
Findings of the Association for Computational Linguistics: AACL-IJCNLP 2022, pages 308–318
November 20–23, 2022. ©2022 Association for Computational Linguistics

308

Memformer: A Memory-Augmented Transformer for Sequence Modeling

Qingyang Wu 1, Zhenzhong Lan 2, Kun Qian 1 Jing Gu 3

Alborz Geramifard 4 Zhou Yu 1

1 Columbia University, 2 Westlake University
3 University of California, Santa Cruz, 4 Facebook AI

{qw2345,kq2157,zy2461}@columbia.edu, jgu110@ucsc.edu
lanzhenzhong@westlake.edu.cn,alborzg@fb.com

Abstract

Transformers have reached remarkable suc-
cess in sequence modeling. However, these
models have efficiency issues as they need
to store all the history token-level represen-
tations as memory. We present Memformer,
an efficient neural network for sequence mod-
eling, that utilizes an external dynamic mem-
ory to encode and retrieve past information.
Our model achieves linear time complexity and
constant memory space complexity when pro-
cessing long sequences. We also propose a
new optimization scheme, memory replay back-
propagation (MRBP), which promotes long-
range back-propagation through time with a
significantly reduced memory requirement. Ex-
perimental results show that Memformer has
achieved comparable performance compared
against the baselines by using 8.1x less memory
space and 3.2x faster on inference. Analysis
of the attention pattern shows that our external
memory slots can encode and retain important
information through timesteps.

1 Introduction

Memory plays a fundamental role in human cogni-
tion. Humans perceive and encode sensory infor-
mation into a compressed representation stored in
neurons, and later we effectively retrieve the stored
information to accomplish various tasks. The for-
mation of memory involves complex cognitive pro-
cesses. Modeling and studying the behavior of
human memory is still a challenging research prob-
lem in many areas.

Many researchers have attempted to incorpo-
rate memory systems in artificial neural networks.
Early works like recurrent neural networks (RNN)
(Rumelhart et al., 1988) including LSTM (Hochre-
iter and Schmidhuber, 1997) and GRU (Chung
et al., 2014) model temporal sequences with their
internal compressed state vector as memory. How-
ever, they are limited in preserving the long-term
information due to the memory bottleneck. To al-

leviate this limitation, more powerful memory net-
work architectures such as Neural Turing Machine
(NTM) (Graves et al., 2014), Differential Neural
Computer (DNC) (Graves et al., 2016) have been
proposed by leveraging a large external dynamic
memory. Unfortunately, due to their complex mem-
ory interaction mechanism, they are not widely
used for down-stream tasks at present.

More recently, Vaswani et al. (2017) propose
Transformer by discarding the use of recurrence
and memory. Instead, it computes all the O(N2)
paired dependencies in a sequence with self-
attention (Bahdanau et al., 2015). Transform-
ers have achieved great success in various natu-
ral language processing tasks. Nevertheless, the
quadratic computation complexity can be costly.
Some works try to address the limitations of self-
attention, including Reformer, Sparse Transformer,
Longformer, Linformer (Child et al., 2019; Kitaev
et al., 2020; Wang et al., 2020), etc. They success-
fully reduce the complexity of self-attention and
thus enable processing longer sequences. However,
most of them still require linear memory space
complexity.

Transformer-XL (Dai et al., 2019) re-introduces
the concept of memory and recurrence. It caches
each layer’s hidden states of self-attention into a
fixed-size queue and re-uses them in the later at-
tention computation. However, the memory as
raw hidden states cannot effectively compress high-
level information. Thus, Transformer-XL in prac-
tice needs a massive memory size to perform well,
and spends huge computation in using its mem-
ory. Compressive Transformer (Rae et al., 2020)
improves upon Transformer-XL by further com-
pressing its memories into fewer vectors via a com-
pression network. However, as mentioned in the pa-
pers, both Transformer-XL and Compressive Trans-
former discard the information from the distant
past, which causes a theoretical maximum tempo-
ral range given the fixed memory size.

309

Inspired by the previous external memory net-
works, we propose Memformer, which incorporates
a fixed-size external dynamic memory combined
with the recent Transformer architecture. Mem-
former interacts with its external dynamic mem-
ory through the memory reading and writing mod-
ules. Also, we introduce a forgetting mechanism
to improve the effectiveness of memorizing new
information. By utilizing recurrence and a fixed-
size memory, our model has a theoretically infi-
nite temporal range of memorization and implies a
linear computation complexity and constant mem-
ory space complexity. As the traditional back-
propagation through time (BPTT) has an unafford-
able memory cost in our model, we introduce a
new optimization scheme, memory replay back-
propagation (MRBP), to significantly reduce the
memory cost in training recurrent neural networks
with large size of memory representations.

We evaluate Memformer on the autoregressive
image generation and language modeling task. Ex-
perimental results show that Memformer performs
on par with Transformer and Transformer XL with
large memory size, while being much more effi-
cient in terms of computation speed and memory
space consumption. We also conduct an analysis
showing that Memformer can retain information
for an extended period.

2 Related Work

This section introduces some recent research direc-
tions that aim to alleviate the quadratic cost of self-
attention. Moreover, we analyze their assumptions
and limitations under the autoregressive setting to
provide a broader view of these models.

2.1 Sparse Attention

One influential direction is to replace the full self-
attention with sparse attention patterns to speed
up the computation. Child et al. (2019) proposed
Sparse Transformer, using a block sparse atten-
tion pattern to reduce the computation complexity
to O(N

√
N). Later, Longformer (Beltagy et al.,

2020) and Big Bird (Zaheer et al., 2020) further
explored this direction and proposed an even more
sparse attention pattern to reduce the cost toO(N).
They introduced global tokens to encode the infor-
mation from the entire sequence and kept the self-
attention to the closest k tokens and the global to-
kens to achieve linear complexity. Although linear
sparse attention’s theoretical soundness is proven

for bidirectional encoders, it does not hold for the
decoder. The main reason is that the global to-
kens cannot leak information to the future tokens
in the autoregressive setting, where all the tokens
can only see their previous tokens. Thus, linear
sparse attention cannot guarantee a token to see its
all past tokens. Only Sparse Transformer here with
O(N

√
N) complexity can theoretically cover all

the past tokens for the sequence generation.

2.2 Linear Attention

Another direction is focusing on improving the
softmax operation in the self-attention. Linformer
(Wang et al., 2020) reduced the complexity to
O(N) by projecting the entire sequence to a con-
stant size of keys and values, but this method
has not been applied to autoregressive decoding.
Performer (Choromanski et al., 2020) and Linear
Transformer (Katharopoulos et al., 2020) used a
linear dot-product of kernel feature maps to replace
softmax. However, for Linear Transformer under
the autoregressive setting, it needs to compute the
cumulative summation to aggregate the history in-
formation. This assumption is too strong if the
input sequence is long and the length is not fixed.
After thousands of steps, the numerical values can
become very large due to the summation, causing
overflow and gradient instability.

2.3 Recurrence and Memory

Applying recurrence and memory to Transformers
is an orthogonal direction comparing to the effi-
cient attention approaches. If the memory size is
constant, recurrence enables the model to have con-
stant memory complexity during inference. There
are mainly two works exploring this direction.
Transformer-XL (Dai et al., 2019) used relative
positional encoding and consisted of a segment-
level recurrence mechanism to encode beyond a
fixed-length context. Compressive Transformer
(Rae et al., 2020) extended from Transformer-XL
by further compressing the previous cached hid-
den states to achieve a longer context. However,
using past hidden states as memory would cause
a theoretical maximum temporal range of context,
meaning that a token is not guaranteed to see all
the past tokens. Thus, in practice, Transformer-XL
and Compressive Transformer need huge memory
size to achieve good performance.

310

Figure 1: Memformer overall architecture for the en-
coder (left) and decoder (right). Transformer encoder
is responsible to interact with the memory. Sequence
modeling is achieved by predicting the next segment
conditioned to the current segment and memory.

2.3.1 Dynamic Memorization
Within the scope of memory networks, there are
dynamic memorization techniques. Different from
Transformer-XL which stores the token-level his-
tory representations as memory, dynamic memo-
rization does not have a theoretical upper bound for
the temporal range. Neural Turing Machine (NTM)
(Graves et al., 2014) and Differential Neural Com-
puter (DNC) (Graves et al., 2016) are two early
models that can control external memory resources
to achieve long-lasting memory. However, their
complex memory mechanisms cause them to be
slow and unstable during training. In this work,
we propose a dynamic memorization mechanism
to achieve more efficient memory representations.

3 Methods

In this section, we first formalize the segment-level
sequence modeling. Then, we present the memory
reading and writing modules. Finally, we explain
the memory replay back-propagation (MRBP) al-
gorithm used for training.

3.1 Segment-level Sequence Modeling
Given a sequence of N tokens x1, x2, . . . , xN , an
standard language model learns the joint probabil-

ity of the sequence by taking the product of each
token’s probability conditioned to the previous to-
kens, which is defined as:

P (x) =
∏
t

P (xt|x<t)

When we have a large external memory sys-
tem to store the history information, we cannot
afford to interact with memory for every token.
The workaround is to process a long sequence
at the segment level. We can split a sequence
into T segments and each segment has L tokens:
st = {xt,1, xt,2, . . . xt,L}.

Because a bidirectional encoder is better at ex-
tracting word representations, we apply a Trans-
former encoder-decoder here. The encoder’s role is
to encode the segment st and inject the information
into the memory Mt, while it also retrieves past
information from the previous timestep’s memory
Mt−1. The encoder’s final output will be fed into
the decoder’s cross attention layers to predict the
token probabilities of the next timestep’s segment
st+1 with standard language modeling.

Mt = Encoder(st,Mt−1)

P (st|s<t) =
∏

n=1:L

PDecoder(xt,n |xt,<n,Mt−1)

P (x) =
∏

t=1:T

PModel(st|s<t)

At each timestep, given a segment as the input,
the model needs to continue that segment by gener-
ating the next text segment, and the generated seg-
ment will be fed back into the model again. Since
the memory stores all the past information, we can
autoregressively generate all the token segments
in a sequence. In this fashion, we can model the
entire long sequence.

Figure 1 shows the overall architecture of Mem-
former. We will further explain each component
and the implementation in the following sections.

3.2 External Dynamic Memory Slots
External dynamic memory (EDM) is a data struc-
ture that stores high-level representations of past
inputs. “Dynamic” means that the model interac-
tively encodes and retrieves the information from
memory in a recurrent manner. This contrasts with
static memory design, where the memory is stored
statically and does not change during the inference.

In our design, we allocate a constant k number of
vectors as the external dynamic memory. At each

311

Figure 2: Memory Reading. The input sequence x
attends over all the memory slots to retrieve the history
information.

timestep t, we can have Mt = [m0
t ,m

0
t , . . . ,m

k
t].

For each sample in the batch, they have separate
memory representations. Therefore, similar to
RNN during inference, the memory consumption
will be constant no matter how long the input se-
quence is. We name it memory slots because each
slot is working individually to have different repre-
sentations. The following sections will explain how
the model manages to read and write this memory.

3.3 Memory Reading

For each input segment sequence, the model needs
to read the memory to retrieve relevant past infor-
mation. We leverage the cross attention to achieve
this function:

Qx,KM , VM = xWQ,MtWK ,MtWV (1)

Ax,M = MHAttn(Qx,KM) (2)

Hx = Softmax(Ax,M)VM (3)

MHAttn refers to Multi-Head Attention. Mem-
ory slot vectors are projected into keys and values,
and the input sequence x is projected into queries.
Then the input sequence’s queries attend over all
the memory slots’ key-value pairs to output the fi-
nal hidden states. This enables the model to learn
the complex association of the memory. Figure 2
shows the illustration.

Memory reading occurs multiple times as ev-
ery encoder layer incorporates a memory reading
module. This process ensures a higher chance of
successfully retrieving the necessary information
from a large memory.

3.4 Memory Writing

Memory writing involves a slot attention module
to update memory information and a forgetting
method to clean up unimportant memory informa-
tion. Contrary to memory reading, memory writing

only happens at the last layer of the encoder. This
helps to store the high-level contextual represen-
tations into the memory. In practice, we append
some classification tokens to the input sequence to
better extract the sequence representations.

Figure 3: Memory Writing. Each memory slot attends
over itself and the input sequence representations to
produce the next timestep’s memory slot.

3.4.1 Update via Memory Slot Attention
Figure 3 shows how memory is updated with the
current segment’s information. Each slot is sepa-
rately projected into queries and keys. The segment
token representations are projected into keys and
values. Slot attention means that each memory slot
can only attend to itself and the token representa-
tions. Thus, each memory slot cannot write its own
information to other slots directly, as memory slots
should not be interfering with each other.

Qmi ,Kmi = miWQ,m
iWK (4)

Kx, Vx = xWK , xWV (5)

A′
mi =MHAttn(Qmi , [Kmi ;Kx]) (6)

When we compute the final attention scores, we
divide the raw attention logits with a temperature
τ (τ < 1). This operation sharpens the attention
distribution, which makes the writing focusing on
fewer slots or token outputs.

Ami =
exp(A′

i/τ)∑
j exp(A

′
j/τ)

(7)

Finally, the next timestep’s memory is collected
with by attention.

mi
t+1

′
= Softmax(Ax,M) [mi

t;Vx] (8)

The attention mechanism helps each memory slot
to choose to whether preserve its old information
or update with the new information.

312

Figure 4: Illustration of forgetting. Memory slot ma is
easy to be forgotten, while mb is hard to be forgotten.

3.4.2 Implementation of Memory Writer
Since each memory slot stores the information in-
dependently, we design a special type of sparse
attention pattern. Each slot in the memory can only
attend over itself and the encoder outputs. It aims
to preserve the information in each slot longer over
the time horizon. When a slot only attends itself
during writing, the information will not be changed
in the next timestep.

3.4.3 Forgetting Mechanism
Forgetting is crucial for learning as it helps to filter
out trivial and temporary information to memorize
more important information. LSTM introduces the
forget gate (Gers et al., 2000) to reset its mem-
ory state, and the forget gate is proven to be the
most important component in the LSTM (van der
Westhuizen and Lasenby, 2018).

In this work, we introduce a forgetting mecha-
nism called Biased Memory Normalization (BMN),
specifically designed for our slot memory represen-
tations. We normalize the memory slots for every
step to prevent memory weights from growing in-
finitely and maintain gradient stability over long
timesteps. To help forget the previous information,
we add a learnable vector vbias to it. Also, naturally
the initial state vibias is after normalization.

mi
t+1 ← mi

t+1 + vibias

mi
t+1 ←

mi
t+1

||mi
t+1||

mi
0 ←

vibias

||vibias||

In Figure 4, we illustrate the forgetting mecha-
nism with the learnable bias vector vbias. Because
of the normalization, all memory slots will be pro-
jected onto a sphere distribution. Here, we demon-
strate with a 2D sphere for simplicity.
vbias here controls the speed and the direction

of forgetting. When adding vbias to the memory

Algorithm 1: Memformer Update
Input: rollout=[xt, xt+1, . . . , xT]: a

list containing previous
inputs
memories=[Mt,Mt+1, . . . ,MT]:
memory from the previous

▷ Initialize a list for
back-propagation

1 replayBuffer = [Mt]
▷ Forward pass & no gradient

2 for t = t, t+ 1, . . . , T − 1 do
3 Mt+1, _ = Model(xt, Mt)
4 replayBuffer.append(Mt+1)
5 end
▷ Backward pass with gradient

6 ∇Mt+1 = 0
7 for t = T, T − 1, . . . , t+ 1, t do

▷ Recompute
8 Mt+1, Ot = Model(xt, Mt)
9 loss = floss(Ot)

10 loss.backward()
11 Mt+1.backward(∇Mt+1)
12 ∇Mt+1 = ∇Mt

13 end
▷ Update and pop the oldest
memories

14 memories = replayBuffer
15 memories.pop()

slot, it would cause the memory to move along
the sphere and forget part of its information. If a
memory slot is not updated for many timesteps, it
will eventually reach the terminal state T unless
the new information is injected. The terminal state
is also the initial state, and it is learnable.

The speed of forgetting is controlled by the mag-
nitude of vbias and the cosine distance between
m′

t+1 and vbias. For example, mb is nearly opposite
to the terminal state, and thus would be hard to
forget its information. ma is closer to the terminal
state and thus easier to forget.

3.5 Memory Replay Back-Propagation

Memformer relies on the external memory to pro-
cess a sequence. At inference time, there is no addi-
tional memory cost because of the fixed-size mem-
ory design. Nevertheless, during training, it would
require back-propagation through time (BPTT) so
that the memory writer network can be trained to
retain long-term information. The problem with

313

traditional BPTT is that it unrolls the entire compu-
tational graph during the forward pass and stores
all the intermediate activations. This process would
lead to impractically huge memory consumption
for Memformer.

A favorable existing approach to eliminate this
problem is gradient checkpointing (Chen et al.,
2016). The algorithm can significantly reduce the
memory cost of a large neural network. However,
the standard gradient checkpointing still needs to
compute all the nodes in the computational graph
and store unnecessary activations during the for-
ward pass. We propose Memory Replay Back-
Propagation (MRBP), a more efficient variant of
gradient checkpointing, by replaying the mem-
ory at each timestep to accomplish gradient back-
propagation over long unrolls.

The algorithm takes an input with a roll-
out xt, xt+1, . . . , xT and the previous memories
Mt,Mt+1, . . . ,MT if already being computed.
MRBP only traverses the critical path in the compu-
tational graph during the forward pass and recom-
putes the partial computational graph for the local
timestep during the backward pass. It then obtains
each timestep’s memory and stores those memories
in the replay buffer. The full algorithm is described
in Algorithm 1. The experiments of memory cost
reduction with MRBP is in the Appendix A.

4 Experiments

4.1 Computation and Memory Cost

We experimented the computation and memory
cost of Vanilla Transformer, Transformer-XL, and
Memformer. For Vanilla Transformer, it has to in-
crease the input sequence length to encode more
tokens. Its cost is O(N2) where N is the sequence
length. Transformer-XL and Memformer use mem-
ory to store the history information, and the input
sequence length is a constant value. Thus, their
computation complexity is O(N).

As a trade-off, for both Transformer-XL and
Memformer, the memory size is then an important
factor to affect the capacity of storing the history
information. Transformer-XL stores the past hid-
den states for all layers as memory. If L is the
number of layers, and K is the memory size, then
the memory cost is O(K × L). Memformer only
stores K vectors as memory with cost O(K).

To better illustrate the difference, Figure 5 shows
the number of FLOPs (floating-point operations)
versus sequence length (left) and the GPU mem-

ory consumption versus memory size on the ac-
tual models (right). The sequence length is in-
creased from 128 to 8, 192. Here, Memformer and
Transformer-XL had the same number of param-
eters. From the figure, Vanilla Transformer has
the largest computation cost growth. Memformer’s
costs grew linearly with the sequence length and
achieved better efficiency than Transformer-XL.
Then, we compared the GPU memory consump-
tion. We tested the memory size ranging from 64
to 2, 048, with a batch size 16 for better visibil-
ity of memory cost difference. Transformer-XL’s
memory consumption grew rapidly with the mem-
ory size, while Memformer is more efficient with
large memory size. In large memory size setting,
Memformer uses 8.1x less memory space.

4.2 Autoregressive Image Generation

Model #FLOPs (B) Perplexity ↓

LSTM 52.5 1.698
Transformer Decoder 41.3 1.569
Transformer-XL

memory=56 5.6 1.650
memory=224 15.6 1.618
memory=784 49.1 1.611

Memformer
4 encoder+8 decoder 5.0 1.555

Memformer Ablation
2 encoder+6 decoder

memory=64 3.9 1.594
memory=32 3.9 1.600
memory=16 3.9 1.604
memory=1 3.9 1.627

4 encoder+4 decoder 3.6 1.628
w/o memory 1.8 1.745
temperature=1.0 3.9 1.612
w/o forgetting 3.9 1.630
w/o multi-head 3.9 1.626

Table 1: Results for autoregressive image generation.
Our method only takes about 10% FLOPs of the best
Transformer-XL model.

Recent research (Ramesh et al., 2021) demon-
strates the approach of treating an image as a long
sequence for image generation. Thus, we evalu-
ated our model on the MNIST (LeCun and Cortes,
2010) image generation task with sequence model-
ing. Each image of size 28× 28 was reshaped into
a sequence of 784 tokens, and the 8-bit gray-scale
was turned to a 256 vocabulary size.

For the baselines, LSTM had 4 layers and 512
hidden size. Transformer Decoder had 8 layers

314

Figure 5: Comparison of the number of FLOPs and GPU memory consumption for Vanilla Transformer, Transformer-
XL, and Memformer.

and could take all the 784 tokens as the input.
Transformer-XL had 8 layers. All the models had
the same 128 hidden size, 4 attention heads, 32
head size, and 256 feedforward size. Memformer
was tested with default memory size 64. The de-
fault memory writer temperature was set to 0.25.
We also conducted ablation studies to examine the
contribution of various components.

Model #FLOPs (B) PPL ↓

Transformer-XL base
memory=1600 250 23.95
memory=1024 168 23.67
memory=512 94 23.94
memory=256 58 25.39
memory=128 39 25.60
memory=32 26 27.22

Compressive Transformer
memory= 512 compress=512 172 23.23

Memformer
4 encoder + 16 decoder 54 22.74

Memformer Ablation
4 encoder + 12 decoder 48 23.91
memory=512 35 23.30
w/o memory 31 25.57

Table 2: Experimental results on language modeling.
Our method is 3.2 times faster here.

Table 1 shows the experimental results. We re-
port median from three trials. Our Memformer
with 4 layers of encoder and 8 layers of decoder
achieved the best performance (1.555), while only
using nearly 10% of FLOPs compared to the best
Transformer XL baseline with memory size of
784 (1.611). Its performance was even better than
the Transformer Decoder with the entire input se-
quence. We hypothesized that this observation was
due to the extra parameters from the 4 layers of en-
coder. Therefore, we conducted an ablation study

by having various numbers of encoder and decoder
layers. If we reduce the number of decoder layers
in Memformer (4 encoder+4 decoder), the perfor-
mance dropped as shown (1.628). Results indi-
cated that the number of decoder layers was im-
portant for the performance. Overall, Memformer
outperformed Transformer-XL with a much lower
computation cost.

The performance increased as the memory size
increased. Moreover, when we completely re-
moved the memory, Memformer performed terribly,
signifying the importance of the encoded informa-
tion in the memory. Other components such as
forgetting mechanism, memory writer temperature,
multi-head attention were proven to contribute to
the final performance as well.

4.3 Language Modeling

We also conducted experiments on WikiText-103
(Merity et al., 2017), which is a long-range lan-
guage modeling benchmark. It contains 28K ar-
ticles with an average length of 3.6K tokens per
article. Due to the limitation of computational re-
sources, we are unable to experiment on the more
recent PG19 (Rae et al., 2020) dataset. To study
the computation cost and memory efficiency, we
test with Transformer-XL base with 16 layers, 512
hidden size, 2, 048 feedforward size, 64 head size,
and 8 heads. The details are in the Appendix.

Memformer has the same hidden size, feedfor-
ward size, head size, and number of heads. We
also re-implement a version of Compressive Trans-
former of the same size as there is no official imple-
mentation. The memory length is set to 512, and
the compressive memory length is 512. The com-
pression ratio is 4. The target sequence length for
all models was set to 128. We test the performance
under various memory sizes.

315

Table 2 summarizes the results on WikiText-103
test set. We report the number of inference FLOPs
(billions) and perplexity median from three trials.
As Transformer-XL’s memory size increased, the
perplexity dropped as expected, but the the num-
ber of FLOPs grew quickly because the attention
length was also increased. The perplexity stopped
decreasing after we increased the memory size to
1, 600. We suspect that since the average num-
ber of tokens in WikiText-103 is 3, 600, a larger
memory size would bring noises and hence did not
further improve the performance compared to a
smaller memory size (1, 024). Compressive Trans-
former achieves slightly better performance with
extra FLOPS compared to Transformer XL with
memory size 1024.

Memformer with 4 encoders, 16 decoders, and
1, 024 memory size achieved the best performance.
It required much less computation cost (54) and
performed much better than Transformer-XL with
1, 024 memory size, supporting that Memformer
has a more efficient memory representation.

In the ablation studies, to compensate for the ex-
tra number of encoder layers, we reduced the num-
ber of decoder layers to 12. The final performance
was close to Transformer-XL, but Memformer used
a much smaller number of FLOPs. Also, memory
size was important for Memformer, as the perfor-
mance dropped after the memory size is reduced
to 512. When we completely removed the memory
module by removing the memory writer and mem-
ory reading cross attention, the perplexity increased
to 25.57, which is similar to Transformer-XL with
a memory size of 128.

4.3.1 Memory Writer Analysis

Figure 6: Visualization of three types of memory slots.

It is interesting to interpret how memory writer
updates the memory slots. We analyzed the atten-
tion outputs from the memory writer. We roughly
categorized the memory slots into three different
types and visualized three examples with normal-
ized attention values in Figure 6.

We picked the memory slot m250, m300 , and

m355. During the middle of processing a docu-
ment, around 60% to 80% of the memory slots are
like m300. Their attention focused on themselves,
meaning that they were not updating for the current
timestep. This suggests that the memory slots can
carry information from the distant past.

For the second type, the memory slot m250 had
some partial attention over itself and the rest of
attention over other tokens. This type of memory
slots is transformed from the first type of memory
slots, and at the current timestep they aggregate
information from other tokens.

The third type of memory slot looks like m355. It
completely attended to the input tokens. At the be-
ginning, nearly all memory slots belong to this type,
but later only 5% to 10% of the total memory slots
account for this type. We also found that the forget-
ting vector’s bias for m355 had a larger magnitude
(3.20) compared to some other slots (1.15), sug-
gesting that the information was changing rapidly
for this memory slot.

Figure 7: Visualization of the memory writer’s attention.

To better understand how the slot m355 update
its information, we visualized its attention on an
example input sequence in Figure 7. It shows that
this slot learned a compressed representation of the
sentence by attending over some named entities and
verbs, which is consistent with human cognition.

5 Conclusion

We presented Memformer, an autoregressive model
which utilizes an external dynamic memory to
efficiently process long sequences with a linear
time complexity and constant memory complex-
ity. Along with Memformer, we introduced a
new optimization scheme, Memory Replay Back-
propagation, which enables training recurrent neu-
ral networks with large memory. Experimental
results showed that Memformer achieved compa-
rable performance with great efficiency, and was
able to preserve information from the distant past.

With the enhanced memory capacity, we believe
that Memformer can spark interesting works that
rely on recurrence and autoregressive modeling,
which will benefit tasks such as dialog and interac-
tive systems.

316

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd International
Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer. CoRR,
abs/2004.05150.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos
Guestrin. 2016. Training deep nets with sublinear
memory cost. CoRR, abs/1604.06174.

Rewon Child, Scott Gray, Alec Radford, and
Ilya Sutskever. 2019. Generating long se-
quences with sparse transformers. URL
https://openai.com/blog/sparse-transformers.

Krzysztof Choromanski, Valerii Likhosherstov, David
Dohan, Xingyou Song, Andreea Gane, Tamás Sar-
lós, Peter Hawkins, Jared Davis, Afroz Mohiuddin,
Lukasz Kaiser, David Belanger, Lucy Colwell, and
Adrian Weller. 2020. Rethinking attention with per-
formers. CoRR, abs/2009.14794.

Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence mod-
eling. In NIPS 2014 Workshop on Deep Learning,
December 2014.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Car-
bonell, Quoc Viet Le, and Ruslan Salakhutdinov.
2019. Transformer-xl: Attentive language models
beyond a fixed-length context. In Proceedings of
the 57th Conference of the Association for Compu-
tational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages
2978–2988. Association for Computational Linguis-
tics.

Felix A. Gers, Jürgen Schmidhuber, and Fred A. Cum-
mins. 2000. Learning to forget: Continual prediction
with LSTM. Neural Comput., 12(10):2451–2471.

Alex Graves, Greg Wayne, and Ivo Danihelka. 2014.
Neural turing machines. CoRR, abs/1410.5401.

Alex Graves, Greg Wayne, Malcolm Reynolds,
Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwinska, Sergio Gomez Colmenarejo, Edward
Grefenstette, Tiago Ramalho, John P. Agapiou,
Adrià Puigdomènech Badia, Karl Moritz Hermann,
Yori Zwols, Georg Ostrovski, Adam Cain, Helen
King, Christopher Summerfield, Phil Blunsom, Ko-
ray Kavukcuoglu, and Demis Hassabis. 2016. Hybrid
computing using a neural network with dynamic ex-
ternal memory. Nat., 538(7626):471–476.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735–
1780.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pap-
pas, and François Fleuret. 2020. Transformers are
rnns: Fast autoregressive transformers with linear
attention. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18
July 2020, Virtual Event, volume 119 of Proceedings
of Machine Learning Research, pages 5156–5165.
PMLR.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer. In 8th
International Conference on Learning Representa-
tions, ICLR 2020, Addis Ababa, Ethiopia, April 26-
30, 2020. OpenReview.net.

Yann LeCun and Corinna Cortes. 2010. MNIST hand-
written digit database.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Jack W. Rae, Anna Potapenko, Siddhant M. Jayakumar,
Chloe Hillier, and Timothy P. Lillicrap. 2020. Com-
pressive transformers for long-range sequence mod-
elling. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott
Gray, Chelsea Voss, Alec Radford, Mark Chen, and
Ilya Sutskever. 2021. Zero-shot text-to-image gener-
ation.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J.
Williams. 1988. Learning Representations by Back-
Propagating Errors, page 696–699. MIT Press, Cam-
bridge, MA, USA.

Jos van der Westhuizen and Joan Lasenby. 2018. The
unreasonable effectiveness of the forget gate. CoRR,
abs/1804.04849.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, 4-9 December
2017, Long Beach, CA, USA, pages 5998–6008.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang,
and Hao Ma. 2020. Linformer: Self-attention with
linear complexity. CoRR, abs/2006.04768.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, et al. 2020. Big bird: Transformers for
longer sequences. Advances in Neural Information
Processing Systems, 33.

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/2004.05150
http://arxiv.org/abs/1604.06174
http://arxiv.org/abs/1604.06174
http://arxiv.org/abs/2009.14794
http://arxiv.org/abs/2009.14794
https://doi.org/10.18653/v1/p19-1285
https://doi.org/10.18653/v1/p19-1285
https://doi.org/10.1162/089976600300015015
https://doi.org/10.1162/089976600300015015
http://arxiv.org/abs/1410.5401
https://doi.org/10.1038/nature20101
https://doi.org/10.1038/nature20101
https://doi.org/10.1038/nature20101
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://proceedings.mlr.press/v119/katharopoulos20a.html
http://proceedings.mlr.press/v119/katharopoulos20a.html
http://proceedings.mlr.press/v119/katharopoulos20a.html
https://openreview.net/forum?id=rkgNKkHtvB
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=SylKikSYDH
https://openreview.net/forum?id=SylKikSYDH
https://openreview.net/forum?id=SylKikSYDH
http://arxiv.org/abs/2102.12092
http://arxiv.org/abs/2102.12092
http://arxiv.org/abs/1804.04849
http://arxiv.org/abs/1804.04849
http://papers.nips.cc/paper/7181-attention-is-all-you-need
http://papers.nips.cc/paper/7181-attention-is-all-you-need
http://arxiv.org/abs/2006.04768
http://arxiv.org/abs/2006.04768

317

A MRBP Efficiency Test

In this section, we test MRBP’s efficiency by
comparing against the standard back-propagation
through time (BPTT) and the standard gradient
checkpointing (GC) algorithm. This algorithm is
useful for Memformer to reduce memory require-
ment because of the back-propagation through sev-
eral timesteps. We use the Memformer model and
set all the hyper-parameters to be the same.

Method GPU Memory (MB) Speed (relative)

BPTT 16,177 x1.00
GC 9,885 x0.48
MRBP 7,229 x0.90

Table 3: Memory Replay Back-Propagation perfor-
mance comparison. Evaluation speed is based on
seconds per sample. BPTT means back-propagation
through time. GC means gradient checkpointing.

The back-propagation through time (BPTT) ap-
proach is the fastest because it does not need re-
computation. However, it costs the most amount of
memory due to unrolling the entire computational
graph. While gradient checkpointing can save huge
amount of memory, it is much slower than the other
two methods (x0.48). In contrast, our MRBP saves
more GPU memory with only slight speed degen-
eration (x0.90).

B Training Details

Image Generation Language Modeling

batch size 256 128
warm-up steps 1,000 1,0000
learning rate 1e-3 1e-3
dropout 0.1 0.1
memory length 8 1,024
temperature 0.25 0.125
time horizon 8 8
weight decay 0.01 0.01
max gradient norm 1.0 1.0
training steps 10,000 150,000

Table 4: Training Details

We trained our model on NVIDIA V100 16GB
and 2080Ti 11GB. The training for image genera-
tion took about one day on one GPU. The training
for language modeling took approximately four
days on four GPUs.

(a) Effects of different time horizons

(b) Effects of different memory sizes

Figure 8: Effects of different configurations. (a) shows
the effects of changing time horizon. (b) shows the
effects of changing memory size.

C Effects of Time Horizon and Memory
Size

We test how the time horizon for back-propagation
affects the performance. We test on a smaller Mem-
former model for the efficiency. The results are
shown in Figure 8a. We vary the back-propagation
time horizon from 1 to 32. When the time horizon
is set to 1, back-propagation cannot pass gradients
through memory to the previous timestep. Thus,
we observe the performance is the worst when the
time horizon is 1. As we increase the time horizon,
the model achieves better perplexity scores. When
the time horizon is increased to 32, we observe
the marginal improvement on perplexity is almost
gone. A large memory size ideally helps to store
more information. From Table 8b, we can see a
huge improvement when increasing the memory
size from 1 to 8. Furhter increasing the memory
size has a smaller effects on the performance, and
we suspect that this is due to the size of the model.

D Implementation of Memory Writer

Memory Slot Attention in Figure 9 produces the
next timestep’s memory Mt+1. This module takes
the inputs of the previous timestep’s memory Mt

and the encoder’s final hidden states. It then

318

Figure 9: Memory Writer’s Attention

projects the memory into queries, keys, and values,
while the encoder outputs are into keys and values.
Since each memory slot should not be interfering
with other memory slots, we design a special type
of sparse attention pattern. Thus, each slot in the
memory can only attend over itself and the encoder
outputs. This is to preserve the information in each
slot longer over the time horizon. For example, if
one slot only attends itself, then the information in
that slot will not change in the next timestep.

