
Findings of the Association for Computational Linguistics: AACL-IJCNLP 2022, pages 327–333
November 20–23, 2022. ©2022 Association for Computational Linguistics

327

Robustness Evaluation of Text Classification Models Using
Mathematical Optimization and Its Application to Adversarial Training

Hikaru Tomonari1, Masaaki Nishino2, Akihiro Yamamoto1

1Kyoto University
2NTT Communication Science Laboratories

tomonari@iip.ist.i.kyoto-u.ac.jp, masaaki.nishino.uh@hco.ntt.co.jp
yamamoto.akihiro.5m@kyoto-u.ac.jp

Abstract
Neural networks are known to be vulnerable
to adversarial examples due to slightly per-
turbed input data. In practical applications of
neural network models, the robustness of the
models against perturbations must be evaluated.
However, no method can strictly evaluate their
robustness in natural language domains. We
therefore propose a method that evaluates the
robustness of text classification models using
an integer linear programming (ILP) solver by
an optimization problem that identifies a mini-
mum synonym swap that changes the classifi-
cation result. Our method allows us to compare
the robustness of various models in realistic
time. It can also be used for obtaining adversar-
ial examples. Because of the minimal impact
on the altered sentences, adversarial examples
with our method obtained high scores in human
evaluations of grammatical correctness and se-
mantic similarity for an IMDb dataset. In addi-
tion, we implemented adversarial training with
the IMDb and SST2 datasets and found that our
adversarial training method makes the model
robust.

1 Introduction

Over the last decade, neural network (NN) models
have been widely applied in such fields as com-
puter vision and natural language processing (NLP).
However, recently they have been shown to be vul-
nerable to small and imperceptible perturbations
included in the original input data (Szegedy et al.,
2013). These altered input data called adversarial
examples are correctly classified by humans but
can fool a target model, raising serious security
and reliability concerns.

An NN model is defined as being robust when
the model’s prediction does not change with the
addition of all the perturbations in a certain range.
The process of checking whether the model is ro-
bust is called verification (Katz et al., 2017; Tjeng
and Tedrake, 2017). In computer vision, meth-
ods have formulated the verification problem as

constraint satisfaction and verified it by solving it
using an integer linear programming (ILP) solver
(Katz et al., 2017; Tjeng and Tedrake, 2017) or a
boolean satisfiability problem (SAT) solver (Naro-
dytska et al., 2018).

Interest has also been growing in investigating
the adversarial robustness of NLP models, includ-
ing new methods for generating adversarial exam-
ples (Alzantot et al., 2018a; Jin et al., 2019; Alzan-
tot et al., 2018b; Michel et al., 2019; Li et al., 2019;
Ebrahimi et al., 2017; Zang et al., 2020; Pruthi
et al., 2019). On the other hand, as long as models
are evaluated only by heuristic attacks, we cannot
guarantee a model’s robustness.

To tackle this dilemma, we formulated a problem
for finding the minimum number of word swaps
that change a model’s predictions and solving it
with an ILP solver. Using this verification method,
we can strictly compare multiple adversarial train-
ing methods .

In our experiments, we trained an NN model
composed of an affine transformation and a
piecewise-linear function, such as the ReLU func-
tion for the Internet Movie Database (IMDb)
dataset (Maas et al., 2011) and the Stanford Sen-
timent Treebank v2 (SST2) dataset (Socher et al.,
2013). Then we verified the models with an ILP
solver in a few seconds per text. Human partici-
pants also manually evaluated whether the adver-
sarial examples generated by the existing and pro-
posed methods were grammatically correct and se-
mantically unchanged from the original sentences.
The adversarial examples created by the proposed
method had higher scores than those created by the
existing method.

In addition, we conducted an experiment on ad-
versarial training. Adversarial training, which aug-
ments training data with adversarial examples in
each training loop very effectively make deep learn-
ing models more robust against adversarial exam-
ples (Goodfellow et al., 2014). In our experiments,

328

our proposed method achieved robust model train-
ing.

2 Related Work

Some methods can accurately verify a model’s ro-
bustness for perturbations within a certain range
(Tjeng and Tedrake, 2017; Narodytska et al., 2018)
in computer vision. MIPVerify (Tjeng and Tedrake,
2017) uses an ILP solver that can be applied to
piecewise-linear neural network models by assign-
ing binary variables to each nonlinear function. An-
other method verifies the parameters of NN models
and input images with a binary neural network us-
ing the SAT solver (Narodytska et al., 2018). Unfor-
tunately, there was no method can strictly evaluate
the robustness of the models in the NLP domain.

Although pixel noise has been defined as an
adversarial perturbation for images, it is difficult
to define noise for text due to its discrete nature.
TextFooler (Jin et al., 2019) generates an adversar-
ial example of natural language by replacing some
of the words in a text with synonyms. However, its
heuristic search is approximate, and performs more
word swaps than necessary. Our method, which
obtains exact minimum word swaps, allows us to
evaluate the robustness of a model.

3 Method

Given text sequence x = (x1, · · · , xT), Bi denotes
the candidates of the swapping word of xi. We
define bij as an indicator function. bij = 1 means
that xi is replaced by the jth word of Bi, and no
word swaps occur when bi0 = 1. Let vij denote a
word-embedding vector corresponding to bij . Then
the Minimum Adversarial Swapping Problem is
described as follows:

min
T∑
i=1

|Bi|∑
j=1

bij (1)

subject to
|Bi|∑
j=0

bij = 1 (2)

v′
i =

|Bi|∑
j=0

vijbij (3)

argmaxk(fk(v
′)) ̸= λ(x) (4)

bij ∈ {0, 1}, i = 1, . . . , T , (5)

where fk(·) is the kth output of the network, and
λ(·) represents the true label index. Eq. (1) is an

objective function that minimizes the number of
synonym swaps. Eq. (2) is the condition for select-
ing only one synonym or original word for each
position i. The word vector of the selected word
is extracted with Eq. (3). Eq. (4) is a constraint
for changing the model’s original prediction, i.e.,
where the sentence obtained by swapping the words
following the bij values is an adversarial example.
This formulation is only applicable when f(·) is a
piecewise-linear neural network composed of com-
binations of linear functions and piecewise-linear
functions such as ReLU and maximum functions.
We show how to formulate piecewise-linear func-
tions as an ILP problem in the Appendix B. Fol-
lowing TextFooler (Jin et al., 2019), we prepare a
synonym list Bi, (Appendix A) and show an exam-
ple of formulation in Appendix C.

4 Metrics

Accuracy Under Attack Accuracy Under At-
tack (AUA) is the rate of the fraction of the test set
that satisfies the following equation:

∀x′ ∈ (G(x)) : argmaxi
(
fi
(
x′
))

= λ(x) , (6)

where G(x) is a transformation that adds a pertur-
bation to text x. fi(·) is the ith output of the NN
model, and λ(x) represents the true label of x. For
a text x, we assume that G(x) is a combination of
all the word swaps for a prepared synonym list. In
the experiments in Section 5, we evaluated the mod-
els with this metric. Our proposed method allows
us to find the lower bound of AUA by checking
whether Eq. (6) is satisfied.

Mean Minimum Word Swaps The problem
of finding minimum word swaps is denoted below.
d (·, ·) is a distance metric that defines the number
of word swaps:

min
x′

d
(
x′, x

)
(7)

subject to argmaxi
(
fi
(
x′
))

̸= λ(x) . (8)

A Mean Minimum Word Swap (MMWS) is the av-
erage of this distance in the test set. The advantage
of this metric is that it allows for an intuitive and
flexible way to evaluate the model’s robustness.

5 Experiments

We conducted comprehensive experiments to eval-
uate the effectiveness of our verification method

329

Dataset Train Test Avg Length Categories

SST2 67 K 870 9 2
IMDb 25 K 25 K 159 2

Table 1: Overview of datasets

including its applications to the generation of ad-
versarial examples and adversarial training. We
studied our verification method with text classifica-
tion datasets with average sequence lengths from
tens to hundreds of words. The dataset statistics
are summarized in Table 1. We evaluated our algo-
rithm on a set of 500 samples for the SST2 dataset
(Socher et al., 2013) and 1,000 samples for the
IMDb dataset (Maas et al., 2011) randomly se-
lected from the test set. We prepared two baseline
models, which were trained on each dataset. The
architecture of the neural network is shown in Ap-
pendix D. The number of input words was limited
to 200, and sentences with fewer than 200 words
were compensated with padding tokens. We set
the vocabulary size to 20,000 frequent words and
replaced the words not in the vocabulary with un-
known tokens. For verification, we used the same
synonym list for our method and TextFooler which
we compare and used Gurobi (Gurobi Optimiza-
tion, LLC, 2022) as a mathematical optimization
solver.

5.1 Robustness Evaluation and Generation of
Adversarial Examples

In this part, we examine the effectiveness of the
proposed method by comparing how it obtains min-
imum word swaps with TextFooler which performs
a heuristic search. The two graphs on the left of Fig.
1 show the incremental number of word swaps from
the proposed method to TextFooler. The proposed
method achieved fewer word swaps in both datasets
because it guarantees a minimum number of word
swaps. We also generated adversarial examples
with our method. Samples of original and adversar-
ial sentences are shown in Table 2. We expected
the minimal word swaps to suppress the sentence
changes. In Section 6, human evaluations actually
shows that the quality of the adversarial examples
with our method is better than with TextFooler. The
two graphs on the right of Fig. 1 shows the times re-
quired for verifying the models. Even IMDb, which
has a long average sequence length, is processed in
a realistic amount of time.

SST2
0

1

2

3

In
cr

em
en

t

IMDb
0

5

10

15

In
cr

em
en

t

SST2
0.0

0.1

0.2

0.3

Ti
m

e
(s

ec
on

d)

IMDb
0

2

4

Ti
m

e
(s

ec
on

d)

Figure 1: Incremental number of word swaps from the
proposed method to TextFooler (two graphs on the left)
and Times to verify the model (two graphs on the right).

5.2 Adversarial Training

We evaluate an adversarial training using adver-
sarial examples generated with our method. The
proposed method makes it possible to compare the
robustness of multiple models. We trained three
models: a baseline model, a model with adversar-
ial training using Textfooler, and the model with
adversarial training using the proposed method.

Table 3 compares the accuracy and the AUA. For
SST2, we can confirm that the robustness of the
model with adversarial training improved. In this
case, AUA in TextFooler and Ours are asymptot-
ically equal. On the other hand, it is difficult to
assess the robustness for IMDb models because
AUA are 0. It is possible to limit the number of
word swaps, but the settings need to be changed
carefully for each dataset. Even when the AUA is
not helpful, it can be evaluated with MMWS which
consider the number of word swaps.

Figure 2 shows the histograms of the number
of word swaps. Since our method always ob-
tains the smallest combination of word swaps,
the distribution is skewed to the left when com-
pared to TextFooler. The distribution is skewed
toward the larger number of word swaps required
to change the prediction in order of the baseline
model, TextFooler model, and our model. This in-
dicates that a model become stronger when adver-
sarial training is implemented, and that our model
is more robust than the TextFooler model. Table 4
shows MMWS scores, which represents the robust-
ness of the models.

6 Human Evaluation

We conducted human evaluation of the generated
adversarial examples from the text classification
model trained with the IMDb dataset. A total of
nine native speakers in their 20s to 40s living in the
U.S. and the U.K. were asked to evaluate the ex-
amples using the evaluation metrics "grammatical

330

Movie Review (Positive (POS) ↔ Negative (NEG))

Original (Label: POS) it’s a charming and often affecting journey.
Attack with TextFooler (Label: NEG) it’s a ravishing and normally impacts trip.
Attack with Ours (Label: NEG) it’s a ravishing and normally influenced journey.

Original (Label: NEG) an occasionally funny but overall limp fish-out-of-water story.
Attack with TextFooler (Label: POS) an intermittently funny but general limp fish-out-of-water history.
Attack with Ours (Label: POS) an occasionally hilarious but overall limp fish-out-of-water story.

Table 2: Examples of original and adversarial sentences generated by TextFooler and our method against baseline
model for SST2 dataset. Replaced words are shown in bold.

Dataset Model Acc Attack AUA

Baseline 0.838 TextFooler 0.280
Ours 0.280

SST2 TextFooler 0.820 TextFooler 0.478
Ours 0.478

Ours 0.820 TextFooler 0.516
Ours 0.516

Baseline 0.819 TextFooler 0
Ours 0

IMDb TextFooler 0.815 TextFooler 0
Ours 0

Ours 0.807 TextFooler 0
Ours 0

Table 3: Accuracy Under Attack (AUA). Higher scores
indicate greater robustness.

Model Score (SST2) Score (IMDb)

Baseline 1.99 4.81
TextFooler 2.31 5.86
Ours 2.49 7.28

Table 4: MMWS Score. This is an average score of the
blue histogram in Figure 2.

correctness" and "semantic similarity". For each
adversarial example, three people gave a score from
1 to 4 following the criteria shown in Appendix E.

Table 5 shows the evaluation scores of the adver-
sarial examples. For each model, the score of the
proposed method was higher in both grammatical
correctness and semantic similarity.

Figure 3 shows the relationships between human
evaluation scores and the average swaps of the ad-
versarial examples for the baseline model. The
horizontal axis is the number of synonym swaps
and the vertical axis is the average score. We see
that the fewer the number of synonym swaps, the
higher the scores for both TextFooler and the pro-
posed method. This result supports the validity of
the proposed method which aim to find the mini-
mum number of synonym swaps.

0 1 2 3 4 5 6 7 8 9 100

50

100

Fr
eq

ue
nc

y
(S

ST
2)

Baseline Model
Ours
TextFooler

0 1 2 3 4 5 6 7 8 9 100

50

100

TextFooler Model
Ours
TextFooler

0 1 2 3 4 5 6 7 8 9 100

50

100

Our Model
Ours
TextFooler

0 5 10 15 20 25 30 35 400

50

100

Fr
eq

ue
nc

y
(I

M
D

b)

Ours
TextFooler

0 5 10 15 20 25 30 35 40
Number of words to swap
0

50

100 Ours
TextFooler

0 5 10 15 20 25 30 35 400

50

100 Ours
TextFooler

Figure 2: Histogram of number of words to swap for
each dataset. We attacked the three models (Baseline,
TextFooler, Ours) with TextFooler and Ours.

Model Grammatical Correctness Semantic Similarity

Baseline 2.18 → 2.51 2.16 → 2.37
TextFooler 1.99 → 2.39 2.09 → 2.34
Ours 2.14 → 2.80 2.19 → 2.52

Table 5: Human Evaluation Score. Scores for the
TextFooler are to the left of the arrow, and our model’s
scores are to the right.

7 Conclusion

The proposed method always obtains a minimum
synonym swapping, which makes it possible to
compare and evaluate the robustness of text classi-
fication models. In addition, we conducted human
evaluation and supported the effectiveness of our
approach. We also performed the adversarial train-
ing and found that it makes the models more robust.

0 10 20 30 40
Number of words to replace

0

1

2

3

Av
er

ag
e

Sc
or

e

Grammatical Correctness
Ours
Textfooler

0 10 20 30 40
Number of words to replace

0

1

2

3

Av
er

ag
e

Sc
or

e

Semantic Similarity
Ours
Textfooler

Figure 3: Effect of the Number of Synonym Swaps in
Human Evaluation

331

Acknowledgements

This work was supported by JST, PRESTO Grant
Number JPMJPR20C7 Japan.

References
Moustafa Alzantot, Yash Sharma, Ahmed Elgohary,

Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang.
2018a. Generating natural language adversarial ex-
amples. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2890–2896, Brussels, Belgium. Association
for Computational Linguistics.

Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-
Jhang Ho, Mani B. Srivastava, and Kai-Wei Chang.
2018b. Generating natural language adversarial ex-
amples. CoRR, abs/1804.07998.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Con-
stant, Mario Guajardo-Cespedes, Steve Yuan, Chris
Tar, Yun-Hsuan Sung, Brian Strope, and Ray
Kurzweil. 2018. Universal sentence encoder. CoRR,
abs/1803.11175.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing
Dou. 2017. Hotflip: White-box adversarial examples
for NLP. CoRR, abs/1712.06751.

Ian J. Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2014. Explaining and harnessing adver-
sarial examples.

Gurobi Optimization, LLC. 2022. Gurobi Optimizer
Reference Manual.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2019. Is BERT really robust? natural
language attack on text classification and entailment.
CoRR, abs/1907.11932.

Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian,
and Mykel J. Kochenderfer. 2017. Reluplex: An effi-
cient SMT solver for verifying deep neural networks.
CoRR, abs/1702.01135.

Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting
Wang. 2019. TextBugger: Generating adversarial
text against real-world applications. In Proceedings
2019 Network and Distributed System Security Sym-
posium. Internet Society.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 142–150, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

Paul Michel, Xian Li, Graham Neubig, and Juan Miguel
Pino. 2019. On evaluation of adversarial pertur-
bations for sequence-to-sequence models. CoRR,
abs/1903.06620.

Nina Narodytska, Shiva Prasad Kasiviswanathan,
Leonid Ryzhyk, Mooly Sagiv, and Toby Walsh. 2018.
Verifying properties of binarized deep neural net-
works.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word
representation. In Empirical Methods in Natural
Language Processing (EMNLP), pages 1532–1543.

Danish Pruthi, Bhuwan Dhingra, and Zachary C. Lip-
ton. 2019. Combating adversarial misspellings with
robust word recognition.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631–1642, Seattle, Washington, USA. Association
for Computational Linguistics.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. 2013. Intriguing properties of neural
networks.

Vincent Tjeng and Russ Tedrake. 2017. Verifying neural
networks with mixed integer programming. CoRR,
abs/1711.07356.

Yuan Zang, Fanchao Qi, Chenghao Yang, Zhiyuan Liu,
Meng Zhang, Qun Liu, and Maosong Sun. 2020.
Word-level textual adversarial attacking as combi-
natorial optimization. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 6066–6080, Online. Association
for Computational Linguistics.

https://doi.org/10.18653/v1/D18-1316
https://doi.org/10.18653/v1/D18-1316
http://arxiv.org/abs/1804.07998
http://arxiv.org/abs/1804.07998
http://arxiv.org/abs/1803.11175
http://arxiv.org/abs/1712.06751
http://arxiv.org/abs/1712.06751
https://doi.org/10.48550/ARXIV.1412.6572
https://doi.org/10.48550/ARXIV.1412.6572
https://www.gurobi.com
https://www.gurobi.com
http://arxiv.org/abs/1907.11932
http://arxiv.org/abs/1907.11932
http://arxiv.org/abs/1702.01135
http://arxiv.org/abs/1702.01135
https://doi.org/10.14722/ndss.2019.23138
https://doi.org/10.14722/ndss.2019.23138
http://www.aclweb.org/anthology/P11-1015
http://arxiv.org/abs/1903.06620
http://arxiv.org/abs/1903.06620
http://arxiv.org/abs/1709.06662
http://arxiv.org/abs/1709.06662
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://doi.org/10.48550/ARXIV.1905.11268
https://doi.org/10.48550/ARXIV.1905.11268
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://doi.org/10.48550/ARXIV.1312.6199
https://doi.org/10.48550/ARXIV.1312.6199
http://arxiv.org/abs/1711.07356
http://arxiv.org/abs/1711.07356
https://doi.org/10.18653/v1/2020.acl-main.540
https://doi.org/10.18653/v1/2020.acl-main.540

332

A Creating a Synonym List

We gather a candidate set Bi for all possible swaps
of the selected word xi. For each word in the text,
we retrieve all words from GloVe (Pennington et al.,
2014) whose cosine similarity is greater than 0.8.
We use the Universal Sentence Encoder (USE) (Cer
et al., 2018) to encode sentences X and Xadv, and
extract their cosine similarity score is greater than
0.8. In addition, we check that Parts-of-Speech
(POS) matches. We cannot perform POS checking
and USE checking dynamically because it it diffi-
cult to consider altered context words of the target
word. We therefore only swap the target word for
checking.

B Formulating Piecewise Linear
Functions

Formulating the Maximum Function
As denoted in (Tjeng and Tedrake, 2017), the max-
imum function can be formulated as below.
m∧
i=1

((y ≤ xi + (1− ai) (umax,−i − li)) ∧ (y ≥ xi))

∧

(
m∑
i=1

ai = 1

)
∧ (ai ∈ {0, 1}) .

(9)

(4) can be rewritten with the maximum function
like below.

fλ(x)
(
v′) < max

µ∈[1,n]\{λ(x)}
fµ
(
v′) . (10)

Formulating ReLU
When all the nonlinear functions in the NN model
are piecewise linear, it can be solved as an ILP. A
piecewise linear function is a function that com-
bines partially linear functions such as the ReLU
function with y = max (x, 0). Specifically, for
each input scalar value x and output scalar value
y of the ReLU function, it can be formulated with
the binary variable a (Tjeng and Tedrake, 2017).

(y ≤ x− l(1− a)) ∧ (y ≥ x) ∧ (y ≤ u · a)
∧(y ≥ 0) ∧ (a ∈ {0, 1}) ,

(11)

where l is the lower bound of x and u is the up-
perbound of x. In advance, we can explore each
in each layer. l is approximated to a smaller value
and u to a larger value. As a result, it is possible to
replace y = x if l is greater than 0 and y = 0 if u is
less than 0, thus reducing computation time when
performing the entire formulation and searching.

C Example of Formulation

When we find the synonym list B2 = {film} and
B4 = {nice, great} for an input text "this movie
is good" (Figure 4), our objective is to minimize
the sum of binary variables in the orange box and
the sum of each blue box is constrained to 1. The
formulation is written as (12).

Figure 4: Example of Formulation

min (bfilm + bnice + bgreat)

bthis = 1

bmovie + bfilm = 1

bis = 1

bgood + bnice + bgreat = 1

v′
1 = vthisbthis

v′
2 = vmoviebmovie + vfilmbfilm

v′
3 = visbis

v′
4 = vgoodbgood + vnicebnice + vgreatbgreat

ypositive, ynegative = f
(
v′

1,v
′
2,v

′
3,v

′
4

)
ypositive < ynegative .

(12)

D Architecture of a Neural Network

The architecture of the NN model is a simple net-
work consisting of affine transformations and non-
linear transformations using the ReLU function, as
shown in Table 6.

Layer Shape of Output Tensor Params

Input (200) 0
Embedding (200, 2) 40,000
Flatten (400) 0
Affine (64) 25,664
ReLU (64) 0
Affine (2) 130

Table 6: Structure of Neural Network

E References of Human Evaluation

333

Score Description

4 Correct.

3 Grammatically incorrect, but acceptable as a casual expression.

2 There are one or two clear errors that are not even used as a casual expression.

1 Three or more clear errors exist.

Table 7: References for Evaluating Grammatical Correctness

Score Description

4
Paraphrase of the original sentence and the content conveyed
by the sentence has not changed. The classification result is invariant.

3
Although the content has changed to the extent that the sentence is less influenced compared
to the original sentence, the classification result is considered to be invariant.

2
Although the sentence has been changed to the extent that it has a greater impact on the meaning
of the sentence compared to the original sentence, the class label is considered unchanged.

1
It has been changed to the extent that it has a greater impact on the meaning of the sentence
compared to the original sentence, and the class label can change.

Table 8: References for Evaluating Semantic Similarity

