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Abstract

Checkpoint averaging is a simple and effective

method to boost the performance of converged

neural machine translation models. The cal-

culation is cheap to perform and the fact that

the translation improvement almost comes for

free, makes it widely adopted in neural ma-

chine translation research. Despite the popular-

ity, the method itself simply takes the mean of

the model parameters from several checkpoints,

the selection of which is mostly based on empir-

ical recipes without many justifications. In this

work, we revisit the concept of checkpoint aver-

aging and consider several extensions. Specifi-

cally, we experiment with ideas such as using

different checkpoint selection strategies, cal-

culating weighted average instead of simple

mean, making use of gradient information and

fine-tuning the interpolation weights on devel-

opment data. Our results confirm the necessity

of applying checkpoint averaging for optimal

performance, but also suggest that the land-

scape between the converged checkpoints is

rather flat and not much further improvement

compared to simple averaging is to be obtained.

1 Introduction

Checkpoint averaging is a simple method to im-

prove model performance at low computational

cost. The procedure is straightforward: select some

model checkpoints, average the model parameters,

and obtain a better model. Because of its sim-

plicity and effectiveness, it is widely used in neu-

ral machine translation (NMT), e.g. in the origi-

nal Transformer paper (Vaswani et al., 2017), in

systems participating in public machine transla-

tion (MT) evaluations such as Conference on Ma-

chine Translation (WMT) (Barrault et al., 2021)

and the International Conference on Spoken Lan-

guage Translation (IWSLT) (Anastasopoulos et al.,

2022): Barrault et al. (2021); Erdmann et al. (2021);

Li et al. (2021); Subramanian et al. (2021); Tran

et al. (2021); Wang et al. (2021b); Wei et al. (2021);

Di Gangi et al. (2019); Li et al. (2022), and in nu-

merous MT research papers (Junczys-Dowmunt

et al., 2016; Shaw et al., 2018; Liu et al., 2018;

Zhao et al., 2019; Kim et al., 2021). Apart from

NMT, checkpoint averaging also finds applications

in Transformer-based automatic speech recogni-

tion models (Karita et al., 2019; Dong et al., 2018;

Higuchi et al., 2020; Tian et al., 2020; Wang et al.,

2020). Despite the popularity of the method, the

recipes in each work are rather empirical and do

not differ much except in how many and exactly

which checkpoints are averaged.

In this work, we revisit the concept of checkpoint

averaging and consider several extensions. We ex-

amine the straightforward hyperparameters like the

number of checkpoints to average, the checkpoint

selection strategy and the mean calculation itself.

Because the gradient information is often available

at the time of checkpointing, we also explore the

idea of using this piece of information. Addition-

ally, we experiment with the idea of fine-tuning

the interpolation weights of the checkpoints on de-

velopment data. As reported in countless works,

we confirm that the translation performance im-

provement can be robustly obtained with check-

point averaging. However, our results suggest that

the landscape between the converged checkpoints

is rather flat, and it is hard to squeeze out further

performance improvements with advanced tricks.

2 Related Work

The idea of combining multiple models for more

stable and potentially better prediction is not new

in statistical learning (Dietterich, 2000; Dong et al.,

2020). In NMT, ensembling, more specifically,

ensembling systems with different architectures

is shown to be helpful (Stahlberg et al., 2019;

Rosendahl et al., 2019; Zhang and van Genabith,

2019). In contrary, checkpoint averaging uses

checkpoints from the same training run with the

same neural network (NN) architecture. Compared
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Figure 1: An illustration of checkpoint averaging and our extensions. The isocontour plot illustrates some imaginary

loss surface. C1 and C2 are model parameters from two checkpoints. Cavg denotes the averaged parameters.

In (a), the mean of the C1 and C2 is taken. In (b), the dashed arrows refer to the gradients (could also include

the momentum terms) stored in the checkpoints, and a further step (with step size η) is taken. In (c), a NN is

parametrized with the interpolation weights w1 and w2, and the weights are learned on the development data.

to ensembling, checkpoint averaging is cheaper

to calculate and does not require one to store and

query multiple models at test time. The distinc-

tion can also be made from the perspective of the

interpolation space, i.e. model parameter space

for checkpoint averaging, and posterior probability

space for ensembling. As a trade-off, the perfor-

mance boost from checkpoint averaging is typically

smaller than ensembling (Liu et al., 2018).

In the literature, Chen et al. (2017) study the

use of checkpoints from the same training run for

ensembling; Smith (2017) proposes cyclic learn-

ing rate schedules to improve accuracy and con-

vergence; Huang et al. (2017) propose to use a

cyclic learning rate to obtain snapshots of the same

model during training and ensemble them in the

probability space; Izmailov et al. (2018) perform

model parameter averaging on-the-fly during train-

ing and argue for better generalization in this way;

Popel and Bojar (2018) discuss empirical findings

related to checkpoint averaging for NMT; Zhang

et al. (2020) and Karita et al. (2021) maintain an

exponential moving average during model training;

Wang et al. (2021a) propose a boosting algorithm

and ensemble checkpoints in the probability space;

Matena and Raffel (2021) exploit the Fisher in-

formation matrix to calculate weighted average of

model parameters. Here, we are interested in the

interpolation happening in the model parameter

space, and therefore restrain ourselves from further

discussing topics like ensembling or continuing

training on the development data.

3 Methodology

In this section, we discuss extensions to checkpoint

averaging considered in this work. An intuitive

illustration is shown in Fig.1.

3.1 Extending Vanilla Checkpoint Averaging

The vanilla checkpointing is straightforward and

can be expressed as in Eq.1. Here, θ denotes the

model parameters and θ̂ is the averaged parameters.

k is a running index in number of checkpoints K,

and S, where |S| = K, is a set of checkpoint

indices selected by some specific strategy, e.g. top-

K or last-K. In the vanilla case, wk = 1

K
, i.e.

uniform weights are used.

θ̂ =
∑

k∈S

wkθk (1)

As shown in Eq.2, we further consider non-

uniform weights and propose to use softmax-

normalized logarithm of development set perplexi-

ties (DEVPPL) with temperature τ as interpolation

weights. We define w in this way such that it is in

the probability space.

wk =
exp(−τ log DEVPPLk)∑

k′∈S exp(−τ log DEVPPLk′)
(2)

3.2 Making Use of Gradient Information

Nowadays, NMT models are commonly trained

with stated optimizers like Adam (Kingma and Ba,

2015). To provide the "continue-training" utility,

the gradients of the most recent batch are therefore

also saved. Shown in Eq.3, we can therefore take

a further step in the parameter space during check-

point averaging to make use of this information.

Here, η is the step size and 1

K

∑
k∈S ∇θL(θk) is

the mean of the gradients stored in the checkpoints.

θ̂ =
∑

k∈S

wkθk − η
1

K

∑

k∈S

∇θL(θk) (3)
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3.3 Optimization on Development Data

In addition to using DEVPPL, one can optimize

the interpolation weights directly on the develop-

ment data. Specifically, to ensure normalization,

we re-parameterize the model with the logits gk
in a softmax function, initialized at zero and up-

dated via one-step gradient descent, with step size

η, on development data to avoid overfitting. As

shown in Eq.4, wk is the normalized interpolation

weights. Note that we refrain from updating the

raw model parameters θk from each checkpoint

but only update the logits gk. Here, L refers to the

cross entropy loss of the re-parametrized NN on

the development data.

wk =
exp gk∑

k′∈S exp gk′

gk,0 = 0, gk,1 = −η∇gkL(gk,0;θ1, ...,θK)
(4)

4 Experiments

We re-implement Transformer (Vaswani et al.,

2017) using PyTorch (Paszke et al., 2019) and ex-

periment on IWSLT14 German-, Russian-, and

Spanish-to-English (de-en, ru-en, es-en), and

WMT16 English-to-Romanian, WMT14 English-

to-German, WMT19 Chinese-to-English (en-ro, en-

de, zh-en) datasets. Due to limited length, we only

present representative results on de-en in this sec-

tion. Results on other language pairs can be found

in the appendix and the trends are similar to that re-

ported in this section. Note that, in the experiments

below, the test BLEU scores are under consider-

ation. However, we argue that it is not critical

because checkpoint averaging is a vetted trick to

boost system performance and our goal is to better

understand the parameter space and not to obtain

"the state-of-the-art" in some public scoreboard.

In Fig.2, we plot the BLEU (Papineni et al., 2002)

scores versus increasing K, where the previous

K checkpoints starting from the best checkpoint

(in terms of DEVPPL) are selected. As can be

seen, initial BLEU improvements are obtained but

as worse and worse checkpoints are included, the

BLEU score drops as expected.

In Fig.3, ranking all checkpoints by their DE-

VPPL, the top-K checkpoints are selected for aver-

aging. Notice that up to K = 40, the DEVPPL is

still around 5, whereas in the last-K case, signif-

icantly worse checkpoints (the early checkpoints)

are already included in the interpolation. It can be
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Figure 2: Last-K simple mean on de-en.

seen that the final BLEU score is much less sensi-

tive to the choice of K in this case. Of course the

final performance also relies on the checkpointing

settings (e.g. the checkpointing frequency) but it is

clear from the comparison that one should prefer

to include checkpoints with better DEVPPL.
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Figure 3: Top-K simple mean on de-en.

In Fig.4, we plot the BLEU scores against the

temperature τ in Eq.2. Here, we select last-K

checkpoints as in Fig.2 to artificially include some

bad-performing checkpoints. Two sanity checks

can be done here. When τ is very small, uniform

weights are used and the performance is close to the

vanilla last-40 case. When τ is very large, one-hot

weights are used and the performance is close to

that of the best checkpoint. We observe that using

the DEVPPL-dependent weights results in similar

performance increase compared to the vanilla case,

meaning that the checkpoint selections can be au-

tomated by selecting a proper τ .

Next, we study how the system performance

changes with the step size used in the one-shot

gradient update (Fig.1b and Eq.3). As shown in

Fig.5, we interpolate three systems selecting top-K

checkpoints with K = 2, K = 5 and K = 10,

respectively. Here, temperature τ = 100. In line
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with the results in Fig.2 and Fig.3, the models with

K = 5 and K = 10 are slightly better than the

model with K = 2. However, as the step size

η increases, the BLEU score quickly drops as the

averaged model diverges further away from the

initial mean. It is clear from the figure that nothing

is gained in terms of BLEU during the η scan. In

other words, these results suggest a very flat surface

along the direction of averaged gradients.
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Figure 5: One-shot gradient update of top-K weighted

sum with τ = 100 on de-en.

To investigate if optimization on the develop-

ment data would work, we implement Eq.4 and

sweep over step size η. As shown in Fig.6, the

gradient update on the weights move the model

towards the best checkpoint (θ0 here), and w0 in-

creases to 1.0 with large enough η. There is, how-

ever, little improvement to be obtained along the

path. Note that this is the restricted case (Eq.4)

where only interpolation weights are allowed to

change and model parameters are not updated.

Given the results so far, it is clear that although

a small boost of BLEU score can be robustly ob-

tained in various checkpoint averaging settings, it

is hard to squeeze out any further improvement

with the extensions considered here. We there-

fore perform a grid search over the interpolation
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Figure 6: Optimization of interpolation weights wk on

development data with K = 2 on de-en.

weights wk with K = 3, to examine the landscape

between the checkpoints. Shown in Fig.7, is the

intersection of w1 + w2 + w3 = 1, 0 ≤ wk ≤ 1 in

the space of the interpolation weights. From the

figure, except when really close to the vertices, i.e.

(w1, w2, w3) = (1, 0, 0) or (0, 1, 0) or (0, 0, 1), the

surface is rather flat with small fluctuations here

and there. Considered together with the previous

results, this suggests that the gradient direction in

the flat area may be unreliable and not much im-

provement is to be gained by further tuning the

interpolation weights. Of course one could argue

that in higher dimensions the surface could look

different by moving off of the
∑

k∈S wk = 1 hyper-

plain, but we think it is unlikely to be helpful as

Fig.5 is a counter-evidence at hand.

BLEU=34.97

BLEU=34.98

BLEU=35.02

BLEU=35.42

Figure 7: Neighborhood of the top-3 checkpoints on

de-en. The hexagons are artifacts from plotting because

a denser grid of points is used in the plot than in check-

point averaging and the dots are colored by querying

the nearest neighbor in the checkpoint averaging grid.

5 Conclusion

We consider checkpoint averaging, a simple and

effective method in neural machine translation to

boost system performance. Specifically, we exam-

ine different checkpoint selection strategies, calcu-
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late weighted average, make use of gradient infor-

mation and optimize the interpolation weights. We

confirm the robust improvements from checkpoint

averaging and that the checkpoint selection can

be automated with the weighted average scheme.

However, by closely looking at the landscape be-

tween the checkpoints, we find the surface to be

rather flat and conclude that tuning in the space of

the interpolation weights may not be a meaningful

direction to squeeze out further improvements.
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Appendix A Additional Results

As mentioned, only results on de-en are reported in

Sec.4. In this section, further results on the other

datasets are shown.

The data statistics are summarized in Tab.1.

dataset vocab train pairs test pairs

ru-en 10k 150k 5.5k

de-en 10k 160k 6.8k

es-en 10k 170k 5.6k

en-ro 20k 0.6M 2.0k

en-de 44k 4.0M 3.0k

zh-en 47k 17.0M 4.0k

Table 1: Statistics of the datasets.

Fig.8 shows the last-K simple mean BLEU and

DEVPPL curves on ru-en. As can be seen, the

degredation of the interpolated models starts to

happen when checkpoints with worse perplexities

are included into the mixture.
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Figure 8: Last-K simple mean on ru-en.

Fig.9 shows the top-K simple mean BLEU and

DEVPPL curves on es-en. Note that when all check-

points are of decent DEVPPL, the BLEU score of

the averaged model is more stable.
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Figure 9: Top-K simple mean on es-en.

Fig.10 shows the top-10 weighted sum on en-ro.

Earlier in Fig.4, we select last-40 checkpoints to in-

clude some bad-performing checkpoints. Here, the

top-10 checkpoints are selected and it is clear from

the figure that there is not much to be gained when

tuning the interpolation weight via the temperature

hyperparameter τ .
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Figure 10: Top-10 weighted sum on en-ro.

In Fig.11, we plot the neighborhood of three

checkpoints on en-de. Here, One good checkpoint

and two relatively worse checkpoints are included

to show the difference compared with Fig.7. As

can be seen, the area near the good checkpoint is

overall brighter and the region closer to the two

worse checkpoints is darker. Although noise is

visible from the plot, it is clear that there is not

a specific optima where the BLEU score of the

checkpoint-averaged model is significantly better.
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BLEU=27.31

BLEU=26.95

BLEU=27.47

Figure 11: Neighborhood of three checkpoints on

en-de. One good checkpoint and two relatively worse

checkpoints are included to show the difference

compared with Fig.7. No post-processing of splitting

hyphenated compound words is done (See https://

github.com/tensorflow/tensor2tensor/

blob/master/tensor2tensor/utils/get_

ende_bleu.sh.). The hexagons are artifacts from

plotting because a denser grid of points is used in

the plot than in checkpoint averaging and the dots

are colored by querying the nearest neighbor in the

checkpoint averaging grid.

https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/get_ende_bleu.sh
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In Fig.12, we further plot the neighborhood of

three checkpoints on zh-en. Here, two good check-

point and one relatively worse checkpoint are in-

cluded to show the difference compared with Fig.7.

From the figure, it can be seen that, overall, the

interpolation closer to the two good checkpoints is

better than when the worse checkpoint has a larger

weight. Although +0.4% absolute BLEU score im-

provement is possible, there is no further improve-

ment to be gained when tuning the interpolation

weights.
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Figure 12: Neighborhood of three checkpoints on zh-en.

Two good checkpoint and one relatively worse check-

point are included to show the difference compared with

Fig.7. The hexagons are artifacts from plotting because

a denser grid of points is used in the plot than in check-

point averaging and the dots are colored by querying

the nearest neighbor in the checkpoint averaging grid.


