Multilingual CheckList: Generation and Evaluation

Karthikeyan K3*, Shaily Bhatt!*, Pankaj Singh!, Somak Aditya®,
Sandipan Dandapat?, Sunayana Sitaram', Monojit Choudhury’
! Microsoft Research, Bengaluru, India
2 Microsoft R&D, Hyderabad, India
3 Department of Computer Science, Duke University
4 Department of CSE, IIT Kharagpur

karthikeyan.k@duke.edu,

Abstract

Multilingual evaluation benchmarks usually
contain limited high-resource languages and
do not test models for specific linguistic capa-
bilities. CheckList (Ribeiro et al., 2020) is a
template-based evaluation approach that tests
models for specific capabilities. The CheckList
template creation process requires native speak-
ers, posing a challenge in scaling to hundreds
of languages. In this work, we explore multi-
ple approaches to generate Multilingual Check-
Lists. We device an algorithm — Template
Extraction Algorithm (TEA) for automatically
extracting target language CheckList templates
from machine translated instances of a source
language templates. We compare the TEA
CheckLists with CheckLists created with dif-
ferent levels of human intervention. We fur-
ther introduce metrics along the dimensions
of cost, diversity, utility, and correctness to
compare the CheckLists. We thoroughly an-
alyze different approaches to creating Check-
Lists in Hindi. Furthermore, we experiment
with 9 more different languages. We find that
TEA followed by human verification is ideal
for scaling Checklist-based evaluation to mul-
tiple languages while TEA gives a good esti-
mates of model performance. We release the
code of TEA and the CheckLists created at
aka.ms/multilingualchecklist

1 Introduction

Multilingual transformer based models (Devlin
et al., 2019; Conneau et al., 2020; Liu et al., 2020;
Xue et al., 2021) have demonstrated commendable
zero & few-shot capabilities. Their performance
is typically evaluated on benchmarks like XNLI
(Conneau et al., 2018), XGLUE (Liang et al., 2020),
XTREME (Hu et al., 2020b) & XTREME-R (Ruder
et al., 2021). However, this evaluation paradigm
has a number of limitations including: First, most
of these datasets are limited to a few high resource
languages (Hu et al., 2020a; Wang et al., 2020;
Vuli¢ et al., 2020), except for a few tasks (e.g.,

sadityalcse.iitkgp.ac.in,
{t-shbhatt, t—-pasingh, sadandap, sunayana.sitaram,monojitc}@microsoft.com

NER, POS (Ahuja et al., 2022; Bhatt et al., 2021a)).
Second, creating high quality test sets of substantial
size for many tasks and languages is prohibitively
expensive. Third, state-of-art models are known
to learn spurious patterns to achieve high accura-
cies, saturating performance on these test-benches,
yet performing poorly on often much simpler real
world cases (Goyal et al., 2017; Gururangan et al.,
2018; Glockner et al., 2018; Tsuchiya, 2018; Geva
et al., 2019). Fourth, these benchmarks do not eval-
uate models for language specific nuances (Ribeiro
et al., 2020). Lastly, this evaluation approach does
not provide any insights into where the model is
failing (Wu et al., 2019). These limitations lead
to the need of interactive, challenging, and much
larger testing datasets (like (Srivastava et al., 2022;
Kiela et al., 2021)) and more holistic approaches to
evaluation (like Ribeiro et al. (2020)).

CheckList (Ribeiro et al., 2020) is an evaluation
paradigm that systematically tests the various (/lin-
guistic) capabilities required to solve a task. It
allows creation of large and targeted test sets eas-
ily using various abstractions. Specifically, users
can generate templates, essentially sentences with
slots that can be filled in with a dictionary of /ex-
icons to generate test instances. CheckList tem-
plates are created by native speakers. Ruder et al.
(2021) introduce Multilingual Checklists created
by human translation from English CheckList for
50 languages for a subset of tests on Question An-
swering. However, since CheckLists are task &
language specific, human creation or translation of
CheckLists remains extremely resource-intensive.

In this paper, we introduce an automatic ap-
proach to creating Multilingual CheckLists. We de-
vise the Template Extraction Algorithm (TEA) for
extracting templates in a target language from the
translated instances of a source language CheckList
(here English) automatically (§2). We also experi-
ment with semi-automatic and manual approaches
for Multilingual CheckList creation (§3). In the

282

Findings of the Association for Computational Linguistics: AACL-IJCNLP 2022, pages 282-295
November 20-23, 2022. ©2022 Association for Computational Linguistics

https://aka.ms/multilingualchecklist

semi-automatic approach (TEA-ver), we ask hu-
man annotators to verify and correct the templates
created by TEA. In the manual approach, we ask an-
notators to create CheckLists in two ways: first, by
translation of English CheckList to the target lan-
guage (t9n) (same as Ruder et al. (2021)); Second,
by giving a description of the task and capabili-
ties to create CheckLists from scratch (SCR) (same
as original English CheckLists creation (Ribeiro
et al., 2020)).Using these four approaches, we cre-
ate CheckLists for Sentiment Analysis (SA) and
Natural Language Inference (NLI) in Hindi (§5).
We demonstrate broad applicability of TEA by gen-
erating CheckLists in additional 9 typologically di-
verse languages (Gujarati, French, Swahili, Arabic,
German, Spanish, Russian, Vietnamese, Japanese)
and TEA-ver CheckLists in 3 of them (§6).

Evaluation of CheckLists is non-trivial. For thor-
ough comparisons, we propose evaluation metrics
along four axes: utility, diversity, cost & correct-
ness (§4). Our evaluation indicates that CheckLists
created using TEA are not only cost-effective but
also useful and diverse, with comparable quality
to the manually and semi-automatically created
CheckLists. Experiments on typologically diverse
languages show that TEA CheckLists provide a
good estimate of the failures of the model, and thus
can be used even in the absence of resources to ver-
ify them or create human-annotated gold test-sets.

To summarize, our contributions are: a) We pro-
pose TEA (Template Extraction Algorithm) to ex-
tract templates in a target language using translated
instances of a source CheckList. b) We experi-
ment with varying degrees of human intervention,
comparing semi-automatic & manual approaches
of Multilingual CheckList creation with TEA, to
understand the best utilization of the human effort.
¢) We introduce evaluation metrics along the axes
of utility, diversity, cost, and correctness for in-
depth comparison of the the CheckLists. d) We
will release all the 4 CheckLists in Hindi for SA
and NLI, TEA CheckLists in 9 languages for SA
and TEA-ver CheckLists in 3 languages for SA.

We release the code of TEA and the CheckLists
created at aka.ms/multilingualchecklist

2 TEA: Template Extraction Algorithm

Terminology (consistent with Ribeiro et al. (2020)):
Linguistic capabilities: These are capabilities
tested for a particular task. For e.g, negation.

Templates: These are sentences with slots. For e.g,

{CITY} is beautiful’. Here, ‘{CITY}’ is a slot.
Templates can have any number of slots.

Lexicon keys and values: This a dictionary of
values. In the above example, ‘CITY’ is the key.
Values are the words that would be filled in the slots
(replacing the keys) like ‘New Delhi’, ‘New York’,
‘London’, etc. We use the notation ‘CITY = [‘New
Delhi’, ‘London’, ‘New York’] ’ for lexicons.
Instances: These are test sentences created by in-
serting lexicon values in templates . In the above
example, the instances formed are: ‘New York is
beautiful’, ‘London is beautiful’, etc.

The CheckList paradigm allows creation of large
number of test instances. For multilingual evalua-
tion, these can then be translated to the target lan-
guages using Machine Translation. However, there
are limitations to this approach. Firstly, a large
machine translated test set is difficult to be veri-
fied by humans, as one would have to go through
every example. Second, it defeats the purpose of
abstraction that CheckLists facilitates. And third,
the quality of this test set will be directly impacted
by the quality of the MT system. This results in the
need to generate templates in the target language so
that these can be utilized and verified in the same
fashion as the template sets in the source language.

Our early experiments suggested that due to
word order and syntactic differences between lan-
guages, both: 1) a word-to-word or heuristic trans-
lation of the template and 2) extraction of template
from a single source instance (such as by simply
replacing one word with other in a single translated
instance) do not work well for template translation.
This necessities a non-trivial algorithm that can
extract templates given a set of instances.

We propose the Template Extraction Algorithm
or TEA, to automatically extract template sets
given an input a set of instances. In this paper,
these input instances for TEA are obtained by ma-
chine translating instances created from the source
CheckList template sets. We use machine transla-
tion to reduce cost and human effort, but the algo-
rithm can be used with any input set of instances,
i.e it would work with human-translated instances.

Briefly, TEA is a recursive approach to extract
templates from input instances by treating every in-
put instance as directed acyclic graph of the words.
TEA combines the instances with similar structure
into a single template by recursively merging in-
stances and replacing terminals (or lexicon values)
with non-terminals (or lexicon keys).

Figure 1 shows how TEA creates lexicon keys by

283

https://aka.ms/multilingualchecklist

Hindi
Examples

ﬁw_vﬁ;i;j'fg
Recft g
R PAEE

English
Examples

Delhi is wonderful
Delhi is beautiful
Delhi is nice
Delhi is famous
Paris is wonderful
Paris is beautiful
Paris is nice
Paris is famous
New York is wonderful
New York is beautiful
New York is nice
New York is famous

English template and lexicon

Template: {CITY} is {ADJ}

Lexicon: {CITY} = [‘Delhi’, ‘Paris’, ‘New York'];
{ADJ} = [‘wonderful’, ‘beautiful’, ‘nice’, ‘famous’]

/

Hindi template and lexicon

Template: {Key_1} {Key_2}%&
Lexicon: {Key_1} = ['ﬁ'«'ﬁﬁ', R,
{Key_2} = [BHTeT, G, ‘3BT,]

-
Output *

_ TEA |
“BHTA
—— (Wonderful)
et
/' (Delhi) - I
| (Beautiful) H
Start f\ o % p— i End
(Paris) X
(Nice)
N = S G AN
(New) (York) (Famous)

Figure 1: TEA treats sentences as a directed acyclic graph & recursively replaces lexicon values with keys.

combining instances from the translated instances.
We assume English (EN) to be the source language
and Hindi (HI) to be the target language. The
pipeline starts with an EN template, the instances
are created by replacing the lexicon values in the
templates, that are then machine translated to get
HI instances. These instances function as input
to TEA which then recursively groups instances
using non-terminals to form templates. The entire
process of template extraction is repeated for ev-
ery EN template, resulting in the HI template set.
The TEA has 3 steps which we describe as follows
(pseudocode and details are in appendix A):

Step 1: Grouping Terminals into Non-Termi-
nals: First, we convert the Hi instances into a di-
rected acyclic graph whose nodes are unique words
(or tokens). There is an edge from node A to B
if word B follows word A in at least one of the
input instances. In this directed graph (see Fig. 1),
between any two nodes, if there are multiple paths
of length less than equal to & + 1 (we set k to 2),
we concatenate the intermediate words in the path
(with space in between them) and treat them as
terminals. This set of terminals, between the two
nodes, are grouped together represented by a non-
terminal symbol (for example Key_1 and Key_2 in
Fig. 1). This step corresponds to lexicon formation;
the non-terminal extracted here are essentially keys
of the lexicon & the terminals constituting them

are the lexicon values for the slots of a template.

Step 2: Template Extraction Using a set of
Hi instances, S = {s1, s2,...snx}, and all non-
terminals v; = [w;1, w2, . . .|, where w;; are termi-
nals (obtained step 1), TEA outputs a set of tem-
plates ' = {t1,ty,...} such that 7' can generate
all the examples in S using the given non-terminal
and their corresponding terminals. For each sen-
tence s;, we generate a set of candidate templates,
T; = {ti1,ti2, ...}, such that s; belongs to the set
of examples generated by each ¢;;. To find the min-
imal template set, i.e T that covers all examples is
treated as a set cover problem and we use a greedy
approximation to find this set.

Step 3: Combine Steps 1 and 2 The above tem-
plate extraction process, while resulting in correct
outputs, may be computationally expensive due to
translation noise! and its time-complexity which
is exponential on the number of non-terminals. To
mitigate this, we follow an iterative approach where
instead of using all the extracted non-terminals
(along with their terminals), we initialize the set
of non-terminals with an empty set and iteratively
add the most useful non-terminals (with their cor-

'The translated sentences may not fit into 1 template. Or,
the algorithm may produce a set of distinct non-terminals
with common or overlapping terminals. For e.g, we may get
two non-terminals with their corresponding terminals such as
“{Paris, New York}” & “{London, New York, Delhi}”.

284

responding terminals) to this set.

Note that, TEA can generate multiple templates
for the set of instances (all of which might be gen-
erated from a single source template). This de-
sign is intentional and desirable as due to morpho-
syntactic complexities (e.g, grammatical gender),
it is likely that all instances in a target language
will not fit into a single template.

3 Multilingual CheckList Generation

We now describe the various ways in which multi-
lingual checklists can be generated, ranging from
fully automatic to fully manual approaches.

Using TEA We start with a source language (En)
CheckList template and generate instances by re-
placing lexicon values in templates. These in-
stances are translated using an MT system. The
translated instances now serve as the input to the
TEA and target language (HI) CheckList template
is extracted. The process (Fig. 1) is repeated for all
En templates to form the complete HI CheckList.

TEA with Verification (TEA-ver) This is a
semi-automatic approach, where we ask a human-
verifier to verify and correct the CheckLists gener-
ated using TEA. The verifiers (or annotators) are
provided with a set of templates and lexicons gener-
ated using the TEA pipeline, along with the original
source langauge CheckList and description of the
capabilities. The annotators are instructed to ver-
ify the target language templates for (grammatical)
correctness. They can delete or edit the incorrect
templates. They can also add any missing tem-
plates that they think are significantly important
(cover too many missed instances).

Translating source CheckList (t9n) This is a
completely manual approach, but relies on a source
language (here, En) CheckList. The annotators
are provided with the En templates, lexicons and
the descriptions of capabilities. They are tasked to
translate the templates and lexicons into the target
language. If a source template cannot be translated
to a single target template (such as due to divergent
grammatical agreement patterns), annotators are
instructed to include as many variants as necessary.
This approach is same as that used by Ruder et al.
(2021) to create multilingual CheckList.

Generating CheckList from scratch (SCR)
This is a completely manual approach of creat-
ing CheckLists from scratch, not relying on any

source CheckList. Here, the CheckList templates
are generated in the same manner as generated in
by humans in Ribeiro et al. (2020). That is, human
annotators are provided with a description of the
task and capabilities and are instructed to develop
the templates and lexicon, directly in the target lan-
guage. In our pilot we found that users were better
able to understand the capabilities with some ex-
amples as opposed to only from the description, so
we also provided them with a couple of examples,
in English, for each capability.

4 Evaluation Metrics

Comparison of CheckLists is non-trivial. Firstly,
CheckLists cannot be evaluated using absolute met-
rics, comparisons can only be relative (Bhatt et al.,
2021b). Further, the question of what constitutes a
better CheckList can be answered in multiple ways.
For example, if a CheckList A can help discover
(and/or fix) more bugs than CheckList B, CheckList
A could be more useful. On the other hand, vari-
ability of instances may be desirable. If CheckList
B generates more diverse instances as compared
CheckList A, even though it discovers less bugs, B
could be considered better as it allows testing of the
system on a broader variety of instances. Finally,
in practical scenarios, cost and correctness are both
important factors for generating the CheckList.
We thus propose evaluation metrics along 4 di-
mensions: a) utility for discovery and fixing bugs;
b) diversity in the generated instances; c) cost of
generating templates. d) correctness of templates.

4.1 Utility

Failure Rate (FR) Here, we measure the per-
centage of instances generated by the CheckList
that the model failed on averaged over all the ca-
pabilities.> The numbers are reported for XLM-R
fine-tuned with English task data from standard
datasets (SST-2 for SA and mNLI for NLI). Ef-
fectively, we measure the FR on zero-shot transfer
from English to the target language. For FR, the
higher the value the better the CheckList.

Augmentation Utility (Aug) These metrics aims
to test the utility of CheckList in fixing failures
using data augmentation following Bhatt et al.
(2021b). This is done in two ways:

(a) From Scratch (Aug-0): Here, we fine-tune
XLM-R directly using CheckList instances.

?Unless mentioned otherwise, we report macro-averages
across capabilities.

285

(b) On Fine-tuned model (Aug-CFT): Here,
XLM-R is first fine-tuned with English task data
(SST-2 for SA and mNLI for NLI) and then further
continually fine-tuned using CheckList instances.

In both cases, we first generate all instances us-
ing the CheckLists being compared. We retain a
maximum of 10k instances per capability for each
CheckList. The instances are then randomly split
into train and test sets in 70:30 ratio. The training
data (of the corresponding CheckList) is used for
the augmentation as described above. The test sets,
generated from all the CheckLists being compared
are combined together to form a common test set
and accuracy on this set is reported. Intuitively, this
aims to determine the utility of the CheckList’s in-
stances for fixing failures using augmentation. For
both the Augmentation metrics, higher is better.

4.2 Diversity

Number of templates (#temp) and lexicon values
(#lexv) The simplest way to measure the diversity
is the number of distinct templates and lexicon
values (or terminals). Higher number of templates
and lexicon values means more diversity.

Normalized Cross-Template BLEU (CT-BLEU)
To measure the diversity between the templates,
we measure the BLEU score (or similarity) for ev-
ery instance generated by a template with the the
instances generated by all other templates in the
CheckList . Since this score is sensitive to the num-
ber of templates in the Checklist, we normalize the
score by the number of templates in the set. Lower
CT-BLEU is indicative of better CheckList as it
indicates more diverse instances from templates.

4.3 Cost

Time per template (TpT) We define the cost of
creation of these Checklists simply as the human
time required. Since different methods or users can
create substantially different number of templates
per capability, we measure the mean time taken
(TpT) for creation from scratch (SCR), translation
(t9n) and verification (TEA-ver) of a template as
the measure of the cost. A better CheckList for
practical purposes would have lower TpT.

4.4 Correctness

Here, we assume that templates generated with any
amount of human intervention (manual or semi-
automatic) would always be correct. As a result,
we calculate correctness only for TEA templates.

We define the correctness of TEA templates with
respect to TEA-ver templates. This is because dur-
ing creation of templates by the TEA-ver process
annotators correct or remove templates. Thus, only
correct TEA template are left unedited. Therefore,
in order to estimate the correctness of the TEA
templates, we compute the following two metrics.

Failure Rate Difference (FR-diff) It is possi-
ble that the model fails in some cases if the input
instance is not well-formed. As a result, the differ-
ence between the failure rates induced by TEA-ver
templates (which always lead to well-formed in-
stances) and that of TEA templates (which could
lead to some ungrammatical instances) will give
an estimate to the correctness of TEA templates.
As a result, we define this metric as simply the
difference between the FR of TEA and TEA-ver.

Precision and Recall (P/R) Since during the
TEA-ver process, annotators edit or remove incor-
rect templates, only the correct templates that were
generated by TEA are left as is. Therefore, in order
to estimate the correctness of the TEA, we compute
the precision and recall of the TEA template set,
with respect to TEA-ver template set. We define
match when the templates are same and the lexicon
values of either one is a subset of the other, imply-
ing they will generate similar set of examples.

5 Hindi CheckLists and Results

We start with Hindi (Hi) as the target language,
create CheckLists using all 4 methods from §3 and
evaluate them using the metrics from §4. Hi has
significant syntactic divergence from the source
language (here English (En)) and uses a different
script. Hi is a mid-resource language with reason-
ably good publicly available En-Hi MT systems.
We argue that if TEA works well in the En-Hi
pipeline, it would also work for most other high to
mid resource languages with reasonable MT sys-
tems and similar or less syntactic divergence from
En, which we also substantiate by performing addi-
tional multilingual experiments in §6.

5.1 Experiment Design

We create and evaluate Hi CheckLists for 2 tasks,
Sentiment Analysis (SA) and Natural Language
Inference (NLI). For SA, we choose 5 capabilities
namely Vocabulary, Negation, Temporal, Seman-
tic Role Labeling and Relational, and their associ-
ated Minimum Functionality Test (MFT) templates

286

from Ribeiro et al. (2020) as our source Check-
List. For NLI, we choose co-reference resolution,
spatial, conditional, comparative and causal reason-
ing as capabilities and their associated templates
from Tarunesh et al. (2021). We refer readers to
Appendix B for details about these capabilities.

Following Ribeiro et al. (2020), we chose 6 soft-
ware developers as our annotators, who are knowl-
edgeable in NLP. All users are native speakers of
Hi and have near-native En fluency.> We expect
developers to be the actual users of the approach,
as it is usually a developer’s job to find and fix bugs.
The annotators were given a detailed description
of expectations along with examples (both in En
and Hi). Furthermore, during our pilot study, we
found some of the common errors users make, and
to mitigate those we provided a list of common
errors illustrated with simple examples.

Each of the 6 annotators was randomly assigned
a CheckList creation approach that requires human
intervention. Thus, we had 2 annotators each for
the SCR, t9n and TEA-Ver setups. They carry out
the process independently for both SA and NLI.
The same description of capabilities and examples
are used for all the experimental setups. Similarly,
the same source templates and lexicons are used
for t9n, TEA-ver and TEA. For the TEA pipeline,
we used Bing Translator API for translating En
instances to Hi. While reporting the results, we
report the average metrics of both annotators.

5.2 Results

Table 1 reports the metrics (§4) for the 4 methods.

The trends for cost or TpT are consistent with
expectations. Creating CheckLists from Scratch
(SCR) takes the most time, as the user has to think
and create the templates. t9n requires manual trans-
lation and is quicker than SCR but slower than
TEA-ver, which just requires verification and cor-
rection on templates generated by TEA. We do not
factor in the time required to create the source En
Checklist, because 1) It is common to all of these
4 approaches and sourced from existing literature;
and 2) it is a one-time effort which can be reused for
generation of CheckLists in many target languages,
leading to a very low amortized cost.

In diversity metrics TEA generates the most di-
verse templates, closely followed by TEA-Ver. t9n
is much less diverse, and SCR has the least diver-
sity. We found that, the users created very few

3Educated for 15+ years in English

templates for SCR, perhaps because it is difficult to
decide what would be a good number of templates.
We also observe that TEA generates a largest num-
ber of templates. The source checklists had 32 (74)
and 18 (76) templates (lexicon values) for SA and
NLI, respectively. Thus on average, a source tem-
plate generates around 3 target templates, which is
primarily due to syntactic divergence between the
En and Hi. These numbers are reduced in TEA-ver,
most likely because not all of the TEA templates
are perfect and human annotators merge or delete
some of them during the verification.

The trends in utility metrics are varied. In SA,
TEA-ver templates induce highest FR and TEA is
a close second. However, for NLI, SCR Check-
List induces the highest failure, followed by t9n.
This might be due to the task complexity. We leave
further exploration on the co-relation of task com-
plexity and efficacy of TEA to future work. TEA
has the highest Aug-0 and Aug-CFT values except
one case where it is a close second, indicating that
the instances generated by TEA CheckLists are ef-
fective in fixing failure by augmentation. TEA-ver
has values that close to TEA for these metrics*.

In terms of correctness, based on P/R of TEA
with respect to TEA-ver, we find that that around a
third of the TEA templates had to be significantly
edited or removed. Despite this, from FR-diff, we
see that the FR generated by TEA is fairly close
to the FR generated by TEA-ver. Additionally,
even the numbers of other utility metrics are also
comparable. This indicates that even the unver-
ified templates (from TEA) which may generate
some ungrammatical instances, can give very close
estimates of the failure rates and augmentation ac-
curacy to human-verified template sets. This is a
positive finding, because while TEA-ver is more
reliable, but when resources to get TEA templates
verified are not available, despite imperfections,
TEA CheckLists can be used for evaluation.

Finally, we would like to point out some of the
qualitative differences that we saw in the Check-
Lists created by these different methods which are
hard to articulate through metrics. In particular, we
saw that CheckLists created from scratch tend to
capture cultural context better. For example, an-
notators use Indian names in the lexicon values as
opposed to western names that get generated due
to translations in all other 3 approaches. However,

“TEA and TEA-ver have a substantial overlap, and thus,
augmentation of one typically helps with the other. This ex-
plains the high AUG-0 and AUG-CFT values for these setups.

287

Metric Sentiment Analysis NLI
SCR t9n TEA-ver TEA SCR t9n TEA-ver TEA
Utility FR 6.7 16.5 19.7 19.3 60.3 534 45.1 48.4
Aug-0 49 52.4 50.6 67.1 16.2 50.9 58.4 52.5
Aug-CFT 86.8 89.9 95.3 95.3 70.1 81.2 79.4 83.2
Diversity # temp 17 44.5 86.0 105 16 22.5 51.5 54
lexv 35.0 41.5 109 147.0 38.5 56.5 88.5 98.0
CT-BLEU* 0.511 0.142 0.096 0.087 0.564 0.307 0.216 0.169
Cost TpT* (mins) | 5.38 2.07 1.77 0 4.69 3.67 1.91 0
Correctness FR-diff* - - - 0.4 - - - 3.3
P/R - - - 0.64/0.61 | - - - 0.67/0.63

Table 1: Comparison of the 4 approaches across two tasks for Hindi. *Lower is better; for rest higher is better.

while difficult for TEA, this entity recontextual-
ization is fairly easy for the other two approaches
where humans are involved. We also find that the
template sets of TEA-ver and t9n are overlapping.
This is because of the setup, where t9n is directly
translated at template level and TEA-ver is obtained
after correcting the templates obtained from trans-
lated instances. The major difference occurs in the
amount of time taken as correcting templates is
faster than translating them.

Thus overall, we conclude that TEA followed by
human verification, or TEA-ver would be an ideal
approach for scaling CheckList evaluation to multi-
ple languages. That said, the fully automatic TEA
approach is even more cost-effective and almost
equally reliable to the TEA-ver approach, making
it suitable for large-scale multilingual CheckList
generation with extremely limited resources.

6 CheckLists in Multiple Languages

So far, we see that TEA is cost-efficient in produc-
ing effective Hi CheckLists. We now experiment
with 9 more typologically diverse languages — Ara-
bic, French, German, Gujarati, Japanese, Russian,
Spanish, Swahili and Vietnamese to evaluate the
efficacy of scaling TEA to may languages. We use
TEA to automatically generate CheckLists across
these languages from the same set of source tem-
plates in English for SA across 6 capabilities: Vo-
cabulary, Temporal, Fairness, Negation, Semantic
role labeling (SRL) and Robustness. We use the
same source En CheckList from the Ribeiro et al.
(2020) and use Bing Translator in the TEA pipeline
to translate En instances to the target language.

In Table 2 we report the FR on XLM-R model
fine-tuned with SST-2 data; thus, except for En,
all other values are for zero-shot transfer to the re-
spective language. The average FR for AMCG is

highest for Swahili (59%), Vietnamese and Gujarati
(around 52%), and lowest for French (43%), Span-
ish and German (around 45%). For English, aver-
age FR is 41%. These trends are consistent with
expectation of performance as English, French, and
other European languages are high-resourced while
Swahili and Vietnamese are very low-resourced.
For 3 of the target languages, namely French,
Gujarati and Swabhili, native speakers verified the
generated templates and thus, we also report the FR
for TEA-ver.> We observe that the Pearson (Spear-
man) correlation between TEA and TEA-ver FR
values for French, Gujarati and Swahili are 0.99
(1.0), 0.98 (0.89) and 0.97 (0.94) respectively. Fur-
thermore, the difference between FR (FR-Diff) is
also low. This implies, similar to our observations
from section 5, that one can obtain an extremely ac-
curate assessment of the capabilities of multilingual
models just from TEA CheckLists even for low re-
source languages like Swabhili. This re-affirms that
despite noise, TEA is able to generate CheckLists
that are useful without any human supervision.

7 Limitations

In this paper, we introduced the TEA to gener-
ate target language CheckList (templates + lexi-
con) from the translated instances of source lan-
guage CheckList. We show that with drastically re-
duced human effort required for creating CheckList
in a new language, the TEA CheckLists provide
an accurate estimate of the models’ capabilities.
However, some of the generated templates/lexicons
are noisy and were removed or edited by humans
through the TEA-ver process. In this section, we
summarize the limitations, common error patterns

These languages were selected based on typological,
geographical, resource level diversity and access to native
speakers.

288

Language Vocabulary Temporal Fairness Negation SRL Robustness
English FR (SCR) 24.21 1.8 94.35 48.16 3594 42.58
Gujarati FR (TEA) 39.12 34.97 87.46 51.84 4737 52.09,51.54

FR (TEA-ver) 29.09 32.18 88.72 55.15 46.8 51.54

FR-diff 10.09 2.79 1.26 33 0.57 0.55
French FR (TEA) 20.27 11.22 86.52 56.55 40.09 46.77

FR (TEA-ver) 21.78 11.53 86.52 61.25 40.09 47.8

FR-diff 1.51 0.31 0 4.7 0 1.3
Swabhili FR (TEA) 46.04 37.5 88.86 73.32 51.87 5845

FR (TEA-ver) 38.53 43.72 90.37 73.25 46.51 55.38

FR-diff 8.24 6.22 1.51 0.07 536 3.07
Arabic FR (TEA) 46.77 14.37 91.98 52.08 394 5332
German FR (TEA) 38.45 15.59 85.25 47.56 43.03 44.04
Spanish FR (TEA) 29.44 3.18 89.45 59.41 41.39 50.1
Russian FR (TEA) 40.26 5.07 93.67 56.13 40.3 47.61
Vietnamese FR (TEA) 23.50 21.67 93.22 63.05 53.12 5097
Japanese FR (TEA) 26.9 24.22 93.69 50.1 5097 -

Table 2: Failure rates for 9 more languages across 6 capabilities for sentiment analysis. Failure rates of English are
for the original templates created manually by annotators (SCR); For Gujarati, French, and Swahili FR for TEA,
TEA-ver and FR-diff is reported, for the rest of languages FR for TEA is reported.

and suggest some possible ways to resolve them.

Agnostic to Semantics TEA is agnostic of the
semantics of the lexicon keys. So, when faced
with a set of sentences: Las Vegas is good., New
York is good., New Delhi is good. and Las Pal-
mas is good., it is unclear whether it should de-
sign 1 template CITY is good. with lexicon
CITY={Las Vegas, New York, New Delhi, Las Pal-
mas} or 2 templates: Las CITY1l is good.,
CITY1={Vegas, Palmas} and New CITY2 is
good., CITY2={York, Delhi}. This problem is
hard to solve without heuristics. One possibility is
to use the translation alignment information how-
ever, such alignments are often imperfect even for
high-resource languages. We leave improvements
to TEA for handling this to future work.

Handling Morphology Creating good templates
for morphologically rich languages (Sinha et al.,
2005; Dorr, 1994) is more challenging due to inflec-
tions. For e.g, in Hindi a verb may take different
form for different tenses and gender. While TEA
can handle such cases by creating multiple tem-
plates, but with still a third of Hi templates needed
correcting. We leave morphologically informed
CheckList creation to future work.

Translation Errors Translation errors are a fre-
quent pattern, affecting the input target language

instances. In some cases, due to the statistical na-
ture of TEA, we are able to naturally filter out such
erroneous templates. For e.g, for an En template
’I used to think this {air_noun} was {neg_adj},
{change} now I think it is {pos_adj}’, translated Hi
templates "Mujhe lagta hai ki us {udaan} {ghatia}
tha, ab mujhe lagta hai ki yeh asadharan hai’ (cor-
rect) matches 187 translations, and *"Mujhe lagta
hai ki us {udaan} {ghatia} tha karte the, ab mujhe
lagta hai ki yeh bohut achha hai’ (noisy) matches
only 35. While TEA can remove some noisy pat-
terns, errors due to misunderstood context are much
harder to fix. For e.g ’the service is poor’ translated
as ’vah seva garib hai’ but ‘garib’ in Hindi means
“lacking sufficient money" and not “lower or insuf-
ficient standards". We leave comparisons of TEA
for human v.s machine translated input instances
and methods to measure and reduce the effect of
translation errors on TEA to future work.

Metric Limitations Quantifying the quality of
generated template and verification of the relevance
of templates with respect to provided description is
non-trivial . While we suggest a set of metrics quan-
tifying utility, diversity and cost, these should be ex-
tended and further studied for efficacy across tasks
and languages. Lastly, soundness and complete-
ness of a template sets (or a test-suite in general)

289

is another unexplored aspect in our current work
and an important future direction of research. Fur-
thermore, we acknowledge the limitation of Fail-
ure Rate as a metric in the sense that the model
could also fail if an example is ungrammatical. In
other words, FR is conditional to correctness of
the CheckList. However, in our experimentation
in both Hindi and other languages, we have found
that the the difference between the FR of human
verified TEA-ver and TEA is typically small (with
a few exceptions) across languages. This means
that high FR being caused due to ungrammatical in-
stances here is unlikely. Thus, as stated before, the
closeness of the FRs of TEA and TEA-ver points
to the reliability of the TEA algorithm.

8 Conclusion

In this paper we proposed TEA (Template
Extraction Algorithm) to automatically generate
multilingual CheckLists in a target language with-
out any human supervision (§2). This algorithm
recursively extracts templates and lexicon from an
input set of instances by treating sentences as a di-
rected acyclic graph of words and combining them.

We additionally experimented with 3 other ap-
proaches with varying degrees of human interven-
tion, 2 manual and 1 semi-automatic for CheckList
generation (§3). For comparing these CheckLists,
we introduced metrics along the dimensions of util-
ity, diversity, cost and correctness (§4).

We performed in-depth analysis of all the 4 meth-
ods, with varying degree of human interventions,
to create CheckLists for Sentiment Analysis and
NLI in Hindi (§5). In addition to Hindi, we ex-
perimented with 9 more typologically diverse lan-
guages to demonstrate the efficacy of TEA along
with comparison with human-verified CheckLists
in 3 of them (§3). We found that TEA is cost-
effective, useful, and diverse in the CheckLists that
it generates. While around one-third of the TEA
templates required correction by humans, making
the semi-automatic approach more reliable, we
find that the model performance estimates provided
by unverified CheckLists are very close to that of
the human-verified (or semi-automatically created)
CheckLists and are also significantly correlated to
it. We also substantiated the finding of TEA being
effective as well as reliable in the other languages.

Our overall recommendation is that TEA fol-
lowed by human verification is the most reliable
and cost-effective way to scale CheckList evalu-

ation to multiple languages. But in case of very
limited resources, TEA is still good enough to test
system performance. We end with a discussion on
the limitations of this work and propose directions
that will, hopefully, inspire research in scaling and
improving multilingual evaluation using Check-
Lists. Finally, we note that TEA is general purpose
algorithm of template extraction that can be used
for other template-based evaluations such as bias
evaluation (Webster et al., 2020; Bhatt et al., 2022)

Acknowledgements We thank the annotators
and their team who facilitated the user studies in the
paper. We are grateful to our colleagues at MSRI
for being the pilot users. We thank Kalika Bali,
Balakrishnan Santhanam, and Prasenjit Rath for
their thoughtful guidance throughout the work. We
thank Gauri Kholkar for her engineering assistance.

References

Kabir Ahuja, Sandipan Dandapat, Sunayana Sitaram,
and Monojit Choudhury. 2022. Beyond static models
and test sets: Benchmarking the potential of pre-
trained models across tasks and languages. In Pro-
ceedings of NLP Power! The First Workshop on Ef-
ficient Benchmarking in NLP, pages 64—74, Dublin,
Ireland. Association for Computational Linguistics.

Shaily Bhatt, Sunipa Dev, Partha Talukdar, Shachi
Dave, and Vinodkumar Prabhakaran. 2022. Re-
contextualizing fairness in nlp: The case of india.

Shaily Bhatt, Poonam Goyal, Sandipan Dandapat,
Monojit Choudhury, and Sunayana Sitaram. 2021a.
On the universality of deep contextual language mod-
els.

Shaily Bhatt, Rahul Jain, Sandipan Dandapat, and
Sunayana Sitaram. 2021b. A case study of efficacy
and challenges in practical human-in-loop evaluation
of NLP systems using checklist. In Proceedings of
the Workshop on Human Evaluation of NLP Systems
(HumkEval), pages 120-130, Online. Association for
Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmadn, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440—
8451, Online. Association for Computational Lin-
guistics.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina
Williams, Samuel Bowman, Holger Schwenk, and
Veselin Stoyanov. 2018. XNLI: Evaluating cross-
lingual sentence representations. In Proceedings of

290

https://doi.org/10.18653/v1/2022.nlppower-1.7
https://doi.org/10.18653/v1/2022.nlppower-1.7
https://doi.org/10.18653/v1/2022.nlppower-1.7
https://doi.org/10.48550/ARXIV.2209.12226
https://doi.org/10.48550/ARXIV.2209.12226
https://doi.org/10.48550/ARXIV.2109.07140
https://doi.org/10.48550/ARXIV.2109.07140
https://www.aclweb.org/anthology/2021.humeval-1.14
https://www.aclweb.org/anthology/2021.humeval-1.14
https://www.aclweb.org/anthology/2021.humeval-1.14
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/D18-1269
https://doi.org/10.18653/v1/D18-1269

the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2475-2485, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Bonnie J. Dorr. 1994. Machine translation divergences:

A formal description and proposed solution. Compu-
tational Linguistics, 20(4):597-633.

Mor Geva, Yoav Goldberg, and Jonathan Berant. 2019.

Are we modeling the task or the annotator? an inves-
tigation of annotator bias in natural language under-
standing datasets. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-1JCNLP),
pages 1161-1166, Hong Kong, China. Association
for Computational Linguistics.

Max Glockner, Vered Shwartz, and Yoav Goldberg.

2018. Breaking NLI systems with sentences that
require simple lexical inferences. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 650—655, Melbourne, Australia. Association
for Computational Linguistics.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv

Batra, and Devi Parikh. 2017. Making the V in VQA
matter: Elevating the role of image understanding in
visual question answering. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR
2017, Honolulu, HI, USA, July 21-26, 2017, pages
6325-6334. IEEE Computer Society.

Suchin Gururangan, Swabha Swayamdipta, Omer Levy,

Roy Schwartz, Samuel Bowman, and Noah A. Smith.
2018. Annotation artifacts in natural language infer-
ence data. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 107-112,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Gra-

ham Neubi, Orhan Firat, and Melvin Johnson.
2020a. XTREME: A massively multilingual multi-
task benchmark for evaluating cross-lingual gener-
alisation. In Proceedings of the 37th International
Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pages
4411-4421. PMLR.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Graham

Neubig, Orhan Firat, and Melvin Johnson. 2020b.

291

Xtreme: A massively multilingual multi-task bench-
mark for evaluating cross-lingual generalization.

Pratik Joshi, Somak Aditya, Aalok Sathe, and Monojit
Choudhury. 2020. Taxinli: Taking a ride up the nlu
hill.

Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh
Kaushik, Atticus Geiger, Zhengxuan Wu, Bertie Vid-
gen, Grusha Prasad, Amanpreet Singh, Pratik Ring-
shia, Zhiyi Ma, Tristan Thrush, Sebastian Riedel,
Zeerak Waseem, Pontus Stenetorp, Robin Jia, Mohit
Bansal, Christopher Potts, and Adina Williams. 2021.
Dynabench: Rethinking benchmarking in nlp.

Yaobo Liang, Nan Duan, Yeyun Gong, Ning Wu, Fenfei
Guo, Weizhen Qi, Ming Gong, Linjun Shou, Daxin
Jiang, Guihong Cao, Xiaodong Fan, Ruofei Zhang,
Rahul Agrawal, Edward Cui, Sining Wei, Taroon
Bharti, Ying Qiao, Jiun-Hung Chen, Winnie Wu,
Shuguang Liu, Fan Yang, Daniel Campos, Rangan
Majumder, and Ming Zhou. 2020. XGLUE: A new
benchmark datasetfor cross-lingual pre-training, un-
derstanding and generation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6008-6018,
Online. Association for Computational Linguistics.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising pre-
training for neural machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 8:726-742.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond accuracy: Be-
havioral testing of NLP models with CheckList. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4902—
4912, Online. Association for Computational Lin-
guistics.

Sebastian Ruder, Noah Constant, Jan Botha, Aditya
Siddhant, Orhan Firat, Jinlan Fu, Pengfei Liu, Jun-
jie Hu, Graham Neubig, and Melvin Johnson. 2021.
Xtreme-r: Towards more challenging and nuanced
multilingual evaluation.

K. Sinha, R. Mahesh, and Anil Thakur. 2005. Transla-
tion divergence in English-Hindi MT. In Proceed-
ings of the 10th EAMT Conference: Practical appli-
cations of machine translation, Budapest, Hungary.
European Association for Machine Translation.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta,
Adria Garriga-Alonso, et al. 2022. Beyond the
imitation game: Quantifying and extrapolating the
capabilities of language models. arXiv preprint
arXiv:2206.04615.

Ishan Tarunesh, Somak Aditya, and Monojit Choud-
hury. 2021. Trusting roberta over bert: Insights from
checklisting the natural language inference task.

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/J94-4004
https://aclanthology.org/J94-4004
https://doi.org/10.18653/v1/D19-1107
https://doi.org/10.18653/v1/D19-1107
https://doi.org/10.18653/v1/D19-1107
https://doi.org/10.18653/v1/P18-2103
https://doi.org/10.18653/v1/P18-2103
https://doi.org/10.1109/CVPR.2017.670
https://doi.org/10.1109/CVPR.2017.670
https://doi.org/10.1109/CVPR.2017.670
https://doi.org/10.18653/v1/N18-2017
https://doi.org/10.18653/v1/N18-2017
http://proceedings.mlr.press/v119/hu20b.html
http://proceedings.mlr.press/v119/hu20b.html
http://proceedings.mlr.press/v119/hu20b.html
http://arxiv.org/abs/2003.11080
http://arxiv.org/abs/2003.11080
http://arxiv.org/abs/2009.14505
http://arxiv.org/abs/2009.14505
https://doi.org/10.48550/ARXIV.2104.14337
https://doi.org/10.18653/v1/2020.emnlp-main.484
https://doi.org/10.18653/v1/2020.emnlp-main.484
https://doi.org/10.18653/v1/2020.emnlp-main.484
https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.18653/v1/2020.acl-main.442
http://arxiv.org/abs/2104.07412
http://arxiv.org/abs/2104.07412
https://aclanthology.org/2005.eamt-1.33
https://aclanthology.org/2005.eamt-1.33
http://arxiv.org/abs/2107.07229
http://arxiv.org/abs/2107.07229

Masatoshi Tsuchiya. 2018. Performance impact caused
by hidden bias of training data for recognizing tex-
tual entailment. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation (LREC 2018), Miyazaki, Japan. European
Language Resources Association (ELRA).

Ivan Vuli¢, Simon Baker, Edoardo Maria Ponti, Ulla
Petti, Ira Leviant, Kelly Wing, Olga Majewska, Eden
Bar, Matt Malone, Thierry Poibeau, Roi Reichart,
and Anna Korhonen. 2020. Multi-SimLex: A large-
scale evaluation of multilingual and crosslingual lexi-
cal semantic similarity. Computational Linguistics,
46(4):847-897.

Zihan Wang, Karthikeyan K, Stephen Mayhew, and Dan
Roth. 2020. Extending multilingual BERT to low-
resource languages. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
2649-2656, Online. Association for Computational
Linguistics.

Kellie Webster, Xuezhi Wang, lan Tenney, Alex Beutel,
Emily Pitler, Ellie Pavlick, Jilin Chen, Ed Chi, and
Slav Petrov. 2020. Measuring and reducing gendered
correlations in pre-trained models.

Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer, and
Daniel Weld. 2019. Errudite: Scalable, reproducible,
and testable error analysis. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 747-763, Florence, Italy.
Association for Computational Linguistics.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021. mt5: A massively multilingual
pre-trained text-to-text transformer.

A Details of TEA

A.1 Template as a Grammar

A template can be considered as a type of grammar
to generate sentences. Consider the template TO
introduced below.

TO: CITY-O is beautiful but CITY-1 is
bigger.
CITY = {Delhi, Paris, New York} ,

Here, the keywords (CITY-0,CITY-1) are the
non-terminals and their corresponding lexicons are
the terminal symbols. Also, CITY-1 should be dif-
ferent than CITY-0; and hence the non-terminal
symbols cannot be replaced independently of each
other, establishing the context-sensitive nature of
templates. This is a why we need to look beyond
probabilistic context free grammar induction to
learn the templates.

Convention and Assumptions: We use terminal
and non-terminal to denote lexicons and keywords

respectively. In a template, if the non-terminals
are appended with cardinals from O to k, then they
can not be replaced with same terminal while gen-
erating sentences. Also, if a template contains an
instance of a non-terminal with cardinal k, (k > 0)
then at least one instance of the same non-terminal
with cardinal k — 1 should have occurred before
its occurrence in the template.

A.2 TEA Algorithm

We first briefly recap the pipeline of TEA for ease of
exposition. We start with an En template and cor-
responding terminals created by a human expert,
and generate a set of examples by substituting the
non-terminals with their appropriate terminals. We
then translate the examples to Hi using an Auto-
matic Machine Translation system (such as Azure
cloud Translator). Then we extract Hi template(s),
terminal(s) and non-terminal(s) from the Hi exam-
ples. The process of extracting Hi templates are
repeated for each of the En templates, providing
us a (tentative) CheckList for Hi. Here, we de-
scribe in detail the TEA algorithm that extracts
Hi templates (along with Hi terminal words) from
the Hi examples. First we discuss our approach
to extract potential set of terminal words, i.e., we
group a set of words (terminals) and give them a
symbol/name (non-terminal). Then we extract the
templates using the terminals and non-terminals
that are extracted in previous step. Towards the
end of this section, we briefly discuss the scalabil-
ity issues and the approximations that we used to
make it more scalable.

A.2.1 Extracting and Grouping Terminals

First, we convert the given Hi examples into a di-
rected graph whose nodes are unique words (or
tokens, if we use a different tokenizer) from the ex-
amples and there is an edge from word A to word
B if word B follows word A in at least one of the ex-
amples. In this directed graph (as shown in Fig. 1),
between any two nodes, if there are multiple paths
of length less than equal to k+1, we group all those
paths and give the group a name or a non-terminal
symbol (for example Key_I and Key_2 in Fig. 1).°
By grouping the paths, we meant to concatenate
the intermediate words in the path (with space in
between them) and then to group the concatenated
strings (terminals). This step gives us potential
lexicons and keywords (or list of terminals grouped

%We assumed the maximum length of each terminal string
to be k(= 2) tokens/words

292

https://www.aclweb.org/anthology/L18-1239
https://www.aclweb.org/anthology/L18-1239
https://www.aclweb.org/anthology/L18-1239
https://doi.org/10.1162/coli_a_00391
https://doi.org/10.1162/coli_a_00391
https://doi.org/10.1162/coli_a_00391
https://doi.org/10.18653/v1/2020.findings-emnlp.240
https://doi.org/10.18653/v1/2020.findings-emnlp.240
https://doi.org/10.48550/ARXIV.2010.06032
https://doi.org/10.48550/ARXIV.2010.06032
https://doi.org/10.18653/v1/P19-1073
https://doi.org/10.18653/v1/P19-1073
http://arxiv.org/abs/2010.11934
http://arxiv.org/abs/2010.11934

together).

A.2.2 Template Extraction given Terminal
and Non-Terminals

Input to our algorithm is (1) a set Hi examples
denoted by S = {s1,$2,...5n}, and (2) all ter-
minals (denoted by w) and its corresponding non-
terminals (denoted by v) that are extracted in pre-
vious step Vi,v; = wj1,W;2, ... In other words,
these are the production rules from a non-terminal
to (only) terminals. Output of our algorithm is a
set of templates T = {t1,ty, ...} such that T' can
generate all the examples in S using only the given
non-terminal and their corresponding terminals.

For convenience, we represent non-terminals
and its corresponding terminals as a list (or or-
dered set) of (terminal, non-terminal) tuples, the
list is denoted by L = [(w1,v1)...(w;, v;)...]. The
tuple (w;,v;) belongs to L if and only if the the
terminal w; belongs to the non-terminal v;.

The trivial result for TisS itself, as S can gen-
erate every example (using no terminals). But this
is not useful because, the essence of extracting tem-
plates from a set of examples is that one should be
able to read/write the entire set by reading only a
few templates. Therefore, the objective is to find
the (approximately) smallest T such that it can
generate entire S.

We provide the outline of our algorithm in Al-
gorithm 1. Next, we explain the algorithm along
with the helper functions that are not elaborated in
the pseudocode. For each sentences s;, we call the
function GET-TEMPLATES-PER-EXAMPLE to gen-
erate a set of templates, T; = {t;1,t;2,...}, such
that s; belongs to the set of examples generated
by each t;;. Once we have T; for every s;, we
construct the (approximately) smallest set T such
that Vi, T (\T; # 0. Note that for every sentence
s; € S, there exist atleast one template in T that
generates s;. Finding the smallest T is a variant
of set cover problem, therefore we use greedy ap-
proach to find the approximately small T.
Generating T;: For every terminal string (W)
that is a substring of example s; (or intermediate
template t;), we have 2 options to create template,
either (1) replace the matched substring (wy,) with
its corresponding non-terminal (vy,) or (2) leave
as it is; we can make this decision to replace or
not, independently for every matched terminals.
While replacing, we need to take care of the car-
dinals for non-terminals and make sure the tem-
plates conform to the adopted convention. We use

Algorithm 1 Extract templates given terminals and
non-terminals
Input: S = {s1,82,...sn}, L =
[(wl, 1{1>...<w1;, Uz>]
Output: T, the approximately smallest set of tem-
plates that generates entire S
1: for each s; in S do

2 T; — GET-TEMPLATES-PER-
EXAMPLE(s;, L)
3: end for

4: Find (approximately) smallest T such that
V1T, TN T; #(> Variant of set cover, use
greedy approach

5: return T’

6: procedure
EXAMPLE(s;, L)

GET-TEMPLATES-PER-

T; < {si}
for each (wy,, vy,) in L do
. Tnew A {}
10: for each ¢;; in T; do
11: if wy, is sub-string of ¢;; then
12: tnew < REPLACE-MATCHED-
STRING(%i;, Wi, Um) > Refer
§A2.2
13: trew — RENAME-

NONTERMINAL-CARDINALS(¢,,¢) > Refer
§A.2.2

14: Thew + Thew U tnew
15: end if

16: end for

17: T, <+ T; UTew

18: end for

19: return 7;

20: end procedure

the functions REPLACE-MATCHED-STRING and
RENAME-NONTERMINAL-CARDINALS fo ensure
such conformance.

REPLACE-MATCHED-STRING This function
replaces the matched terminal wy, in t;; with its
corresponding non-terminal vy,. If there are multi-
ple wy, in t;j, then each w,, will be independently
replaced with v, or left unchanged. For example,
consider the initial template and (terminal, non-
terminal) pair be "#Paris is beautiful. CITY—0 is
cold. Paris is bigger." and (Paris, CITY) respec-
tively. This will generate 3 templates after replace-
ment. (1) "#CITY—1 is beautiful. CITY-0 is cold.
Faris is bigger." (2) "#Paris is beautiful. CITY-0
iscold. CITY-1 is bigger."(3) "#CITY—1 is beau-
tiful. CITY-01is cold. CITY-1 is bigger."

Note that, we do not search if the words in the

293

s; is a terminal, rather we search if the terminal is
a sub-string of s; (or t;;). This makes it possible
for the terminal to be a sub-word or a multi-word
string and still match. Sub-word level match can
be quite useful, especially in morphologically rich
languages; using only the base word as lexicons it
may be possible to match different morphological
forms.

RENAME-NONTERMINAL-CARDINALS This
function renames the cardinals to make sure that
an instance of a non-terminal with cardinal k — 1
occurs before the instance of that non-terminal
with cardinal k,(k > 0). For example, after
re-naming the cardinals, the above three templates
become the following three, respectively. (1)
"#CITY-O0is beautiful. CITY-1 is cold. Paris is
bigger." (2) "#Paris is beautiful. CITY—-0 is cold.
CITY-1 is bigger." (3) "#CITY-0 is beautiful.
CITY-1iscold. CITY-O0 is bigger."

A.2.3 Combine both the steps

First, we find all the potential terminals and non-
terminals (using § A.2.1) for all Hi examples, and
then use them to extract template following the
algorithm outlined in § A.2.2. While this simple
procedure is possible, it is often computationally
expensive; one of the reasons is that due to noise
(many of the translated sentences may not fit into a
template), the algorithm to extract terminals and
non-terminals (§ A.2.1) often gives a lot of different
non-terminals that share many common terminals.
For example, we may get two non-terminals with
their corresponding terminals such as “{ Paris, New
York, Delhi}” and “{London, New York, Delhi}”.
Moreover, the complexity of the algorithm in § I to
extract templates can be increased exponentially
with the number of non-terminals. To mitigate this
problem, we follow an iterative approach where
instead of using all the extracted non-terminals
(along with their terminals), we initialize the set
of non-terminals with an empty set and iteratively
add the most useful non-terminals (with their cor-
responding terminals) to the existing set of non-
terminals.

B Capabilities tested using CheckList

Capabilities are tested using MFTs. MFTs (Mini-
mum Functionality Tests) are tests similar to unit
tests in software testing where a specific pointed
capability of a model is tested via a template and
an expected label(s). The test is said to pass for an

instance if the model predicted label matches the
expected label(s). Finally, failure rate is recorded
as the % of test instances that fails, which can also
be inferred as 100-accuracy.

B.1 Sentiment Analysis (SA)

These capabilities, their descriptions, examples and
their original template sets used in testing are all
sourced from Ribeiro et al. (2020).

Vocabulary This capability tests whether the
model can appropriately handle the impact of
words with different parts of speech on the task.
In particular, sentences with neutral adjectives are
expected to have a neutral prediction and sentences
sentiment-laden (positive or negative) adjectives
are expected to have the corresponding label. For
example, “This is a private NEUTRAL_AD]J) air-
craft” should be labelled neutral; and “This is a
great (POSITIVE_AD)) aircraft” “This is a bad
(NEGATIVE_AD)) aircraft” should be labelled
positive and negative respectively.

Negation This capability tests that the negation
of a positive adjective in the sentence should be
labelled as positive or neutral, for example: “This
is not a great (POSITIVE_ADJ) aircraft” should
be labelled negative or neutral. Similarly, sentence
with negation of negative adjective should be posi-
tive our neutral and those with negation of neutral
adjectives should remain neutral.

Semantic Role Labeling (SRL) SRL aims to test
that the model understands the agent, object etc
in an instance. That is sentiment of the correct
role in the instance is parsed. Here, there are two
distinct capabilities MFTs. The first one is to test
that the sentiment author sentiment is given more
importance than of sentiment of others. For exam-
ple, “Some people think this aircraft is bad, but 1
thought it was great (POSITIVE_ADIJ)” should be
labelled as Positive. The second test is related to
parsing yes/no questions with the correct sentiment.
For example, “Do I think this aircraft is great? Yes”
should be labelled as positive, whereas if the an-
swer was No, it should be negative.

Temporal This capability is used to test whether
the model understands the sequence of events cor-
rectly. In other words that the most recent sentiment
is correctly parsed in labelling. For example, “I
used to hate this aircraft, but now I love it” should
be labelled positive.

294

Robustness There are two tests for robustness:
First changing of values within semantically equiv-
alent classes should not change the prediction. For
example, “I flew in from Delhi” and “I flew in
from New York” should have the same label as the
change here is within the semantically equivalent
class of "CITY’. Secondly, typos (or random char-
acter exchange) should not flip labels. For example,
“This is a graet aircraft” should still remain positive.

Fairness Fairness is used to test that prediction
should be the same for various adjectives within
a protected class. For example, “Mary is a black
(RACE) woman” and “Mary is a white (RACE)
woman” should have same sentiment prediction.

B.2 Natural Language Inference (NLI)

We use the template sets from Tarunesh et al. (2021)
which in turn rely on the taxonomy of capabilities
from (Joshi et al., 2020) for their selection of ca-
pabilities. In examples that follow, P stands for
Premise and H for hypothesis.

Co-reference resolution 7est the model for re-
solving pronouns between the premise and hypoth-
esis correctly. For example, P: Angelique and Ri-
cardo are colleagues. He is a minister and she is
a model. H: Angelique is a model. Here H should
‘entail’ P,

Spatial reasoning Tests the model for reasoning
using spatial properties. For example, P: Manch-
ester is 67 miles from Pittsburg and 27 miles from
Kansas. H: Manchester is nearer to Kansas than
Pittsburg. Here H should ‘entail’ P.

Causal reasoning 7Tests the model for using cau-
sation in the premise to infer the hypothesis. For
example, P: Katherine taught science to Nancy.
H: Nancy learnt science from Katherine. Here H
should ‘entail’ P.

Conditional reasoning Tests the model for log-
ically inferring the hypothesis given conditional
premise. For example, P: If the baby is fed on time,
he does not get cranky. H: The baby gets crancky
when he is hungry. Here H should ‘entail’ P.

Comparative reasoning Tests models for reason-
ing involving comparisons of objects. For example,
P: The earth is larger than the moon but smaller
than sun. H: The moon is smaller than sun. Here
H should ‘entail’ P.

295

