantlab/pycortex
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BERT regardless of the fixation or free viewing
conditions.

Figure 4: Similarity analysis of representation content

5 Discussion

In the experimental result of (i), we investigated the
predictable regions of both models using RSA and
found that the cortical localization becomes similar
to that of BERT as VGG16 moves from lower to
higher layers. In addition, from the result of the
experiment (ii), it is observed that the pattern of
similarity of information representation content is
similar between the higher layer of VGG16 and
that of BERT. We therefore estimated that the rep-
resentational content in the two models is similar.
However, from the result of experiment (iii), it
was found that there is a significant difference in
the representational content that can be modeled
by VGG16 and BERT. In other words, our results
suggest that VGG16 and BERT represent different
brain information even in the same higher sensory
cortex.

6 Conclusions

In this study, we have investigated the the hierar-
chical characteristics of cortical localization and
representational content of visual and linguistic in-
formation on the cerebral cortex by means of RSA
using prediction accuracy and contents. As a re-
sult, in the analysis of cortical localization using
prediction accuracy, we found that VGG16, i.e.,
CNNs dealing with image features, was able to
model the hierarchy in the cortical localization in
the brain, and as it moved from lower to higher
layers, it was able to predict brain regions closer to
those predicted by BERT, i.e., DNNs dealing with
linguistic features. Furthermore, in the analysis of
information representation content with predicted
brain activity, it was found that the higher layers
of VGG16 can model complex cortical localization
patterns in the cortex as well as BERT. However,
we found a large gap between VGG16 and BERT in
the comparison of the representational contents be-
tween the layers. These results suggest that visual
information is represented in the same brain re-
gions as linguistic information as it becomes more
complex (e.g., category selection regions in the
temporal cortex), but even within the same brain
regions, there are significant differences between
visual and linguistic information, and that modeling
with VGG16 and BERT alone is not sufficient to fill
in these differences. When cortical localization is
similar between different modalities, we generally
tend to conclude that the representational contents
between them are also similar, but the results of
this study suggest that the similarity relationship
does not necessarily hold, which has an important
message to encourage rethinking of the results of
previous studies that tackle to elucidate brain in-
formation representation for different modalities
based solely on the prediction accuracy of brain
activity information. Based on this, we intend to
continue to elucidate the characteristics between
modalities.
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