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Abstract

Linguistic ambiguities arising from changes
in entities in action flows are a key challenge
in instructional cooking videos. In particular,
temporally evolving entities present rich and
to date understudied challenges for anaphora
resolution. For example “oil” mixed with “salt”
is later referred to as a “mixture”. In this pa-
per we propose novel annotation guidelines to
annotate recipes for the anaphora resolution
task, reflecting change in entities. Moreover,
we present experimental results for end-to-end
multimodal anaphora resolution with the new
annotation scheme and propose the use of tem-
poral features for performance improvement.

1 Introduction

Anaphora resolution is the task of identifying the
antecedent of an anaphor, i.e., find a language ex-
pression that a given entity refers to. For exam-
ple, in the sentence take a potato and wash it,
the pronoun it is an anaphor that refers to the an-
tecedent a potato. This is a challenging NLP task
which has been attracting much attention (Poesio
et al., 2018; Fang et al., 2021, 2022). Different
types of anaphoric relations have been identified
and described in the scientific literature, e.g., iden-
tity (Poesio and Artstein, 2008), near-identity (Re-
casens et al., 2011; Hovy et al., 2013), and bridging
(Asher and Lascarides, 1998).

Recipes provide a rich source for referring ex-
pressions (Kiddon et al., 2015) of transformed enti-
ties, and offer a challenge for anaphora resolution
tasks. Fang et al. (2022) use written recipes with
anaphora annotations to trace the temporal change
of entities. While the ingredients undergo phys-
ical or chemical change in the action flow, they
can be still referred to in the same way. For ex-
ample, an egg before and after it is boiled can be
referred to with the same noun egg. Compared to
text recipes, instructional cooking videos raise addi-
tional challenges for anaphora resolution owing to
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place the mixture in loaf pan

cook in the oven

Figure 1: Examples from the YouCooklII dataset show-
ing the effect of the temporal changes on the entities and
the referring expressions. Each row displays a different
use of expressions and entities.

their intrinsic multimodality (Huang et al., 2016).
Krishnaswamy and Pustejovsky (2019) point to
various “channels of information” in the transmis-
sion of each modality. A “shared reference of enti-
ties” is introduced when two modalities refer to the
same description (Krishnaswamy and Pustejovsky,
2020). As presented in cooking instructions of
videos when two modalities refer to the same en-
tity, the use of a referring expression is affected by
both modalities. For example, the cubes is used
in Figure 1a to denote the bread pieces in the text
modality because the instruction chop the bread
shaped them into cubes in the video modality. The
choice of referring expressions might also differ
with respect to the changes of the entities. In Fig-
ure 1b the same nominal phrase refers to a different
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object (the whole salmon piece; and then one of the
halves) whereas in Figure 1c a coreferential pro-
noun is used although the object has changed. Fig-
ure lc is in fact the most well-behaved in terms of
keeping the language expressions consistent across
instructions and with the entities being referred to.
Figure 1d shows the use of null arguments: the sec-
ond instruction cook in the oven does not explicitly
mention what to cook, whereas the image of the
instruction displays it.

The main contributions of this paper are as
follows: (i) We propose an anaphora annotation
scheme for instructional cooking videos that allows
us to address linguistic ambiguities in anaphora res-
olution. In particular, we define different types of
anaphoric relations to keep track of spatio-temporal
changes of entities. We also provide a clear defi-
nition of “identity of reference” and specify cate-
gories that make an essential change resulting in a
different entity. (ii) We annotate the YouCookIl
dataset (Zhou et al., 2018b,a) according to our
scheme and make it publicly available.' (iii) Null
anaphors, e.g., mix in the bowl, are included in
the annotation thanks to cooking videos that of-
fer the precise visual observation of null anaphors
to annotators. (iv) We provide a baseline multi-
modal anaphora resolution model for this dataset.
In particular, we adapt an end-to-end (Lee et al.,
2017) coreference model for the anaphora resolu-
tion task. (v) We offer a novel method to improve
anaphora resolution models for instructional lan-
guage by leveraging temporal features capturing
temporal order of instructions instead of using the
token distance as Lee et al. (2017) and Yu and Poe-
sio (2020).

2 Related Work

Reference Resolution The reference resolution
task addresses the linguistic ambiguities in state
changes of entity mentions by linking the entities
to their corresponding instructions (Kiddon et al.,
2015; Huang et al., 2016, 2018), e.g., the mashed
potato and the fork refer to the instruction mash the
potatoes with a fork. We depart from this type of
approaches, as they rely on unsound ontological as-
sumptions (actions/events and entities are different
objects) and they introduce unnecessary semantic
ambiguities (by linking different entity mentions to
the same instruction).

"https://github.com/OguzCennet/
Recipe-Anaphora-Resolution

Anaphoric Relations: identity, near-identity, as-
sociation. Anaphoras mainly come in two forms:
coreference and bridging. Coreference is defined
as language expressions referring to the same entity
(Weischedel et al., 2012), whereas bridging is an
anaphoric phenomenon based on a non-identical
associated antecedent via lexical-semantic, frame-
based, or encyclopedic relations (Asher and Las-
carides, 1998). A coreferring anaphor and its an-
tecedent in a text refer to the same entity (identity
relation), e.g., a black Mercedes and the car, while
in bridging, an anaphor and its antecedent refer to
different entities (non-identity relation), e.g., the
car and the engine in the utterance I saw [a black
Mercedes] parked outside the restaurant. [The car]
belonged to Bill. [The engine] was still running.
(Poesio and Artstein, 2008).

As Rosiger et al. (2018) point out, bridging studies
so far employ various methods to describe bridging
dissimilar to the coreference definition. Neverthe-
less, both the concept of sameness in the corefer-
ence definition and the bridging associations ne-
glect the changes referents may undergo. There-
fore, the concept of near-identity was introduced
by Recasens et al. (2010, 2012) as a middle ground
between coreference and bridging. It addresses
spatio-temporal changes of entities, e.g., the en-
tity Postville in the text: On homecoming night
[Postville] feels like Hometown, ... it’s become a
miniature Ellis Island . .. For those who prefer [the
old Postville], Mayor John Hyman has a simple .. ..
This sample exemplifies the referential ambiguity,
arising from two language expressions referring
to “almost” the same entity, i.e., Postville and the
old Postville (Recasens et al., 2010). Rosiger et al.
(2018) and Poesio et al. (2018) claim that the in-
troduction of the additional near-identity category
in between coreference and bridging introduces
more uncertainty. Nevertheless, we consider the
near-identity relationship suitable because spatio-
temporal changes are essential in recipes and the
information they convey describes the visual con-
tent.

Coreference and Bridging Annotations. Coref-
erence is a well studied and clearly defined concept
with some noticeable exceptions. In recent years
several annotated corpora with different corefer-
ence guidelines have been released. OntoNotes
v5.0 (Weischedel et al., 2012) exclusively focus
on coreference using a schema similar to CoNLL-
2012 (Pradhan et al., 2012) and WikiCoref (Ghad-
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dar and Langlais, 2016) with two different relations:
one is identity, a symmetrical and transitive rela-
tion, and the other appositive for adjacent noun
phrases. The extraction of the mentions and the use
of prepositions in mentions are crucial questions
for corerefence annotation (Rosiger et al., 2018;
Poesio et al., 2018). There are many extant hy-
potheses explaining how bridging relations func-
tion with different annotation schemes for bridging
(Hou et al., 2018). The ARRAU corpus (Poesio
et al., 2018) consists of general language annotated
with bridging relations of noun phrases (such as set
membership, subset, possession and unrestricted.)
Markert et al. (2012) present ISnotes derived from
OntoNotes with unrestricted bridging relations in
addition to OntoNotes coreferences. The BASHI
corpus (Rosiger, 2018) is based on OntoNotes con-
tent and the bridging relations in the BASHI corpus
restrict the bridging anaphors to be truly anaphoric,
1.e., not interpretable without an antecedent.

All aforementioned annotation studies focus
solely on the anaphoric relation between two dis-
course entities and neglect the change of entities
over time. Instructional language raises a novel
question in anaphora resolution: the definition of
anaphoric relations based on the change of lan-
guage with entities that undergo change. Therefore,
RecipeRef (Fang et al., 2022) considers the state
changes for preparing the annotation guideline for
recipe text based on the ChEMU-Ref (Fang et al.,
2021) anaphora annotation on chemistry patent
documents. RecipeRef annotation was applied to
the RecipeDB data (Batra et al., 2020) that was
aggregated from recipe websites and each recipe
was divided into two parts, the ingredients sec-
tion, and the cooking instructions. The cooking
instructions of RecipeDB contains only textual in-
structions without any visual content. The state
changes are addressed in RecipeRef as a subtype of
bridging relation, even though bridging is clearly
defined as an associative relation in the literature
(Clark, 1975; Asher and Lascarides, 1998; Poesio
and Artstein, 2008; Poesio et al., 2018). Besides,
null anaphors are not included in the annotation of
RecipeRef, despite their frequent use in recipes.

Several important questions remain open regard-
ing anaphora resolution, and RecipeRef annotation,
including: (1) interpretation of the state changes
of entities over time; (2) addressing the referring
expression in anaphora resolution with data that
has different modalities; (3) obtaining the sequence

Train Test
Coreference 891 330
Hyponmy 47 10
Near-Identity 699 217
Bridging 602 217
Produce 507 182
Reduce 40 22
Set-member 44 9
Part-of 11 4
Instruction 2,829 984
Token 8,754 2,966
Recipe 264 89
Entity 5,669 1,927
Null Entity 465 168
Pronoun Entity 206 61

Table 1: Statistics of annotated data with the number of
annotated samples with anaphoric relations.

of state changes by annotating the null entities in
recipes; (4) the judgement of anaphoric relations
of state changes and different semantic relations
such as identity, non-identity, near-identity, and
association.

3 Corpus

We use the YouCookII dataset (Zhou et al., 2018a)
that includes manually provided descriptions (i.e.,
instructions) of actions in the cooking videos. The
dataset contains 2,000 unconstrained instructional
videos from 89 cooking recipes. The videos pro-
vide a visual input of the corresponding objects to
observe the changes clearly. To obtain a variety of
ingredients and their state changes, we choose at
least three random samples for each the 89 cooking
recipes for the training set and one sample for the
test set. There is no intersection between training
and test recipe samples. In total, we have 264 train-
ing documents and 89 test documents as shown in
Table 1.

Recipe A recipe is text containing a list of cook-
ing instructions with a list of ingredients, see Fig-
ure 2. Here, we use the YouCooklI annotation, all
instructions for each video are manually annotated
with temporal boundaries and described by impera-
tive English sentences. Since the video inputs show
the entities and actions clearly, the use of refer-
ring expressions and null entities is very common
contrary to textual recipes.
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Instruction. Each video recipe contains 3 to 15
instructions. Each instruction is a temporally-
aligned imperative sentence that is described ac-
cording to the corresponding action on the video
by human annotators. The instructions are not ut-
tered by the instructor of the video but annotated
by the human annotator from a third-person view-
point while watching the video. Each instruction
defines an action, i.e., a predicate, applied to a set
of objects, i.e., entities. Video segments provide
the visual status of the spatio-temporal changes for
the mentioned entities for each instruction. Unlike
other common types of texts, cooking instructions
focus on processes and entities undergoing change
during the process. So, the corresponding videos
in the YouCooklI dataset enable us to comprehend
the use of referring expressions of entities for each
change.

4 Annotation Categories and Guidelines

In this section, we explain our strategy of mention
selection and the use of our annotation schema on
the YouCooklI data.

4.1 Mention Selection

In our work, we segment multiple-action instruc-
tions, e.g., put the chickpeas into the processor
and blend all the ingredients, into single-action in-
structions put the chickpeas into the processor and
blend all the ingredients while preserving the order
of actions. Each recipe instruction contains one
predicate and O to 8 entities. Null arguments and
ellipses are extremely common in recipes (Kiddon
et al., 2015; Huang et al., 2016), since some ob-
jects are not verbally expressed, but deduced from
the context of the remaining elements or videos.
For example stir for 5 minutes does not explicitly
mention the entity to be stirred. Nominal phrases
with (in)definite noun phrases and pronouns are
also used to mention the objects of recipes as in
the following instruction: coat the pork in the
marinade and place it in the oven. Therefore, we
consider null arguments (i.e., null anaphors) and
nominal phrases to define mentions. Contrary to
ONTONOTES (Weischedel et al., 2012), we in-
clude expressions that do not refer to any other
mention as singletons in the annotation.

4.2 Anaphoric Relations and Entity Change

In this section, we explain how we define anaphoric
relations occurring in the recipes with state changes

1. slice the pepperoni

2. slice the bacon

near identity

3. fry the bacon

4. roll the pizzadough «———————

near identity

5. sprinkle flour on the pizza peel

core I'erenceT

near identity
near identity

6. place the pizza crust on it
[

7. spread a layer of pizza sauce

8. place grated cheese sliced pepperoni and  fried bacon

bridging / produce

9. put the pizza in the oven

Tnear identity

10. cut the pizza into pieces

Figure 2: Example of annotation of a recipe from the
YouCooklII dataset named “stone baked pizza”. The start
point of each arrow denotes the anaphor and the end
point the corresponding antecedent. The antecedent and
anaphor pairs are highlighted in the same color. Grey
boxes represent new entities (e.g., singletons) without
antecedent.

of entities, see Figure 2. It is worth noting that
the recipe videos are exploited to judge the “same-
ness” of entities after an action (e.g., wash, cut,
etc.) was applied. Thus, the visual features from
cooking videos clarify the state change of enti-
ties in the instructions and our annotation does not
rely only on the mental image of entities based on
text only settings as in other coreference datasets
(Weischedel et al., 2012; Pradhan et al., 2012) and
anaphora datasets (Roesiger, 2016; Poesio and Art-
stein, 2008; Fang et al., 2021, 2022).

4.2.1 Coreference

The anaphor and the antecedent are identical and
point to the same entity. Some actions such as
washing or transferring the result to another con-
tainer preserve the properties of the entity involved.
For example, a tomato is the same tomato after
washing, or a piece of meat is the same amount of
meat after putting it in a pan.

4.2.2 Hyponymy

The hyponymy relation was considered as bridging
by Poesio and Vieira (1998), however Baumann
and Riester (2012) use the term not as context-
dependent but as “lexical accessibility” to define
the hyponymy relation between words as corefer-

367

4



ence, as Rosiger et al. (2018). For example the
herb refers to the entities mint and parsley in the
instruction Wash mint and parsley. Here again the
anaphor may refer to a group of entities as the cor-
responding antecedent.

4.2.3 Near-Identity

Some actions alter either the physical or chemical
properties of the entities involved. For instance,
boiling a potato or an egg changes their chemi-
cal properties whereas cutting a potato or an egg
changes their physical properties. Here, anaphor
and antecedent entities are neither identical nor
associated, they are partially the same entity shar-
ing many crucial commonalities, but differing in
at least one crucial dimension. For this type of
anaphoric relation, Recasens et al. (2010) propose
the near-identity relation to describe the spatio-
temporal changes of the entities as a middle ground
between coreference and bridging. Even though
Rosiger et al. (2018) claim that additional cate-
gories between coreference and bridging introduce
further uncertainty which makes the annotation pro-
cess more arduous, we consider the near identity
relationship more suitable because spatio-temporal
changes are essential in recipes and the information
they convey describes the visual content. There-
fore, if they are not the same entity, the antecedent
is not reduced to its parts for the anaphor, and the
antecedent is not mixed with other entities to pro-
duce a new entity for the anaphor, then we define
such entities as near-identical. For example, an egg
or a potato are accepted as near-identical entities
before and after boiling.

4.2.4 Bridging

In bridging, the antecedent is related and not iden-
tical; in contrast to coreference the anaphor is also
not interchangeable with the given antecedent. As
mentioned in Section 2, various phenomena are
identified as bridging, resulting in diverse guide-
lines for bridging annotations. In accordance with
the variety of associations, we assign different
anaphora relations in our annotation schema.

PRODUCED: We define PRODUCED as the rela-
tionship when the anaphor refers to an antecedent
producing the anaphor. The antecedent is always
an instruction with predicates and given ingredi-
ents. Here, the anaphor may refer to a group of
instructions as the corresponding antecedent. For
example, the dough is produced by the instruction

mix water and flour or dressing is produced by the
instruction mix yogurt and pepper.

REDUCED: We define REDUCED as the bridg-
ing relation linking an entity. The anaphor might
be a number expression (e.g., to the whole entity),
an indefinite pronoun (some), or an indefinite noun
phrase (e.g., one piece). We use REDUCED in cases
when the anaphor means a part of the correspond-
ing antecedent, provided no mereological relation
exists. For example one slice is reduced from a
bread by the instruction slice the bread into pieces.

SET-MEMBER: In a recipe, SET-MEMBER refers
to a relation between a group of entities and its
definite subset. In other words, this relation defines
a bridge from a subset or element to the whole
collection. For example, cucumber, tomato, and
lettuce is an antecedent of the anaphor ingredients
in cut the ingredients.

PART-OF: The antecedent may associate in a
mereological relationship with the anaphor, and
cannot be captured well by pre-defined lexical re-
lations. For example, the antecedent lemon in the
instruction cut the lemon relates to the anaphor
seeds in take the seeds out.

4.3 Inter-annotator Agreement

50 randomly selected recipes have been annotated
by two Computational Linguists, a PhD candidate
and a final year Master student in Computational
Linguistics. Five rounds of annotation training
were completed prior to beginning the official an-
notation. In each round, the two annotators indi-
vidually annotated the same 5 recipes (different
across each round of annotation), and compared
their annotations; annotation guidelines were then
refined based on discussion. Finally, We achieved a
high inner-annotator agreement of Krippendorff’s
a = 0.99 for the creation of a new entity and refer-
ence, o = 0.95 for the selection of the antecedent
and a = 0.93 for selection of anaphoric relations.

5 Method

In this section, we present our end-to-end multi-
modal anaphora resolution model. Figure 3 shows
our joint neural model similar to Yu and Poesio
(2020) and Fang et al. (2021), adapted from Lee
et al. (2017). We extend the model with novel
temporal features, see Section 5.3.

368



CNN
Layer

Wi
Wa
FFENN

> —
Wiy ﬂ_[ Block
— pL— — -
mention

s(i)

no relation

l' coreference IJ/
n-identity

bridging

FFNN
Block

FFNN —>rel(i.j)

E—>

reference
FENN

ref(i,j)

Figure 3: Proposed anaphora resolution architecture. The CNN Layer is a convolutional layer with five input
channels (one per frame). The FFNN Block refers to a layer block with FENN+ReLU+Dropout, w; indicates the
t-th word of Recipe R. ViT is a Transformer-based model to represent the features of the video inputs.

5.1 Task

In linguistics, the term Anaphora Resolution refers
to the method of identifying the antecedent for
an anaphor. To achieve anaphora resolution on
cooking instructions, we propose two different
sub-tasks: recognizing mentions, and finding the
anaphor-antecedent pairs. Additionally, relation
classification is used to find the relation between
each anaphor and its antecedent.

We adopt the following notations. Each recipe
R consists of T tokens wy,...,wr and n > 1
instructions a; such that R = ay,...,a,. Each
instruction a; = (p;, €y), e.g., pour olive oil on the
Italian bread cubes, contains one action predicate
p; and an entity list e,. The entity list consists of
zero or more entities ey = P orey = {e1,..., e}
where @ denotes null entities which are extremely
common in recipe instructions (Kiddon et al., 2015;
Huang et al., 2017) and e; indicates entities such
as the Italian bread cubes.

We define three sub-tasks. The first task is
mention detection: it extracts all mentions ey
from a;. The second task is anaphora resolu-
tion: it assigns each e; to an antecedent y; €
{e;a1,...,ai—1,€14,...,ei_1},if any. The third
task is relation classification: it assigns one of the
relation classes {NO-RELATION, COREFERENCE,
NEAR-IDENTITY, BRIDGING} to each pair (e;, ;).
The selection of € as the antecedent collapses two
different situations: (1) the span is not an entity,
or (2) the span is an entity but it is not referent
(Lee et al., 2017). Likewise, if the relation is NO-

RELATION for relation classification, this points to
two scenarios: (1) the span is not an entity, or (2)
the span is an entity but it is not referent and so does
not have an anaphoric relation to other entities.

5.2 Baseline

5.2.1 Visual Features

Each video consists of n segments, vy, . .. vy, €ach
corresponding to one instruction. Following Zhou
et al. (2018a), we evenly divide each segment into
five clips and randomly sample one frame from
each clip to capture the temporal features of that
segment. Each frame f; is encoded using the Vision
Transformer (ViT) model (Dosovitskiy et al., 2021).
The instruction’s visual feature vector is obtained
by concatenating the frame-level feature vectors:
v; = CNN([VIiT(f1),..., ViT(f5)]).

5.2.2 Mention Detection

For mention detection, following Lee et al. (2017),
we consider all continuous tokens with up to L
words as a potential span and compute the corre-
sponding span score. BERT (Devlin et al., 2019)
is used to extract the contextualised word embed-
dings x} = BERT(wy, ..., wr) where z refers to
the vector representation of the token at time ¢ of
R. The vector representation g; of a given span is
obtained by concatenating the word vectors of its
boundary tokens and its width feature:

9i = [x;TART(z’yx;ND(i)v o(1)]

¢(i) = WIDTH(END(7) — START(7)).
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START(7) and END(%) represent the starting and
ending token indexes for g;, respectively. ¢(7) is
the width feature of the span where WIDTH(.) is
the embedding function of the predefined bins of
[1,2,3,4,8,16] as defined by Clark and Manning
(2016).
The use of head attention (Lee et al., 2017; Yu and
Poesio, 2020; Fang et al., 2021) is very common in
coreference/anaphora resolution models. However,
we disregard the head representation of spans for
two reasons: (1) the common use of null anaphors
in our data: instead the instruction a; of the null
anaphor is used for extracting the vector represen-
tation, (2) the self-attention mechanism (Vaswani
et al., 2017) of the BERT model implicitly captures
the mention head word.

The mention score softmax(FFNN(g;)) is com-
puted for each span, and the mention model is
trained using the cross-entropy loss.

5.2.3 Anaphora Resolution

For anaphora resolution, the representation of span
pair g;; is obtained by concatenating the two span
embeddings [g;, g;] and their element-wise multi-
plication, g; - g;, among others:

9ij = 196> 95> 9i - 95, Vi - V5, Daist (1, )]
¢dist(i,J) = DISTANCE(START(j) — START(%))

where the feature vector ¢g;s¢(, 7) is the distance
between the index of span ¢ and span j. DIS-
TANCE(+) is an embedding function of the prede-
fined bins of [1, 2, 3.., 30] as defined by Clark and
Manning (2016).

For anaphora resolution, we minimize the cross
entropy loss for candidate span pairs with
sigmoid (FFNN(g;;)).

5.2.4 Relation Classification

As shown in Table 1, the number of observed hy-
ponym, reduce, set-member, and part-of instance
relations is low. Therefore, we define the anaphoric
relations in term of the three main categories: coref-
erence, near-identity, and bridging.

To learn the vectors for each relation of feature
vector g;;, we apply an FENN layer:

coreference;; = FFNN(g;;)
n-identity;; = FFNN(g;;)
bridging;; = FFNN(g;;).

Then, we concatenate coreference;;, n-identityij,

and bridging;; into the relation vector rel;;:
rel;; = [coreference;j, n-identity,;, briding; ;].

To classify the anaphoric relation for each input
pair, we then compute softmax(FFNN([g;;, rel;;]).

5.3 Temporal Features

Recipe instructions are written with an implied tem-
poral order (Jermsurawong and Habash, 2015), and
the entities involved go through this temporal order
until the cooking is complete. We propose to select
the number of instructions (see Figure 2) as the tem-
poral marker of entities instead of token distance
Gaist(17) to avoid issues with different instruction
and entity lengths. We design our experiments to
explain how the temporal stage of entities in action
flows influences the pair representation of mentions
in cooperating with the anaphora resolution model.
Thus, we formulate our temporal features as

Gtemp(i, ) = TEMPORAL(#a; — #a;)

where TEMPORALC(-) is an embedding function that
uses the list of bins [1,2,3..,30]. #a; refers to the
instruction index of span i and #a; to the instruc-
tion index of span j. We concatenate ey (7, j) in
place of ¢4;s: (4, j) to obtain the vector representa-
tion of a span pair:

g’LJ = [91,99791 : g]7 (%A vja (btemp(i?j))}'

Token distance varies depending on the use of
token numbers in instructions and entities. For ex-
ample, the instruction mix red chili cinnamon stick
cloves cumin seeds mustard seeds pepper garlic
vinegar sugar and wine might also be written mix
red chili cinnamon stick cloves cumin seeds mus-
tard seeds followed by add pepper garlic vinegar
in the bowl and mix with sugar and wine. There-
fore, temporal features are not captured well by
token distance in instructional language.

6 Experimental Setup
6.1 Input

Cooking Instructions. To encode the recipes we
use BERT (Devlin et al., 2019), a bidirectional
transformer model trained on a masked language
modeling task. First, we fine-tune BERT-large-
uncased by using the YouCookll dataset (Zhou
et al., 2018a) after removing our test recipes. Be-
cause of sub word embeddings, there are different
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Candidate Spans Gold Spans
Precision | Recall | Fl-score | Precision | Recall | Fl-score

w/o Temporal

Anaphora Resolution | 48.1 34.1 39.9 48.9 46.7 47.8
Coreference 342 43.4 38.2 40.1 475 43.5
Near-identity 66.8 37.0 47.7 78.5 38.8 51.9
Bridging 12.0 37.5 18.2 16.7 45.0 243
Overall Relation 21.6 44.6 29.2 28.4 50.3 36.3
w Temporal

Anaphora Resolution | 48.7 34.2 40.0 51.2 50.0 50.6
Coreference 29.1 45.8 35.6 46.1 50.6 48.3
Near-identity 57.0 33.8 42.4 90.1 44.7 59.7
Bridging 14.7 419 21.7 24.4 43.7 31.3
Overall Relation 22.6 46.2 30.4 32.6 54.3 40.8

Table 2: Average evaluation results over 3 runs of the proposed anaphora resolution model on our annotated test data
for 200 epochs. w Temporal and w/o Temporal refer to the results with or without temporal features, respectively.
Candidate Spans refers to all the possible spans of continuous tokens extracted from the recipes whereas Gold Spans
refers the mentions with nominal phrases, null anaphors, and instructions.

choices of presenting words. We use the first sub-
token for representing the word as proposed by
Devlin et al. (2019). Additionally, due to the struc-
ture of multiple successive layers, the last hidden
layer is used to represent the words in recipes.

Video Frames. To encode each video frame, ViT
(Dosovitskiy et al., 2021) is pre-trained on Ima-
geNet (Russakovsky et al., 2015) and fine-tuned on
Food-101 (Bossard et al., 2014) images. In the end,
each instruction (i.e., segment) is represented by a
3,840-dimensional vector v;.

6.2 Experiments

Candidate Spans Without any pruning, we con-
sider all continuous tokens (Clark and Manning,
2016; Lee et al., 2017) as a potential spans for the
training and testing phases.

Gold Spans In order to investigate the perfor-
mance of anaphora resolution and relation classifi-
cation models without mention detection noise, we
also consider gold spans for the training and testing
phases.

6.3 Evaluation

Following Hou et al. (2018) and Yu and Poesio
(2020), we analyze the performance of our end-to-
end anaphora resolution model with its subtasks.
For mention detection, anaphora resolution and
relation classification we report F1-scores.

To evaluate mention detection, precision is com-
puted as the fraction of correctly detected mentions
among all detected mentions whereas recall is the
fraction of correctly detected mentions among all

gold mentions. The F1-score for anaphora resolu-
tion is computed where precision is the result of
dividing the number of correctly predicted pairs
by the total number of predicted pairs and recall
is computed by dividing the number of correctly
predicted pairs by the total number of gold pairs.
To evaluate relation classification we compute the
F1-score where precision is computed by divid-
ing the number of correctly predicted relations by
the total number of predicted relations and recall
is computed by dividing the number of correctly
predicted relations by the total number of gold re-
lations.

6.4 Results and Discussion

6.4.1 Overview

We investigate the anaphora resolution and rela-
tion classification results of gold and candidate
spans comparing the F1-scores with the distance
and temporal features. Overall, our results in Ta-
ble 2 demonstrate that replacing token distance
with our temporal features improves anaphora reso-
lution and relation classification for both candidate
and gold spans.

The performance of each task is propagated to
subsequent tasks due to the sequential structure
of the end-to-end system (see Section 5). The
difference between the results of candidate and
gold spans demonstrates that the mention detec-
tion model propagates errors to anaphora resolution
and relation classification. For example, temporal
features are not predictive features for anaphoric
relations, but they are valuable for finding the an-
tecedent of an anaphor, i.e., anaphora resolution.
Our observations show that improvements in re-
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lation classification are propagated from the pre-
ceding anaphora resolution task in the end-to-end
system for gold spans.

Additionally, binary mention detection results
show a precision of 0.92, arecall of 0.88, and an F1-
score of 0.90. However, the differences between
the scores in anaphora resolution and relation clas-
sification results for the candidate and gold spans
(see Table 2) reveal issues in transferring the men-
tion features. We observe the main problem of
mention detection in distinguishing the singletons.

6.4.2 Anaphora Resolution

We detect a significant improvement in anaphora
resolution with temporal features, since temporal
features often conspire to reduce unwelcome lexi-
cal similarity. For example, potato— it — potato,
the first potato is the antecedent of it, and it is the
antecedent of the second potato. Temporal features
prevent predicting the first potato as an antecedent
for the second potato and designate the anaphora
link from the second potato to it, because it is in
the instruction closer in the temporal line. The
improvements with temporal features reveal the
issues of contextualized embeddings. While we
use contextualized embeddings, the bias of lexical
similarity induces complexity to link the anaphor
with a correct antecedent; as recurrent in the bacon
— bacon — fried bacon sample in Figure 2. The
sliced bacon is predicted as the antecedent of the
bacon of instruction 3, and it is also the antecedent
of fried bacon of instruction 8. This issue occurs
for rare entities and predicates. When we compare
the false positives in accordance with temporality,
the improvement due to temporal features mainly
affects pronoun resolution. Hence, we observe that
the antecedents of pronouns are closer to the pro-
nouns. Some anomalies can be observed in the
results of anaphora resolution with candidate spans
due to the propagated error from mention detec-
tion. For example, we have the candidate spans
the pizza, pizza dough, and the pizza dough for the
mention the pizza dough of instruction 4 with the
same temporal features.

6.4.3 Relation Classification

Table 2 shows that temporal features significantly
improve anaphora resolution results for gold spans.
Especially for bridging pairs, a noteworthy benefit
of temporal features can also be observed in gold
and candidate spans. However, the mistakes can
also be observed in the results of near-identity and

coreference classification for candidate spans.

Overall, the end-to-end model suffers from mis-
takes in detecting and resolving null anaphors. Ex-
pecting that all instructions contain a null anaphor
increases the input noise for candidate spans. Re-
lation classification follows anaphora resolution
and mention detection. Therefore, some problems
in relation classification originate from mention
detection and anaphora resolution errors.

False positive bridging relations are due to sin-
gleton spans (non-referents) whereas false positive
coreference and near-identical relations are due to
the preference for surface words with/without state

changes. For instance, in the example wash the egg
coreference near-identity

boil the egg crack the egg,
the use of the same words for changing entities
introduces an immense modelling challenge.

7 Conclusion and Future Work

We introduce a novel anaphora annotation scheme
including the state changes of entities and near-
identical relations. This fresh approach relies on
video inputs for visual observation for anaphora an-
notation. Likewise, we provide baseline anaphora
resolution results with novel temporal features on
the annotated data. In future work, the mention
detection model will be designed to perform with
null entities and singleton mentions to improve the
performance of the end-to-end model. Addition-
ally, different visual feature extraction methods for
single frames, e.g., CLIP (Radford et al., 2021)
or for videos, e.g., S3D (Xie et al., 2018) will be
investigated to find the best way of learning from
cooking videos for anaphora resolution.
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