A Copy Mechanism for Handling Knowledge Base Elements in SPARQL
Neural Machine Translation

Rose Hirigoyen, Amal Zouaq and Samuel Reyd
rose.hirigoyen@polymtl.ca
amal.zouag@polymtl.ca
samuel.reyd@polymtl.ca
Polytechnique Montreal

Abstract

Neural Machine Translation (NMT) models
from English to SPARQL are a promising
development for SPARQL query generation.
However, current architectures are unable to
integrate the knowledge base (KB) schema
and handle questions on knowledge resources,
classes, and properties unseen during training,
rendering them unusable outside the scope of
topics covered in the training set. Inspired by
the performance gains in natural language pro-
cessing tasks, we propose to integrate a copy
mechanism for neural SPARQL query gener-
ation as a way to tackle this issue. We illus-
trate our proposal by adding a copy layer and
a dynamic knowledge base vocabulary to two
Seq2Seq architectures (CNNs and Transform-
ers). This layer makes the models copy KB
elements directly from the questions, instead of
generating them. We evaluate our approach on
state-of-the-art datasets, including datasets ref-
erencing unknown KB elements and measure
the accuracy of the copy-augmented architec-
tures. Our results show a considerable increase
in performance on all datasets compared to non-
copy architectures.

1 Introduction

The Semantic Web organizes concepts in opti-
mized, machine-readable, knowledge bases (KB)
(or knowledge graphs). Still, as these knowledge
bases are not immediately designed with a hu-
man user in mind, the SPARQL Protocol and RDF
Query Language (SPARQL) is hardly accessible to
laypeople with little-to-no knowledge of program-
ming languages. This creates a strong accessibility
bias, as it prevents users from accessing sizeable
amounts of information because of their lack of a
specific skillset.

One way to bypass any need for prior knowl-
edge is by allowing the users to query KBs using
natural language questions. Figure 1 illustrates
the task at hand. More specifically, using neural

Q: What is Villa La Mauresque ?

select ?a where
{ dbr:Villa_La_Mauresque
dbo:abstract ?a }

A: The villa La Mauresque is located in cap Ferrat
(Alpes-Maritimes) and was remodeled in 1927 ...

Figure 1: Example of the SPARQL NMT task

machine translation (NMT) to translate natural lan-
guage questions to SPARQL queries has proven
to be an interesting avenue to solve this challenge,
with BLEU-score performances of more than 90%
across multiple datasets (Yin et al., 2021).

However, behind these high-performing archi-
tectures are models that rarely return the correct
answer to a question about a topic they have never
seen in training, even if the information is avail-
able in the KB. As a single wrong answer can neg-
atively affect the user’s trust in the model, this
limitation becomes a critical downfall for an auto-
matic SPARQL query generation model. The main
goal of this paper is to propose a mechanism to
effectively generate accurate SPARQL queries. In
particular, we aim at handling out-of-vocabulary
(OOV) knowledge base elements at the schema
level ( classes, properties) and the instance level.
As such, we put forth the following research ques-
tions:

* RQ1: Isthe integration of the KB elements in
the question sufficient for the model to handle
OOV elements?

* RQ2: Is the accuracy of the translations im-
proved if the neural translation architecture is
able to copy KB elements directly from the
question?

* RQ3: Does the evaluation of the model on
a dataset composed solely of unknown KB

226

Findings of the Association for Computational Linguistics: AACL-IJCNLP 2022, pages 226-236
November 20-23, 2022. ©2022 Association for Computational Linguistics



elements allows for a complete overview of
the model’s capabilities?

Our main contributions are as follows. (1) Given
a working tagging algorithm, we propose a way to
allow NMT models to handle questions on topics
they have not seen during training. (2) We propose
a methodology to evaluate a model’s performance
exhaustively. (3) Finally, we produce standardized,
corrected, and tagged versions of the datasets to
foster reproducibility and future developments in
this research field'.

2 Related Work

Knowledge Bases Terminology. A knowledge
base (KB) stores data in the form of one or more
Resource Description Framework (RDF) graphs, in
which the nodes are concepts or instances, and the
edges encode the relationship between them. An
RDF graph is described using (subject, property,
object) triples, which we refer to as KB elements.
Each KB element has a unique URI, which is used
to reference it in a SPARQL query and a label,
which is their name in a natural language. If there
is no label, we can generate one from the element’s
URI.

Seq2Seq for NMT. The base architecture behind
many NMT models is Seq2Seq, which learns to
generate words using source and target vocabular-
ies. If there is a token in the source sentence that
is not in the vocabulary, the model simply replaces
it by the <unk> placeholder token. The model is
as such only able to generate tokens that are in its
target vocabulary. The transformers (Vaswani et al.,
2017) and convolutional networks (Gehring et al.,
2017) are currently the two best non-pretrained ar-
chitectures for SPARQL NMT, as reported by Yin
et al. (2021).

As more data becomes available, an important
development in this field is the introduction of pre-
trained language models and their application for
neural machine translation. For example, T5 (Raf-
fel et al., 2020) uses Transformers and transfer
learning to translate three languages at once. This
provides the model with a rich vocabulary of about
32000 tokens, and it can use its prior knowledge to
reach higher performances on languages for which
there is less training data. However, as stated in the
paper, the model can only process a predetermined,

"https://github.com/Lama-West/SPARQL_
Query_Generation_aacl-1ijcnl2022

fixed set of languages and it uses a fixed vocabu-
lary. This means that as much as it is able to infer
information in general translation problems, it en-
counters the same OOV problem as other Seq2Seq-
type models, since it does not have the ability to
learn new words once training is over. Very recent
concurrent efforts explore the use of pretrained
language models for SPARQL query generation
(Banerjee et al., 2022). For example, SGPT (Rony
et al., 2022) is built on GPT-2 (Radford et al., 2019)
and aims to generate SPARQL queries by encoding
linguistic features of questions and the knowledge
graph. It uses an entity masking strategy and gener-
ates queries with placeholders. After a query is gen-
erated by the neural architecture, a post-processor
places the correct KB elements in the right places
in the query. While our objective is similar, our ap-
proach aims at using a copy mechanism directly in
the Seq2Seq architecture to place KB elements in
the question instead of doing it in a post-processing
step.

KGQA Systems. Since the handling of OOV KB
elements is limited in the specific field of SPARQL
NMT, it is necessary to broaden our research and
learn from similar SPARQL NLP tasks. In par-
ticular, Knowledge Graph Question Answering
(KGQA) systems aim to reconstruct a subgraph of
the RDF schema from a natural language question
and use it to generate a correct query. A notable
aspect of these architectures is that they can pro-
vide a correct answer to a question on a topic not
seen in training (Jiang and Usbeck, 2022) (if the
answer is in the KB). An interesting KGQA system
is HGNet (Chen et al., 2021b). A key aspect of
this architecture is that in trying to generate the
subgraph necessary to answer the question, it can
take advantage of the fact that such graph often
contain duplicated vertices. It uses LSTMs and
a copy mechanism to copy these duplicated ver-
tices, thus facilitating the generation task. Such
systems (Chen et al., 2021b; Vollmers et al., 2021)
highlight the importance of integrating the RDF
schema and resources in the architecture. Doing so
not only provides us with additional information
on the KB elements themselves, but also on the
elements which they are related to and which are
more likely to be referenced as well.

SQL Systems. It is also useful to explore what
we can learn from problems similar to the one of
SPARQL NMT, such as the text-to-SQL seman-

227


https://github.com/Lama-West/SPARQL_Query_Generation_aacl-ijcnl2022
https://github.com/Lama-West/SPARQL_Query_Generation_aacl-ijcnl2022

tic parsing problem (Wang et al., 2020; Scholak
et al., 2021). One of the current best performing
model (Guo and Gao, 2019) is not a Seq2Seq-type
model, but rather a classification model that learns
to predict 6 different SQL components by lever-
aging the extensively annotated WikiSQL dataset.
Seq2SQL (Zhong et al., 2017) is another approach,
which, while not the best performing architecture,
is worth noting for its schema integration mech-
anism. Seq2SQL augments the natural language
question by concatenating it to all the columns’
names and to the SQL vocabulary. The schema is
essentially integrated directly in the input. Once
again, incorporating the schema in the architecture
gives the model enough information to understand
which database elements (or for SPARQL, KB ele-
ments) are referenced in a question whether or not
it has seen them during training, provided they are
available in the database.

Copy Mechanism. The copy mechanism has
shown its effectiveness in several encoder-decoder
NLP tasks such as summarization (See et al.,
2017), grammatical errors correction (Zhao et al.,
2019), and knowledge graph question answering
(KGQA) (Chen et al., 2021b). However, to our
knowledge, it has not yet been used in SPARQL
NMT as we propose here. Our hypothesis is that,
given a working tagging algorithm where, in the
NL question, mentions related to a KB element are
replaced by their KB URI, a model could learn to
copy the KB URIs from the question to the query
instead of generating them. Notably, we propose
to integrate CopyNet (Gu et al., 2016), whose copy
mechanism comes after the decoder. For each token
of the output sentence, it uses attention to calculate
the probability that the token should be generated
from the target vocabulary, and the probability that
the token should be copied directly from the source.
The chances of copying are slightly higher for OOV
words in the source sentence.

Limitations. As reported by Yin et al. (2021),
the current best performing non-pretrained archi-
tectures for SPARQL NMT are the Transformer
Seg2Seq and the ConvSeq2Seq, which are Seq2Seq-
type models where the encoder and decoder are
respectively transformers and convolutional net-
works. As such, they encounter the same limitation
as all Seq2Seq-type models, which is that because
of the use of fixed vocabularies, the models are
unable to fully handle OOV tokens. In SPARQL

NMT systems, this results in the models not being
able to answer questions referencing KB elements
that were unseen during training. Instead, when
encountering a question on a new KB element, the
models generate a query referencing the element
seen the most in the current context, even if it is
not the one referenced in the question.

This also means that the model might learn the
meaning of a specific KB element during train-
ing, but never use this knowledge if the element is
not referenced in the test set. In the context of a
query language, our hypothesis is that the encoder-
decoder model should focus on learning the syntax
of the correct SPARQL query related to a question,
instead of trying to learn the meaning of each KB
element. Keeping in mind that the prevalent KBs
such as DBpedia can contain tens of thousands of
different URIs, expecting the model to learn every-
thing from examples is not optimal. Furthermore,
the lack of real-world data is the field of SPARQL
NMT makes this approach unrealistic.

In light of these limitations, the impressive
BLEU-scores reported by Yin et al. (2021) raise
some questions on the ability of these metrics
and current datasets to properly evaluate NMT
SPARQL models. Knowing that the models are
only able to generate tokens learned during train-
ing, it is almost impossible for them to return a
correct answer on a question whose topic is un-
known, except by accident or when the expected
answer is empty. Some datasets contain a num-
ber of queries that return empty answers. As such,
it is important to make sure that models are thor-
oughly tested, especially on questions mentioning
KB elements never seen during training.

3 Architectures

3.1 Base Architectures

This section describes the two best non-pretrained
architectures for SPARQL NMT as reported by Yin
et al. (2021), as well as our contribution.

ConvS2S. The convolutional sequence to se-
quence model (ConvS2S) is a Seq2Seq-type model
where the encoder and decoder are convolutional
networks (Gehring et al., 2017). Both the encoder
and the decoder generate token embeddings and
position embeddings of the vectors they receive
as input, respectively the encoding of the question
and the encoding of the query. The decoder also re-
ceives the output of the encoder as input, and its in-

228



put vector is padded at the beginning. This creates
an offset which allows the model to learn from pre-
vious words and not from the current words which
it is supposed to predict. Then, the sum of the token
and position embedding vectors passes multiple
times through a recurrent layer. This layer com-
prises a 1-dimension convolution and a Gated Lin-
ear Unit (GLU) in the encoder, followed by multi-
head attention in the decoder. Following the survey
by Yin et al. (2021), we use the same architecture
configuration as FairSeq’s fconv_wmt_en_de NMT
architecture (Ott et al., 2019), described in Table 1.

Model Transformer ConS2S

Batch Size 128 128

Layers 6 15

Hid. Dim. 1024 [(512, 3) * 9,
(1024,3) * 4,
(2048, 1) * 2]

Dropout 0.5 0.2

LR 0.0005 0.5%

Optimizer Adam SGD

Table 1: Configuration of our Architectures

Transformer. The Transformer model is a
Seq2Seq-type model where the encoder and de-
coder are transformers (Vaswani et al., 2017). The
encoder and decoder receive the same inputs as the
ConvS2S. The decoder uses a multi-head attention
layer that is not in the encoder. Our implementation
is based on the FairSeq implementation (Ott et al.,
2019) of the transformer_iwslt_de_en architecture,
as described in Table 1.

3.2 A Copy-augmented Architecture

Figure 2 shows our generic architecture, which
enriches any encoder-decoder model (e.g. CNNs
or transformers) with a copy layer in the decoder.
It generates specific source and target vocabularies
that include the KB elements as explained below.

Vocabularies. In the baseline architectures (with-
out copy), the source vocabulary comprises every
token of the questions, and the target vocabulary
comprises every token in the queries. Tokens are
added in the order in which they are encountered.
However, when using the copy layer, there needs
to be a way to differentiate tokens that are part of

2For the dataset TNTSPA, we used a LR of 3.5

dbr:Ahu_Akivi

;r
IDX TO TOKEN

| LEGEND
i SOURCE BASE VOCAB

| KB ELEMS VOCAB (00V) |

OUT EMBEDDING

xn
T X RECURRENT LAYER
'RECURRENT LAYER|
| > ATTENTION
EMBEDDING ,
EMBEDDING
INDEXED
[<sos>, is! <unk>, a, INDEXED +
<unk>, 7, <eos>] MASKED
3 l
MASKED [ , ask, A
[<sos>, is, dbr:Ahu_Akivi, a, INDEXED

dbo:Place, ?, <eos>]

Figure 2: Encoder and copy-augmented decoder struc-
ture and interaction

the base vocabularies (which the model will learn to
generate) and tokens that are KB elements (which
the model will learn to copy from the source). The
latter are identifiable by their prefix, meaning to-
kens that start with dbo:, dbr:, dbp:, dbc:, geo:,
georss: or dct:. Also, since the model receives vec-
tors of indices and not words, tokens copied from
the source to the target sentence must have the same
index in both the source and target vocabularies.

To accommodate these constraints, we create a
base source vocabulary and a base target vocabu-
lary containing all tokens in the inputs but no KB
elements and pad them with filler words so they are
the same size. Then, we extract the KB elements in
a vocabulary extension that contains all elements in
both the questions and the queries. Finally, the KB
vocabulary is concatenated to each base vocabulary
to create our source and target vocabularies.

As we know the cutoff index of the initial vocab-
ularies, we can quickly determine that each index
above this cutoff represents a KB element we want
to copy. During inference, if a new KB element
18 encountered, we can add it at the end of our
source and target vocabularies, giving the model
the capacity to copy it.

229




Copy Layer. In a copy-augmented architecture,
the encoder and decoder receive masked source
and target vectors, meaning any token above the
cutoff index (and as such, out of the vocabulary) is
replaced by a 0, representing an unknown token. As
the role of the copy layer is to handle KB elements,
this masking lets the encoder and decoder focus on
the syntax rather than on the KB elements.

The copy layer comes after the decoder. It takes
as input the unmasked encoded question and the
decoder output, comprised of the attention scores
and the probability of generating each word of the
base target vocabulary. Ported to the Transformer
architecture by (See et al., 2017; Zhao et al., 2019),
we were able to adapt it to ConvS2S since both
generate multi-head attention scores.

First, we identify whether there are any KB ele-
ments amongst the tokens of the encoded question
by using the cutoff index. If it is the case, we ex-
tend the output probability tensor to include these
extra tokens and initially assign them a generation
probability of 0. Then, we calculate the probability
of each token being generated, which is the softmax
of the probability tensor. Using the attention score,
we also calculate the probability of each word being
copied directly from the source sentence. Follow-
ing the implementation of (Zhao et al., 2019), we
compute a balancing factor ap,€[0, 1] between the
copy and the generation probabilities using Equa-
tion 2, where Q, K and V are the query, key and
value needed to calculate attention and W7 is a
learnable parameter. The final probability of each
token being the next word is the sum of the genera-
tion and copy probabilities balanced by this factor.

A =Q"x K (1)
a1 = sigmoid(WT x (AT x V7)) )
4 Methodology

4.1 Datasets

Format. Most natural language (NL) to SPARQL
datasets are generated using templates to compen-
sate for the lack of real-world data. A template
is an NL question and its corresponding SPARQL
query, in which there are annotated blanks to in-
dicate the types of the KB element to insert (re-
sources, classes, properties). These blanks are then
replaced by KB elements’ labels in the questions,
and KB URIs in the queries. Many datasets also
use an alternate version of SPARQL introduced

by (Soru et al., 2017) called intermediary SPARQL,
in which each symbol (e.g., brackets, dots) is re-
placed by a specific natural language expression.
This encoding aims to make SPARQL closer to a
natural human language. URIs are also reduced
using their prefixes. To return to the original exe-
cutable SPARQL query, one only has to make the
inverse permutations. Table 2 shows the datasets
used in this work. We split the datasets in an 80-
10-10 fashion to reproduce the results reported by
(Yin et al., 2021).

Mon Mon50 Mon80

Train 1797 1787 1791
Test 815 825 816
Int. rate 0.928 0.925 0.925

TNTSPA LC-QuAD DBNQA
Train 4153 4150 145 429
Test 1045 1066 38 348
Int. rate 0.704 0.713 0.797

Table 2: Summary of the distribution of KB elements in
the datasets

Monument. The Monument dataset (Soru et al.,
2017) consists of pairs of English natural questions
and intermediary SPARQL queries generated from
38 templates. The authors (Yin et al., 2021) gener-
ate other versions of the dataset: Monument, Mon-
ument50 and Monument80. The three versions are
very similar in that they are all generated using
600 examples per template with different combi-
nations of KB elements. We used their versions to
be able to compare our results to state-of-the-art
architectures. The high BLEU scores reported by
Yin et al. (2021) are explained by the fact that most
KB elements in the test set have already been seen
during training, as shown by the high intersection
rate in Table 2. Also, this dataset covers fewer
KB elements in more entries, which gives the mod-
els plenty of examples to learn each element in its
context. Overall, good results on this dataset only
mean a model is functional.

LC-QuAD. The LC-QuAD datasets provide en-
tries of multiple types (COUNT, ASK, SELECT)
and cover a broad range of KB elements. We priori-
tized LC-QuAD v1.0 (Trivedi et al., 2017) over the
newer LC-QuAD v2.0 (Dubey et al., 2019) since
the models to which we compare our work are

230



trained on the first version. Further tests on LC-
QuAD 2 are left for future work.

In LC-QuADvV1.0, each entry contains an En-
glish natural language question and its correspond-
ing SPARQL query generated from a template
(called intermediary question), as well as a version
of the question reformulated by an expert (called
corrected question). It comprises 5000 entries gen-
erated from 33 of the 43 templates available. Table
2 shows that it is much more challenging than Mon-
ument. Indeed, there are many more different KB
elements, fewer examples per element, and a lower
intersection rate between the train and test sets.

We use three versions of the LC-QuAD dataset.
The first version, referred to as LC-QuAD Inter-
mediary Questions, uses the intermediary ques-
tions and their corresponding queries. These ques-
tions use the formulations defined by the templates.
The second and more challenging version, referred
to as LC-QuAD Corrected Questions, uses the
reformulated natural language questions of the
dataset and their corresponding queries. The third
version, referred to as TNTSPA, is the version gen-
erated by the authors of the survey (Yin et al., 2021).
It contains the reformulated questions (formulated
in a more natural way) and queries found in the LC-
QuADv1.0 dataset, but is split differently. Since no
validation set is provided for the TNTSPA dataset,
we use entries from LC-QuAD v1.0 that are not in
the TNTSPA train or test sets. Since there are no
templates associated to this dataset, we only use it
to ensure we are able to reproduce state-of-the-art
results with our implementation of the baselines
architectures.

DBNQA. The DBpedia Neural Question Answer-
ing (DBNQA) dataset (Hartmann et al., 2018) is
composed of 894,499 pairs of natural language
questions and SPARQL queries. The entries are
generated using 5165 question-query templates,
constructed from entries in the LC-QuADv1.0
(Trivedi et al., 2017) and QALD-7 (Usbeck et al.,
2017) datasets. We used the templates provided
with the dataset but we did not manage to match
all entries. We then extracted and corrected 512
templates suitable for the annotation of the ques-
tions and used the 398,284 entries corresponding
to these templates. We also provide directly exe-
cutable SPARQL queries instead of intermediate
SPARQL queries.

RDF schema integration. As this research fo-
cuses mainly on finding a solution for the OOV
problem, we developed a rudimentary tagging algo-
rithm that leverages the templates. For each entry,
we replace the KB elements labels that replace the
blanks in the questions with their corresponding
URIs in the query. KB elements that would be
encoded as multiple tokens because of intermedi-
ary SPARQL (e.g., [dbr_Cenotaph_, attr_open,
Montreal, attr_close]) are encoded as a single to-
ken (e.g., dbr_Cenotaph_(Montreal)) to reduce
the vocabulary size. This dependence on templates
is why we use the LC-QuAD Intermediary Ques-
tions version of LC-QuAD to train and evaluate our
copy-augmented models, as it is the only version
we could tag with complete accuracy. Figure 3
shows an entry before and after tagging.

Template: what is the <domain> whose
is and <property_2> is
<resource 2> ?

Question: what is the formula one racer whose
is and has child is
mick schumacher ?

Tagged: what is the dbo:FormulaOneRacer
whose is
and dbo:child is dbr:Mick_Schumacher ?

Figure 3: A tagged question

OOV Datasets. Finally, we generate an addi-
tional test set of 250 entries for each dataset called
the OOV Set. First, we go through the dataset and
make a list of all the referenced KB elements. Then,
we use the templates to generate entries where the
placeholders are replaced by KB elements that are
not in the list, effectively creating a dataset in which
no KB element has been seen in training.

To avoid false positives, we built our datasets so
that questions would return a non-empty answer
whenever possible. However, this proved to be a
challenging task and our most successful attempts
still contain about 70% of empty answers (count of
0, ask that returns false, or empty sets of elements).
False positives can happen when a query returns
an empty answer regardless of the KB elements
referenced (e.g. an impossible question that links
unrelated KB elements, or a question for which the
KB does not contain an answer).

231



4.2 Evaluation

We use two main metrics to evaluate the original
test sets and the oov test sets: the BLEU-score
and the answer accuracy, which calculates the
accuracy of the answers returned by the generated
queries against the expected answers.

5 Results

We trained and evaluated our implementation of
the models using Google Colab GPUs. We com-
pare our results to those reported by (Yin et al.,
2021), who train their model on HPC servers us-
ing the FairSeq implementations of the CnnS2S
and Transformer architectures. It is important to
note that they report the peak performance while
we report the average of three runs. This means
that we expect slightly lower performances when
reproducing their results.

Baseline architectures on original datasets. Ta-
ble 3 shows the results of the baseline architectures
on original datasets. We clearly reproduce the per-
formances of the survey by Yin et al. (2021). Even
if our results for LC-QuAD are slightly lower, it is
still within an acceptable margin. Because of the
randomness of the weights initialization, the per-
formance difference between a good and a under-
performing run can be up to ten points. This mar-
gin also accounts for the small difference between
TNTSPA and the LQ Corr Qsts. The higher scores
on LQ Intrm.Qsts compared to the corrected ques-
tions are explained by the fact that the questions are
generated from templates. This results in a smaller
source vocabulary compared to the vocabulary of
reformulated questions (used in TNTSPA and Corr.
Qsts), since the questions are all formulated us-
ing the same template-words. Hence, the reduced
variance helps the model understand the questions
better.

Baseline architectures on tagged datasets. Ta-
ble 4 shows the results of the baseline architec-
tures on tagged datasets. We must not overlook
the fact that using tagged data might help the ar-
chitectures perform better, even without a copy
layer. Since the KB elements are encoded as a
single symbol, the size of the source and target
vocabularies decreases, which usually helps the
models perform better. These changes do not make
much difference for the Monument datasets since
the datasets contain enough examples for the mod-
els to learn the KB elements with or without tag-

Transformer ConvS2S
Dataset BLEU Acc. BLEU Acc.
Mon 95.86 90.55 96.35 91.66
Mon50 96.26 91.72 95.25 88.34
Mon80 96.35 92.69 94.47 82.68
TNTSPA 5598 42.80 52.24 44.00
Corr. Qsts 49.61 32.07 4994 40.80
Intrm. Qsts  60.31 43.60 65.65 47.40
DBNQA 64.86 4641 67.26 45.43

Table 3: Performances of baseline architectures on orig-
inal datasets. TNTSPA is (Yin et al., 2021)’s version of
LC-QuAD. C. Qsts designates the LC-QuAD corrected
questions and Intrm. Qsts designates the LC-QuAD
intermediary questions.

ging. For the LC-QuAD intermediary questions,
we see a clear increase in performance. This is
explained by the fact that in the untagged version,
the URIs are encoded in the SPARQL query using
multiple tokens (dbr:Primus_ attr_open
band attr_close), whereas they are en-
coded as a single token in the NL question
and the SPARQL query in the tagged version
(dbr:Primus_ (band)).

For DBNQA, many URIs are quite long and ex-
pressed using multiple tokens in the questions. In
the untagged version, this means many NL tokens
are reused across multiple URI expressions, result-
ing in a smaller source vocabulary of 99603 tokens.
Because there are more unique URIs than unique
NL tokens used to represent these URIs in the ques-
tions, the tagged version uses a bigger source vo-
cabulary composed of 158014 tokens. However,
we see by comparing tables 3 and 4 that this aug-
mentation of the vocabulary size does not affect the
performance of the baseline models.

Copy-augmented architectures. Table 4 shows
the results of our copy-augmented architectures on
tagged datasets. We observe a strong increase in
performance for LC-QuAD and DBNQA, which
is impressive considering the number of different
KB elements in the datasets, as well as perfect
results on the Monument datasets. However, the
most telling results are those obtained on the OOV
datasets, reported in Table 5. The answer accu-
racy metric is not included because of the high pro-
portion of possible false positives across all OOV
datasets. Still, using only the BLEU score, we
see that the baseline architectures struggle to han-

232



Mon Mon50 Mon80 Intrm. Qsts DBNQA
Architecture BLEU Acc. BLEU Acc. BLEU Acc. BLEU Acc. BLEU Acc.
Transformer 97.02 9281 9741 9441 97.80 9486 7029 5193 65.63 47.75
Transf.-copy 100 100 100 100 100 100 98.38 97.60 93.88 85.09
ConvS2S 97.82 9526 97.71 95.13 98.14 9596 76.62 5293 67.57 45.22
ConvS2S-copy 100 100 100 100 100 100 98.35 9740 9540 86.87

Table 4: Performances of all architectures on tagged datasets

dle KB elements they have never seen, which is
more representative of the actual capabilities of
the models. Similarly, the results on tagged OOV
datasets with baseline architectures are still low
compared to the results on the original test sets,
since tagged data still does not allow the model
to adequately handle new KB elements after train-
ing. However, on copy-augmented architectures,
we observe perfect performances on Monument,
representing an increase in performance of about
30 BLEU points compared to its baseline coun-
terpart. On LC-QuAD, the increase of about 40
BLEU points shows that the models handle better
unknown KB elements using a copy mechanism.

6 Discussion

In view of these results, it is clear that, given a
working tagging mechanism, the use of a copy-
augmented architecture is an excellent advantage
for SPARQL NMT architectures as it allows them
to handle KB elements not seen in training. Further-
more, comparing the results with and without copy
reported in Table 5, we see a clear improvement in
the quality of the translations.

Another advantage of using a copy-augmented
architecture is that it can perform almost as well on
small datasets as on larger ones, as demonstrated by
the high performances on the LC-QuAD Intermedi-
ary Questions and DBNQA. Essentially, the model
does not need to learn the correspondences between
each expression and the related URI anymore, and
it does not need as many examples to learn the tem-
plates’ formulations since there are not that many.
Our work also highlights, as shown by the drastic
difference between tables 3 and 5, that baseline
models that are reported to have almost perfect per-
formance are, in fact, not as effective outside the
test set on which they are evaluated. Even if the
BLEU score is a good way to evaluate the qual-
ity of the translation, The use of accuracy and the

introduction of OOV datasets helps us understand
better a model’s actual capabilities.

There is however still room for improvement.
Some of the limitations of this research lie in the
use of template-based entries. In its current state,
our copy-augmented architecture depends on ques-
tions following specific templates. As shown by
the results reported in table 3, Seq2Seq models
seem quite efficient at learning templates. As we
see in Table 4, the performances increase when the
KB elements are encoded in the questions, hinting
at the fact that the model is limited by the large
amount of KB elements in the dataset rather than
the questions’ formulations. Moving away from
template-based datasets would also allow us to de-
termine whether the copy layer helps the model
understand the underlying schema of the KB.

We also need to improve the way OOV datasets
are generated to be able to get a representative
accuracy metric that is not biased by false positives.
To do so, we must ensure most - if not all - queries
return a non-empty answer.

Finally, another limitation is that our copy-
augmented models depend on tagged questions to
reach their top performance.

7 Conclusion

This paper determined that, coupled with a copy-
augmented architecture, integrating the KB ele-
ments directly in the questions is sufficient for a
SPARL NMT model to handle OOV KB elements
and to obtain a significant increase in performance.
These tagged datasets were used to train baseline
and copy-augmented versions of the Transformer
and the ConvS2S architectures. Using a copy layer,
we report perfect performances on the Monument
dataset and the generated OOV Monument dataset.
For LC-QuAD, we report an increase in BLEU
score of 20 points and an increase in answer accu-
racy of about 40 points. For DBNQA, our results

233



Monument

LQ Intrm. Qsts

DBNQA

Dataset Original Tagged Original Tagged Original Tagged
Transf 60.16 65.55 5150 56.75 4092 41.19
Transf-copy - 100 - 85.68 - 79.82
ConvS2S 63.88 48.31 55.85 6098 40.62 40.66
ConvS2S-copy - 100 - 90.16 - 89.13

Table 5: BLEU scores of all the models on the OOV datasets.

show an increase in BLEU score of 35 points on
average, as well as an increase in answer accuracy
of 40 points. Our future work will involve the de-
sign of a neural tagging model and a joint tagging
objective for our Seq2Seq models, as well as the
comparison of our copy-augmented models with
large pre-trained models and the use of these mod-
els as our encoders-decoders. Notable models on
which to test our methodology include TS5 (Raffel
et al., 2020), BART (Lewis et al., 2020) and GPT-3
(Brown et al., 2020), as well as models that can
generate code such as Codex (Chen et al., 2021a).

Acknowledgements

This research has been funded by the NSERC Dis-
covery Grant Program.

References

Debayan Banerjee, Pranav Ajit Nair, Jivat Neet Kaur,
Ricardo Usbeck, and Chris Biemann. 2022. Modern
baselines for SPARQL semantic parsing. In SIGIR
'22: The 45th International ACM SIGIR Conference
on Research and Development in Information Re-
trieval, Madrid, Spain, July 11 - 15, 2022, pages
2260-2265. ACM.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, pages 1877-1901. Curran Associates,
Inc.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,

Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021a. Evaluat-
ing large language models trained on code. CoRR,
abs/2107.03374.

Yongrui Chen, Huiying Li, Guilin Qi, Tianxing Wu,
and Tenggou Wang. 2021b. Outlining and filling:
Hierarchical query graph generation for answering
complex questions over knowledge graph. CoRR,
abs/2111.00732.

Mohnish Dubey, Debayan Banerjee, Abdelrahman Ab-
delkawi, and Jens Lehmann. 2019. Lc-quad 2.0: A
large dataset for complex question answering over
wikidata and dbpedia. In The Semantic Web - ISWC
2019 - 18th International Semantic Web Conference,
Auckland, New Zealand, October 26-30, 2019, Pro-
ceedings, Part I, volume 11779 of Lecture Notes in
Computer Science, pages 69—78. Springer.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N. Dauphin. 2017. Convolutional
sequence to sequence learning. In Proceedings of the
34th International Conference on Machine Learning,
ICML 2017, Sydney, NSW, Australia, 6-11 August
2017, volume 70 of Proceedings of Machine Learn-
ing Research, pages 1243—-1252. PMLR.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O. K. Li.
2016. Incorporating copying mechanism in sequence-
to-sequence learning. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics, ACL 2016, August 7-12, 2016, Berlin,
Germany, Volume 1: Long Papers, pages 1631-1640.
The Association for Computer Linguistics.

234


https://doi.org/10.1145/3477495.3531841
https://doi.org/10.1145/3477495.3531841
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2111.00732
http://arxiv.org/abs/2111.00732
http://arxiv.org/abs/2111.00732
https://doi.org/10.1007/978-3-030-30796-7_5
https://doi.org/10.1007/978-3-030-30796-7_5
https://doi.org/10.1007/978-3-030-30796-7_5
http://proceedings.mlr.press/v70/gehring17a.html
http://proceedings.mlr.press/v70/gehring17a.html
https://doi.org/10.18653/v1/p16-1154
https://doi.org/10.18653/v1/p16-1154

Tong Guo and Huilin Gao. 2019. Content enhanced bert-
based text-to-sql generation. CoRR, abs/1910.07179.

Ann-Kathrin Hartmann, Tommaso Soru, and Edgard
Marx. 2018. Generating a large dataset for neural
question answering over the dbpedia knowledge base.

Longquan Jiang and Ricardo Usbeck. 2022. Knowledge
graph question answering datasets and their general-
izability: Are they enough for future research? In
SIGIR ’22: The 45th International ACM SIGIR Con-
ference on Research and Development in Information
Retrieval, Madrid, Spain, July 11 - 15, 2022, pages
3209-3218. ACM.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, pages 7871-7880.
Association for Computational Linguistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT 2019, Minneapo-
lis, MN, USA, June 2-7, 2019, Demonstrations, pages
48-53. Association for Computational Linguistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1-140:67.

Md. Rashad Al Hasan Rony, Uttam Kumar, Roman
Teucher, Liubov Kovriguina, and Jens Lehmann.
2022. SGPT: A generative approach for SPARQL
query generation from natural language questions.
IEEE Access, 10:70712-70723.

Torsten Scholak, Raymond Li, Dzmitry Bahdanau,
Harm de Vries, and Chris Pal. 2021. Duorat: To-
wards simpler text-to-sql models. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2021,
Online, June 6-11, 2021, pages 1313-1321. Associa-
tion for Computational Linguistics.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics, ACL 2017, Vancouver, Canada, July 30 -

August 4, Volume 1: Long Papers, pages 1073-1083.
Association for Computational Linguistics.

Tommaso Soru, Edgard Marx, Diego Moussallem, Gus-
tavo Publio, Andre Valdestilhas, Diego Esteves, and
Ciro Baron Neto. 2017. SPARQL as a foreign lan-
guage. In Proceedings of the Posters and Demos
Track of the 13th International Conference on Seman-
tic Systems - SEMANTiICS2017 co-located with the
13th International Conference on Semantic Systems
(SEMANTICS 2017), Amsterdam, The Netherlands,
September 11-14, 2017, volume 2044 of CEUR Work-
shop Proceedings. CEUR-WS.org.

Priyansh Trivedi, Gaurav Maheshwari, Mohnish Dubey,
and Jens Lehmann. 2017. Lc-quad: A corpus for
complex question answering over knowledge graphs.
In The Semantic Web - ISWC 2017 - 16th Interna-
tional Semantic Web Conference, Vienna, Austria,
October 21-25, 2017, Proceedings, Part II, volume
10588 of Lecture Notes in Computer Science, pages
210-218. Springer.

Ricardo Usbeck, Axel-Cyrille Ngonga Ngomo, Bas-
tian Haarmann, Anastasia Krithara, Michael Roder,
and Giulio Napolitano. 2017. 7th open challenge on
question answering over linked data (QALD-7). In
Semantic Web Challenges - 4th SemWebEval Chal-
lenge at ESWC 2017, Portoroz, Slovenia, May 28 -
June 1, 2017, Revised Selected Papers, volume 769
of Communications in Computer and Information
Science, pages 59—69. Springer.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, pages 5998-6008.
Curran Associates, Inc.

Daniel Vollmers, Rricha Jalota, Diego Moussallem,
Hardik Topiwala, Axel-Cyrille Ngonga Ngomo, and
Ricardo Usbeck. 2021. Knowledge graph question
answering using graph-pattern isomorphism. In Fur-
ther with Knowledge Graphs - Proceedings of the
17th International Conference on Semantic Systems,
SEMANTICS 2017, Amsterdam, The Netherlands,
September 6-9, 2021, volume 53 of Studies on the
Semantic Web, pages 103—117. IOS Press.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. RAT-SQL:
relation-aware schema encoding and linking for text-
to-sql parsers. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, ACL 2020, Online, July 5-10, 2020, pages
7567-7578. Association for Computational Linguis-
tics.

Xiaoyu Yin, Dagmar Gromann, and Sebastian Rudolph.
2021. Neural machine translating from natural lan-
guage to SPARQL. Future Gener. Comput. Syst.,
117:510-519.

235


http://arxiv.org/abs/1910.07179
http://arxiv.org/abs/1910.07179
https://www.researchgate.net/publication/324482598_Generating_a_Large_Dataset_for_Neural_Question_Answering_over_the_DBpedia_Knowledge_Base
https://www.researchgate.net/publication/324482598_Generating_a_Large_Dataset_for_Neural_Question_Answering_over_the_DBpedia_Knowledge_Base
https://doi.org/10.1145/3477495.3531751
https://doi.org/10.1145/3477495.3531751
https://doi.org/10.1145/3477495.3531751
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/n19-4009
https://doi.org/10.18653/v1/n19-4009
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1109/ACCESS.2022.3188714
https://doi.org/10.1109/ACCESS.2022.3188714
https://doi.org/10.18653/v1/2021.naacl-main.103
https://doi.org/10.18653/v1/2021.naacl-main.103
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
http://ceur-ws.org/Vol-2044/paper14/
http://ceur-ws.org/Vol-2044/paper14/
https://doi.org/10.1007/978-3-319-68204-4_22
https://doi.org/10.1007/978-3-319-68204-4_22
https://doi.org/10.1007/978-3-319-69146-6_6
https://doi.org/10.1007/978-3-319-69146-6_6
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.3233/SSW210038
https://doi.org/10.3233/SSW210038
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.1016/j.future.2020.12.013
https://doi.org/10.1016/j.future.2020.12.013

Wei Zhao, Liang Wang, Kewei Shen, Ruoyu Jia, and
Jingming Liu. 2019. Improving grammatical error
correction via pre-training a copy-augmented archi-
tecture with unlabeled data. In Proceedings of the
2019 Conference of the North American Chapter
of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2019,
Minneapolis, MN, USA, June 2-7, 2019, Volume 1
(Long and Short Papers), pages 156—165. Associa-
tion for Computational Linguistics.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
CoRR, abs/1709.00103.

236


https://doi.org/10.18653/v1/n19-1014
https://doi.org/10.18653/v1/n19-1014
https://doi.org/10.18653/v1/n19-1014
http://arxiv.org/abs/1709.00103
http://arxiv.org/abs/1709.00103

