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Abstract

Block diagrams are very popular for represent-

ing a workflow or process of a model. Under-

standing block diagrams by generating sum-

maries can be extremely useful in document

summarization. It can also assist people in in-

ferring key insights from block diagrams with-

out requiring a lot of perceptual and cognitive

effort. In this paper, we propose a novel task

of converting block diagram images into text

by presenting a framework called “BloSum”.

This framework extracts the contextual mean-

ing from the images in the form of triplets that

help the language model in summary genera-

tion. We also introduce a new dataset for com-

plex computerized block diagrams, explain the

dataset preparation process, and later analyze

it. Additionally, to showcase the generalization

of the model, we test our method with publicly

available handwritten block diagram datasets.

Our evaluation with different metrics demon-

strates the effectiveness of our approach that

outperforms other methods and techniques.

1 Introduction

Block diagrams are commonly used to represent

a process or workflow of a system, especially the

diagrams with different shapes connected with ar-

rows. These types of diagrams are generally found

in industry reports, scientific magazines or papers.

However, different people use different shapes for

a particular notation which makes it quite challeng-

ing to understand (Montalvo, 1990).

Block diagram summarization is a task where

the goal is to extract the contextual information

and relationship between different shapes or nodes

from the image, and summarizes the key points in

natural language. There are several key benefits

and applications of block diagram summarization.

First, most of the documents not only contain text

but also block diagrams. In order to summarize

a document automatically, Artificial Intelligence

(AI) needs to understand those block diagrams as

well. Automatic generation of description from a

block diagram image will lead to better analysis of

the related document. Second, descriptive text of a

block diagram can be further used for the question

and answering (Q&A) task (Kwiatkowski et al.,

2019). Third, block diagram summaries can assist

individuals to recognize important insights from di-

agrams that they may have missed otherwise. It is a

well-known fact that captions or small descriptions

help readers to find important keypoints from the

diagrams. It can also help writers to compose effec-

tive reports and articles on data facts suggested by

automatic explanatory texts. Block diagram sum-

marization offers one more significant advantage

of making diagrams more accessible to visually im-

paired people. With the help of descriptions, they

can read using screen readers and understand what

is being presented in the block diagram.

Regardless of its various advantages and appli-

cations, the block diagram summarization problem

has not received much attention in the NLP com-

munity. We found no literature regarding block

diagram summarization. Early approaches focus

mainly only on the detection of different shapes

in the diagram (Julca-Aguilar and Hirata, 2018) or

converting the handwritten block diagrams to com-

puterized or electronic format (Schäfer and Stuck-

enschmidt, 2019; Schäfer et al., 2021; Schäfer and

Stuckenschmidt, 2021). But none of them con-

sider about relating text phrases with shapes and

arrows which plays an important role in summa-

rization tasks. Recently, researchers considered

data-driven neural models for describing tabular

data (Mei et al., 2016; Gong et al., 2019). Also, few

researchers considered chart-to-text for describing

different types of chart images (Balaji et al., 2018;

Obeid and Hoque, 2020). However, compared to

tables and charts, block diagram serves a differ-

ent problem which consists of lots of variations

and complexity. For example, some diagrams con-

tain a single parent and child node whereas some
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diagrams contain two or more parents or child

nodes with different varieties of arrow structures

that makes it more complex. There are two main

difficulties in addressing the block diagram summa-

rization task. First, the lack of computerized block

diagram dataset makes it difficult to solve the task

using deep learning models. To our knowledge,

there is no dataset available for computerized block

diagrams that contain human written summaries.

Second, there are no strong baselines for the block

diagram summarization task.

In this paper, we present a framework called

“BloSum” that converts the block diagram images

into text. This framework extracts the contextual

meaning and relationships between nodes from the

images in the form of triplets <head, relation, tail>

which helps the language model in summary gener-

ation. Triplets play an important role in data-to-text

generation (Gatt and Krahmer, 2018), generally

used to represent knowledge graph (KG) (Gardent

et al., 2017). Additionally, we present a new dataset

for computerized block diagrams (CBD) consist-

ing of 502 diagrams with more than 13,000 anno-

tated elements (shapes, edges, and text phrases) and

make our dataset available on GitHub1. We intro-

duce three variations of problems mainly based on

arrow structure: (i) Break arrows (that have some

gap in between an arrow) (ii) Connected arrows

(where two or more arrows are interlinked together)

(iii) Normal arrows (single arrows including both

thin and thick types). These different scenarios

motivate us to combine computer vision (CV) and

natural language generation (NLG) techniques. Ad-

ditionally, we test the BloSum with publicly avail-

able handwritten block diagram datasets i.e., FC_A

(Awal et al., 2011) and FC_B (Bresler et al., 2016)

to demonstrate the generalization of the model. For

a fair comparison, we extend those two datasets by

writing high-quality summaries and triplets. The

main contributions of this paper are as follows;

• We propose “BloSum”, a new framework for

summarization of block diagram images.

• We introduce a new dataset for computerized

block diagrams covering a wide range of top-

ics and variations in shape and arrow types.

• We extend the publicly available handwrit-

ten block diagram datasets for summarization

task.

1https://github.com/shreyanshu09/

Block-Diagram-Datasets

• We conduct several automatic and human eval-

uations to check the performance of the pro-

posed model. In addition, the in-depth quali-

tative analyses uncover some of the key chal-

lenges in block diagram summarization.

2 Related Works

Image to Data Generation Earlier, Julca-

Aguilar and Hirata (2018) trained the well-known

Faster R-CNN object detection pipeline. Stan-

dard object-based approaches are unable to iden-

tify edges because the arrow bounding boxes are

insufficient to identify the relationship between

shapes and arrows. To overcome this limitation,

Schäfer et al. (2021) added an arrow keypoint pre-

dictor to Faster R-CNN. This keypoint predictor

predicted the head and tail keypoints of an arrow

that helped in finding the relationship between

shapes. However, the major downside of this work

is that they failed to detect and relate text phrases

with shapes and arrows. Moreover, Schäfer and

Stuckenschmidt (2021) outperformed the Arrow

R-CNN by modeling arrow as a relation between

two shapes, and not as standalone objects with

bounding boxes. They improved the performance

in detecting arrows, but again didn’t consider about

text phrases relationship with shapes. Our work ad-

dresses these issues by considering the text phrase

relations for both simple and complex diagrams.

Balaji et al. (2018) proposes chart summarization

based on a predefined template. A key limitation of

template-based work is their limited scalability and

flexibility. Moreover, they offer little variation with

regard to grammatical styles and lexical choices. In

contrast, we focus on the generic block diagram-to-

text problem without using any predefined template

that contains lots of variations and complexity.

Data to Text Generation Data to text model

aims to generate a descriptive text from data or a

set of triplets. The task of generating text from data

started after the creation of sports summaries from

game records (Robin, 1995; Tanaka-Ishii et al.,

1998). Recent efforts made use of neural encoder-

decoder mechanisms (Puduppully et al., 2019; Kale

and Rastogi, 2020; Chen et al., 2020). Pre-trained

Language Models (PLMs) such as BERT (De-

vlin et al., 2019), XLNet (Yang et al., 2019), or

RoBERTa (Liu et al., 2019) have established a

baseline performance for many natural language

understanding (NLU) tasks. However, for many

https://github.com/shreyanshu09/Block-Diagram-Datasets
https://github.com/shreyanshu09/Block-Diagram-Datasets
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                                       a) Break Arrow                                                                          b) Connected Arrow                                                          c) Normal Arrow 

Figure 1: Sample images for three different categories from our dataset.

NLG tasks, generative PLMs had set a benchmark

such as GPT (Brown et al., 2020), BART (Lewis

et al., 2020), and T5 (Raffel et al., 2019). T5 model

has also state-of-the-art performance on more than

twenty natural language processing (NLP) tasks

such as GLUE (Wang et al., 2019b), CNN/Daily

Mail (See et al., 2017), SuperGLUE (Wang et al.,

2019a), SQuAD (Rajpurkar et al., 2018) and many

more. It’s very uncommon for a single technique

to yield consistent advancement across so many

tasks. Based on this, we adopt the T5 model in our

framework for generating sentences.

Image Captioning Due to the availability of

large-scale datasets, there has been quick advance-

ment in image captioning (Agrawal et al., 2019;

Chen et al., 2015). Zhang et al. (2021) developed

a model to summarize objects from images us-

ing an object detection model while Sidorov et al.

(2020) generate captions from images by extracting

a text with the help of OCR. But images with real-

world scenes and objects are totally different from

block diagrams. Real-world scenes don’t have a

very complex relationship between objects whereas

block diagrams contain relationships between dif-

ferent nodes that carry both textual and mathemati-

cal information. This makes the block diagram-to-

text problem different from image captioning.

3 Datasets

Block diagram summarization task uses both object

detection and language models, which require a lot

of annotated images with high-quality summaries

written by humans. To the best of our knowledge,

there is no publicly available dataset for computer-

ized block diagrams that satisfies our needs. In this

work, we introduce a new dataset CBD for com-

plex computerized block diagrams. We explain all

datasets along with the process making of CBD in

Arrow Type Split Diagrams Symbols

Break

Train 56 1496

Validation 19 528

Test 19 451

Connected

Train 64 1694

Validation 22 612

Test 22 563

Normal

Train 180 4590

Validation 65 1806

Test 55 1360

Table 1: Statistics for three different categories of CBD

dataset based on arrow types.

the next subsections.

3.1 CBD Dataset

Data Collection We collect this dataset through

web crawling from different search engines such

as Google, Yahoo, Bing, and Naver. We manually

choose around 502 images that fit for our work and

are publicly available. We remove those images

that are either in very poor quality or written in

a different language other than English. For each

diagram, we download the images in high quality

and categorize them into three groups based on the

structure of arrow. Figure 1 shows some of the

sample images from our dataset for three differ-

ent categories: Break arrow that has some gap in

between an arrow, Connected arrows where two

or more arrows are interlinked together, and Nor-

mal arrow which includes both thin and thick types

of arrows. Table 1 shows some of the statistic of

different variations in this dataset based on arrow

types. Additional details of the CBD dataset are

provided in Appendix A.1.

Data Annotation The annotation for this dataset

was challenging as few images miss some of the

texts inside the shapes. This missing information

makes the overall diagram incomplete. To over-
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Prefix: <H> <R> <T>

Prefix: <H> <R> <T>

T5 Monitor is connect.....

Output: Summary

"BloSum"
Proposed Architecture

Input: Block Diagram Image Language Model

__
__
__

Figure 2: Overall architecture of block diagram summarization task.

come this problem, we manually write meaningful

texts at those places and then annotate the whole

dataset using the LabelImg tool (Tzutalin, 2015).

There are total 7 classes: Connection for circle,

Data for parallelogram, Decision for diamond, Ter-

minator for eclipse, Arrow, Text, and Process for all

other shapes not mentioned above. In this dataset,

there are a total of 300 train, 106 validation, and

96 test images that contains more than 13,000 el-

ements (shapes, arrows, and texts). These annota-

tions are helpful for object detection models. How-

ever, for the language model, we manually write

high-quality summaries along with the triplets in

the format of <head, relation, tail> for each dia-

gram.

3.2 Handwritten Block Diagram Dataset

In order to showcase the generalization of our

model, we also use two publicly available hand-

written block diagram datasets: FC_A (Awal et al.,

2011) and FC_B (Bresler et al., 2016). FC_A

dataset contains 248 train and 171 test images

whereas FC_B contains 280 train, 196 validation,

and 196 test images. Diagrams in these datasets are

very simple with not many variations and contain

only annotated handwritten block diagram images.

In order to further use this dataset for the sum-

marization task, we manually write high-quality

summaries and triplets for both datasets.

4 Models

In this section, we explain our proposed architec-

ture “BloSum” and all other models used for the

block diagram summarization task.

4.1 BloSum

Figure 2 shows the overall architecture of our

framework. First, the input image goes into Blo-

Sum architecture where it decomposes the images

into all possible sets of triplets. This BloSum ar-

chitecture mainly consists of four parts as shown

in Figure 3. We describe each part in detail.

Shape Prediction We consider object detection

task for shape prediction to detect all sets of shapes

S in an image. For each shape s ∈ S, it predicts a

bounding box bs ∈ R
4 and a class name cs ∈ C.

Additionally, we set the anchors on each predicted

bounding box of shapes at the midpoints of all

four sides from where arrows are most likely to

be connected. We define C as different classes

of shape which include Connection, Data, Deci-

sion, Terminator, and Process. Following previous

work (Schäfer et al., 2021), we use Faster R-CNN

with feature pyramid network (FPN) extension (Lin

et al., 2017) but with a different CNN architec-

ture. We use Inception-ResNet-v2 (Szegedy et al.,

2017) as a backbone and resize every image to

1024× 1024 that we found it suitable in our exper-

iments. We keep an intersection over union (IoU)

threshold value of 0.8 for all shape classes and

also apply non-maximum suppression (NMS) to

eliminate duplicate detections.

Text Prediction We use Faster R-CNN only to

predict different shapes. For text and arrow classes,

we use different methods because Faster R-CNN

shows poor performance in our experiments. We

use EasyOCR (Jaided, 2020) for detecting all the

sets of text T in an image. It is an open-source tool

that works well in detecting texts even from images

that contain some noises. For each text t ∈ T, it

predicts a bounding box bt ∈ R
4, confidence score,

and the original texts written inside. We combine

all the texts t whose bounding box lies inside the

same shape s.

Arrow Prediction Arrow prediction consists of

two steps. First, it detects all the arrow lines from
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Original Image

Shape Prediction

EasyOCR

Text Prediction

Shape Box Keypoints

Text Box Keypoints

Hough Line + 
Keypoint Detector

-

-

CNN + FPN

Region Proposals

Image Feature 
Pyramid

Triplet 
Generator

Arrow Prediction

RPN

ROI

Figure 3: Overall architecture of our proposed method “BloSum”.

the diagram including start and end points. Second,

it differentiates between head and tail points. Since

it is very difficult for any CNN to detect complex

arrows such as arrows having a gap or connected

arrows. We apply a simple technique in order to

detect all sets of arrows A in an image. By using

the information from the shape and text predic-

tion, we subtract all the shapes and text phrases

from the original image and binarize them. Thus,

it remains only with arrows. Then we apply Hough

Line Transform in order to detect all the arrow lines

and their start and end points. Hough Line Trans-

form helps in detecting the break arrow and the

connected arrow as well. To differentiate between

the head and tail of an arrow, we add an offset to

the start and end points to count the number of

white pixels. Finally, a greater number of white

pixels represents the head of an arrow, and a lesser

number of white pixels represents the tail of an

arrow. For each arrow a ∈ A, predicts 4-d vector

v = (ahead, atail) which represents 2-d coordinates

of head and tail keypoints per arrow.

Triplet Generator By using all the information

from the previous steps, we build a framework

called Triplet Generator as shown in Figure 4. This

generator finds the connection and relationship be-

tween different shapes, and converts these relations

into the form of triplets (<H> <R> <T>). For each

arrow a in the diagram, it predicts three things:

Head, Relation, and Tail. For each Head and Tail

keypoints, first, it finds the closest anchor point

placed on shapes. Second, it determines the name

of the shape it is associated with. Later, it finds

texts inside the shape. It combines all the texts

whose bounding boxes lie inside it. If texts are

available inside the shape then that particular text

Head 

Keypoint 

Tail 

Keypoint 

Arrow Keypoints 

Finding Closest 

Anchor Point 

Finding Closest 

Anchor Point 

Finding Text 

Around Arrow 

Shape Name  Shape Name 

Text No Text Text No Text 

Replace Shape 

Name with Text 

Replace Shape 

Name with Text 

Keep Shape 

Name 

Text No Text 

Keep Shape 

Name 

HEAD  <H> HEAD  <H> HEAD  <H> <T> TAIL 

Keep Original 

Text 
“Connected 

With” 

Prefix:    <H> HEAD <R> RELATION 

Figure 4: Pipeline of Triplet Generator from BloSum

architecture.

is assigned as Head or Tail, and if there are no texts,

then the shape name is assigned to Head or Tail. For

Relation, first, it determines the distance between

the arrow and all the text bounding boxes written

outside the shapes. If the distance between arrow

and text comes under a threshold value where we

set it as 5, then those particular texts are assigned as

Relation and if there are no texts which satisfy this

condition, then automatically Relation will be as-

signed as “Connected with”. This generator forms

a triplet in the top to the bottom and the right to the

left order.

After generating all sets of triplets from a dia-

gram, we add “Diagram to Text:” to prefix of each

triplet in order to make input friendly for the lan-

guage model. We experiment with two variants

of the T5 model: T5_Large and T5_Base and two

variants of the BART model: BART_Large and

BART_Base. We also experiment with OCR vari-

ants for each model where we replace the extracted

text from EasyOCR with their ground truth val-
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ues. Following previous work (Guo et al., 2020),

we connect each token word with an underline

“_”. For example, “check monitor” is converted

to “check_monitor”. We use the pre-trained model

of each variant on WebNLG 2017 dataset (Gardent

et al., 2017). Direct applying these models for our

task shows poor performance. Since our dataset

contains the ground truth triplets and summaries,

we fine-tune each model variant with our dataset.

4.2 Faster R-CNN

We follow the same Faster R-CNN as we use in

the BloSum for shape prediction. Instead of detect-

ing only shapes, we predict all the seven classes

including text and arrow classes using Inception-

ResNet-v2 as a backbone. We keep the IoU thresh-

old value of 0.8 for all classes and also apply NMS.

We apply the same EasyOCR for extracting a text

from the text bounding box detected by Faster R-

CNN. Further for each arrow class, we use the ar-

row prediction for head and tail keypoints and the

triplet generator for generating triplets. Later, those

triplets are used by a language model to generate

summaries. Similar to BloSum, we experiment

with two variants of the T5 model and two variants

of the BART model, along with their OCR variants.

4.3 Image Caption

For this category, we consider the Show, Attend,

and Tell (SAT) model (Xu et al., 2015) in order

to generate captions from block diagram images.

We use the pre-trained ResNet50 (He et al., 2016)

model on ImageNet (Deng et al., 2009) dataset as

the encoder and a unidirectional LSTM (Hochreiter

and Schmidhuber, 1997) as the decoder. Since we

have the object labels and summaries for the block

diagram images, we further fine-tune the model on

our dataset. Direct applying without fine-tuning,

shows very poor performance for block diagrams.

5 Experiments

5.1 Experimental Setups

All the experiments are done on our machine with

3 GPUs (NVIDIA TITAN RTX) having a memory

of 48GB each.

BloSum Julca-Aguilar and Hirata (2018) found

that training using the pre-trained model of Faster

R-CNN over the MSCOCO dataset (Lin et al.,

2014) allows for much faster convergence than

training from scratch. Thus, we use the pre-trained

model. Although, block diagram images are very

different in comparison to the real-world images of

the MSCOCO dataset. We then fine-tune the model

with our datasets. We use the minibatch training

with batch size 1 (due to the variable dimensions

of the images) and fix the number of training steps

to 25,000. Also, we fix the number of proposals for

RPN to 300. Increasing the number of proposals

did not result in any considerable improvements.

T5/BART For both language models (T5 and

BART), we fine-tune the models with our datasets

and use the Adam optimizer (Kingma and Ba,

2015) for maximally 50 epochs with a batch

size of 8. The initial learning rate is set to

5 × 10
−5. T5_Large consists of 770M parame-

ters and BART_Large consists of 406M parameters

with a 24-layer Transformer as the encoder and de-

coder whereas T5_Base has 220M parameters and

BART_Base has 139M parameters with 12-layer

Transformer as the encoder and decoder. For infer-

ence, we use the model with the lowest validation

loss. Additional training setup of language models

are provided in Appendix A.2.

Image Captioning Model We follow the same

training setup as presented in the original paper

for pretraining both image encoders and captioning

model. Run the inference with beam search with a

beam size of 4.

5.2 Automatic Evaluation

Measures We conduct automatic evaluation for

the generated summaries from different models

using five measures. BLEU (Post, 2018) mea-

sures how many words in the generated output

summaries appeared in the human reference sum-

maries. We use the overall BLEU score obtained

by averaging BLEU n-grams (n= 1 to 4) with re-

spect to the brevity penalty. ROUGE-1 (Lin, 2004)

measures how many words in the human reference

summaries appeared in the generated output sum-

maries. We use the F1 score of ROUGE-1 (Version

1.01) to show the fluency of the sentence generated.

BLEURT (Sellam et al., 2020) is a model-based

evaluation metric that indicates whether the output

sentence is grammatically correct and conveys the

correct meaning. We use BLEURT-base-128. Con-

tent Selection (CS) metric measures how well the

output generated summaries match the ground truth

summaries in terms of selecting which records to

generate (Wiseman et al., 2017). Finally, we mea-

sure Perplexity (PPL) (Radford et al., 2019) using a
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CBD FC_A FC_B

Models BLEU ↑ ROUGE-1 ↑ CS ↑ BLEURT ↑ PPL ↓ BLEU ↑ ROUGE-1 ↑ BLEU ↑ ROUGE-1 ↑

Image Caption 5.56 10.07 18.42% -0.84 29.76 3.76 10.9 4.08 13.03

Faster R-CNN + BART_Base 18.01 33.21 40.65% -0.62 16.84 22.1 44.36 24.67 45.21

Faster R-CNN + BART_Large 17.29 31.16 42.99% -0.69 17.93 20.07 43.29 22.19 41.63

Faster R-CNN + T5_Base 21.55 38.32 49.43% 0.09 14.66 24.78 47.52 24.92 46.35

Faster R-CNN + T5_Large 22.11 40.1 51.78% 0.1 12.06 25.61 46.91 27.81 50.47

BloSum + BART_Base 35.33 75.94 71.64% 0.14 8.44 16.99 34.04 18.16 39.87

BloSum + BART_Large 33.47 75.24 68.16% 0.11 8.33 14.16 31.65 15.49 35.39

BloSum + T5_Base 40.04 78.68 84.53% 0.21 7.79 19.98 42.34 18.75 40.55

BloSum + T5_Large 42.18 80.78 83.18%. 0.2 7.55 18.23 40.27 20.04 40.85

OCR-Faster R-CNN + T5_Base 28.71 42.92 53.40% 0.13 11.63 48.65 85.79 49.28 85.52

OCR-Faster R-CNN + T5_Large 29.87 45.19 58.05% 0.1 10.91 49.13 86.67 52.45 89.03

OCR-BloSum + T5_Base 40.91 78.74 84.68% 0.21 7.79 51.01 88.19 52.37 88.92

OCR-BloSum + T5_Large 42.86 81.29 83.23%. 0.2 7.54 51.73 88.24 53.17 89.56

Table 2: Automatic evaluation results on computerized (CBD) and handwritten (FC_A, FC_B) datasets from

different models. Up arrow ↑ shows, higher is better. Down arrow ↓ shows, lower is better. Bold numbers indicate

the best score. "OCR-" models use ground truth OCR values.

pre-trained GPT-2 Medium to check the readability

and fluency of the generated sentences.

Results Table 2 shows the automatic evaluation

results from different models on both computerized

and handwritten datasets.

On the CBD dataset, the image caption model

fails to extract the relationship between nodes from

the diagram and shows a very poor performance

while generating descriptions of it. However, lan-

guage models with Faster R-CNN show a better

improvement in extracting relationships between

nodes but our proposed method outperforms other

models. On one hand, we notice that BloSum

with the T5_Large model has the highest BLEU

(42.18) and ROUGE-1 (80.78) score. It also gen-

erates fluent sentences (low PPL). On the other

hand, BloSum with the T5_Base model better cap-

tures relevant information from diagrams (high CS

score) and grammatically correct sentences (high

BLEURT score). But there is a negligible differ-

ence as compared to the T5_Large model. Surpris-

ingly, the BART_Base model shows better perfor-

mance than BART_Large in both Faster R-CNN

and BloSum cases. But the low PPL score of the

BART_Large model shows that it generates more

fluent texts than BART_Base for BloSum. Faster

R-CNN mainly fails to detect complex arrows and

relations from the diagrams, which results in poor

performance of sentence generation. We find sim-

ilar results for OCR models with negligible im-

provements for BloSum variants which shows the

correctness of text extraction. Overall, BloSum

with T5_Large models shows the best performance

among others. Figure 5 shows an example of the

result obtained by the BloSum model (Intermediate

Input: Block Diagram Image 

BloSum: <H> Begin <R> connected_with <T> Initialize <H> Initialize 

<R> connected_with <T> Decision <H> Decision <R> Yes <T> 

Operation <H> Decision <R> No <T> Action <H> Operation <R> 

connected_with <T> End <H> Action <R> connected_with <T> End 

BloSum+T5_Large: Begin is connected with Initialize which is then 

connected with Decision. If Decision is Yes then Operation and if 

Decision is No then Action. Operation and Action both are connected 

with End. 

Final result from our framework 

Intermediate result from BloSum model 

Figure 5: Sample output of a block diagram image from

our model.

result) and the final result from our framework. The

BloSum model produces all the sets of triplets (<H>

represents head, <R> represents relation, <T> rep-

resents tail) from the given diagram and T5_Large

model generates sentences from those triplets.

Also, on the handwritten dataset (FC_A, FC_B),

the image caption model shows a very poor perfor-

mance. Unlike CBD, Faster R-CNN with T5_Large

model shows better performance than BloSum.

But in the case of OCR models, BloSum with

T5_Large models shows the highest BLEU (51.73),

ROUGE-1 (88.24) score for FC_A dataset and

BLEU (53.17), ROUGE-1 (89.56) score for FC_B

dataset. This shows that the BloSum model mainly

struggles with handwritten texts, which is because

the current version of EasyOCR does not support

handwritten texts. Since our work mainly focuses

on computerized block diagram images, we left this
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CBD FC_A FC_B

Models Adequacy Fluency Coherence Adequacy Fluency Coherence Adequacy Fluency Coherence

Image Caption 3.6 4.7 4.2 6.4 5.7 5.3 6.8 6.1 5.6

Faster R-CNN +T5_Large 18.6 15.9 13.3 55.6 52.1 50.9 67.4 65.8 65.1

Faster R-CNN +BART_Base 12.7 10.8 11.7 50.3 45.7 43.1 66.1 63.4 62.9

BloSum + T5_Large 68.4 62.3 63.6 28.9 35.6 36.3 36.7 40.2 40.6

BloSum +BART_Base 63.5 60.8 60.9 22.7 28.9 32.1 31.4 38.9 37.5

OCR-Faster R-CNN +T5_Large 30.7 28.2 28.7 60.8 59.4 58.3 64.9 63.2 63.8

OCR-BloSum + T5_Large 73.3 70.1 69.8 85.4 83.1 83.9 88.8 85.1 86.4

Table 3: Human evaluation average score on summaries generated by different models for different datasets. Bold

numbers indicate the best score.
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BloSum + T5_Large: Start is connected with 

Initialize i which if Initialize i is i>N then terminate 

Process. Initialize i is connected with Enough 

Quotes? Enough Quotes? is tender++ then Initialize 

i and if Enough Quotes? is Yes then Ready which is 

then connected with Purchase Approval? Purchase 

Approval? is Rejected then Terminate Process and 

Purchase Approval? is Yes End. 

BloSum + T5_Large: Begin is connected with Check 

your PC configuration which is connected with Install 

and configure a database and further connected with 

IBM DB2 Database?. If IBM DB2 Database? is Yes then 

Create users which is connected with Install Oracle 

WebLogic Server. IBM Database is No then Create 

database schemas. Install Oracle WebLogic Server is 

connected with Install Software is connected with 

Create and configure WebLogic server. Perform Steps 

is connected with Verify your environment which is 

finally connected with End of the year. 

Figure 6: Sample outputs from CBD dataset from different models (last two columns) along with the block diagram

image (first column).

area for the future version of EasyOCR that may

support handwritten text as well. Additionally, we

test the handwritten datasets by training the model

on computerized dataset (CBD) to showcase the

generalization of the CBD dataset (Appendix A.3).

5.3 Human Evaluation

Since automatic metrics are only good for small

sentences and also no metric is perfect. In our sce-

nario, outputs are long sentences and only humans

can perfectly test them. We evaluate the quality

of outputs by asking a group of 25 people to rate

them based on three quality criteria: (i) Adequacy

(whether the sentence clearly expresses the data?);

(ii) Fluency (whether the sentences are easy to read

and in a natural manner?); (iii) Coherence (whether

the sentences are well connected?). For each cri-

terion, people rate on a 0-100 scale where 0 is the

“strongly disagree” and 100 is the “strongly agree”.

We randomly select 40 different block diagram im-

ages from each dataset and provide their generated

output texts to each examiner.

Table 3 shows the average score given by the

examiners. We observe a similar pattern with

the automatic evaluation of the performances of

different models. For both OCR and non-OCR

variants, BloSum with the T5_Large model shows

the best performance especially on expressing the

data correctly for the CBD dataset. For FC_A

and FC_B datasets, the non-OCR BloSum variant

fails to detect data correctly mainly because of the

non-supporting of handwritten texts by EasyOCR.

Faster R-CNN performs well for handwritten texts.

However, in OCR variants BloSum with T5_Large

model shows the overall best performance in terms

of both fluency and coherence. We also determine

the mode of the scores given by human evaluators.

Details are provided in Appendix A.4.

6 Error Analysis and Challenges

To better analyze the results, we manually choose

50 samples from each dataset obtained by differ-

ent models as shown in Figure 6. This analysis

uncovers some key challenges for vision as well as

language tasks that we describe below. Additional

sample outputs are provided in Appendix A.5.
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Vision Challenge Due to improper detection of

some shapes and texts, arrow prediction detects

some extra or neglects some pre-existing arrows.

This results in the wrong prediction of the triplets,

which directly affects the language model in sum-

mary generation. Another vision challenge is re-

lated to OCR. Block diagrams contain a lot of im-

portant information. Since OCRs are not 100%

accurate, it detects some wrong texts which lead to

error in the facts. More accurate data extraction is

necessary for block diagrams.

Imaginary Prediction Imaginary Prediction

problem is very common for language models in

the data-to-text task. Models sometimes predict

some imaginary text which is not relevant to the

block diagram image. Some previous works (Wise-

man et al., 2017; Parikh et al., 2020) face the same

problem for the data-to-text task.

Large Scale Dataset Neural models generally

require large-scale datasets. However, our dataset

covers a lot of variations but is not big enough.

Collecting block diagram images, annotations and

their human written summaries are difficult tasks

as it requires a lot of manual labor.

7 Conclusion

We have presented a novel task of generating tex-

tual descriptions from an image of a block diagram.

For this purpose, we propose a new architecture

called “BloSum” that extracts the contextual mean-

ing from the diagram in the form of triplets. Ad-

ditionally, we introduce a new dataset CBD for

complex computerized block diagrams with their

annotated objects, triplets, and human written sum-

maries. Moreover, for showing the generalization

of our model, we tested and extended the publicly

available handwritten block diagram datasets i.e.,

FC_A and FC_B by adding triplets and summaries.

This extended dataset can also be used for other

data-to-text tasks. Our evaluation with different

metrics shows a promising result and outperforms

other methods and also reveals some of the unique

challenges for this task.

8 Limitations and Future Works

Evaluation with different metrics shows a very

promising result of our work. However, there are

some limitations such as it does not support elec-

trical diagrams that contain some electrical rep-

resentations like capacitors, resistors, and others.

It only supports those diagrams where shapes are

connected through arrows. Also, most of the error

occurs in the break arrows category, where there is

a very large gap.

To follow up, we plan to explore other ap-

proaches to better capture the relationship between

shapes, arrows, and texts. We hope that the block

diagram summarization task will serve as a use-

ful research for better document summarization as

well as for the Q&A task and motivate other re-

searchers to investigate this relatively new area. In

future, we also aim to collect more complex dia-

grams and summaries from different sources and

perform experiments to evaluate the generalization

of the model.

Ethical Consideration

We had several ethical issues to take into consider-

ation during the dataset collection and preparation

process. To respect the intellectual property of the

block diagram publishers, we only used publicly

available block diagrams that provide publication

rights for academic purposes. In addition, we also

manually replace around 50% of the text from each

diagram with some different meaningful texts. Re-

placing texts also helps with data privacy issue and

protect personal and sensitive data.

The examiners for manual evaluation were ran-

domly selected from the applicants at university.

The subjects for this evaluation were those people

who wanted to do this evaluation willingly without

any wage and have no relation to this project. Addi-

tionally, to preserve the privacy of these examiners,

all of their evaluations were anonymized.

One potential misuse of our model that we an-

ticipate is the spread of false information. As de-

scribed in section 6, our model outputs often seem

fluent but in reality, they contain certain OCR and

imaginary prediction errors. Therefore, these errors

could mislead the people if such model outputs are

published without being corrected.
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A Appendices

A.1 Additional Details of CBD Dataset

Figure 7 shows some of the additional statistics of

the CBD dataset with respect to shapes, arrows,

and text classes. We annotate all the images in

PASCAL VOC XML format through the LabelImg

tool, which can also be used for other vision tasks.

Figure 8 shows some of the complex samples of

three categories from our dataset based on arrow

structures (Break, Connect, Normal). We write

triplets and summaries for all datasets (including

handwritten datasets) in text (.txt) format, similar

to WebNLG dataset. This format (pair of triplets

and summaries) can help other researchers to use it

for different data-to-text tasks.

A.2 Additional Details of Language Models

T5 We follow the same training setup as pro-

posed by Guo et al. (2020) and also use their canon-

icalization of special tokens method in order to

handle special tokens. This method converts the

special characters that are not in the English al-

phabet into a format, in which T5 is more familiar.

For example, the long dash “—” is converted into

a small dash “-”. Then each triplet is serialized

with special tokens representing the head, relation,

and tail. For proper readability, the input format

of text phrases such as “check monitor” is actu-

ally “check@@ _@@ monitor” because T5 uses

byte-pair encoding. For T5, we use two variants:

the T5_Large model which consists of 24 attention

modules and 770M parameters, and the T5_Base

model which consists of 12 attention modules and

220M parameters.

BART For BART, we follow the same train-

ing setup as presented by Lewis et al. (2020).

It is particularly pre-trained for text generation

tasks. Same as T5, we use two variants of

BART: i) BART_Large and, ii) BART_Base. Bart-

large model consists of 24-layer, 1024-hidden, 16-

heads, and, 406M parameters whereas the Bart-

base model consists of 12-layer, 768-hidden, 16-

heads, and 139M parameters.

A.3 Additional Results from Dataset

Evaluation

We additionally perform an experiment with the

CBD dataset. First, we train and test the faster R-

CNN model on the handwritten datasets (Train:

FC_A/FC_B, Test: FC_A/FC_B). Second, we

Figure 7: Additional statistics of CBD dataset.

train the same model with CBD and then test

it with handwritten datasets (Train: CBD, Test:

FC_A/FC_B). Table 4 shows the precision score

values of all the seven classes along with the av-

erage values. We set the IOU threshold value of

0.7 for all seven classes. Surprisingly, the model

detects better handwritten diagrams, when trained

on computerized diagrams than trained on hand-

written diagrams. However, the CBD dataset does

not contain any handwritten diagrams. This shows

the generalization and usefulness of our dataset,

which can also be used in many other applications.

A.4 Additional Results from Human

Evaluation

Table 5 shows the mode scores of human evaluation

on summaries generated by different models for

the different datasets. Mode scores provide some

additional insights on the evaluation of the output

generated.

A.5 Additional Sample Outputs from CBD,

FC_A, and FC_B datasets

Figure 9 shows some of the sample outputs

(triplets) generated from our model (BloSum) for

the computerized (CBD) dataset. Figure 10 shows

some of the additional sample outputs (summaries)

generated from our model (BloSum) plus language

model for both computerized (CBD) as well as

handwritten datasets (FC_A, FC_B).
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                                a) Break Arrow                                                                           b) Connected Arrow                                                                c) Normal Arrow 

                  

                                                     d) Break Arrow                                                                                         e) Connected Arrow                                                                f) Normal Arrow 

Figure 8: Sample images from CBD datasets for three arrow variations.

Class Train: FCA Test: FCA Train: CBD Test: FCA Train: FCB Test: FCB Train: CBD Test: FCB

Arrow 86.17 89.65 88.13 90.76

Connection 96.59 99.76 99.44 99.54

Data 99.97 99.99 99.04 99.3

Decision 99.57 99.99 99.99 99.98

Process 99.37 99.55 98.9 99.32

Terminator 99.99 99.83 99.85 99.97

Text 83.13 84.97 86.74 87.04

Average 94.97 96.24 96.01 96.55

Table 4: Precision score values for different classes on different train and test datasets. Bold numbers indicate the

best score.
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CBD FC_A FC_B

Models Adequacy Fluency Coherence Adequacy Fluency Coherence Adequacy Fluency Coherence

Image Caption 3 4 3 5 5 4 6 5 4

Faster R-CNN +T5_Large 15 12 10 50 45 45 60 55 55

Faster R-CNN +BART_Base 10 8 8 40 35 35 60 55 55

BloSum + T5_Large 55 50 50 20 25 30 30 35 35

BloSum +BART_Base 55 50 50 10 15 25 25 30 30

OCR-Faster R-CNN +T5_Large 20 20 20 50 50 50 55 55 50

OCR-BloSum + T5_Large 60 60 50 75 70 70 75 70 75

Table 5: Human evaluation mode score on summaries generated by different models for different datasets. Bold

numbers indicate the best score.
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 Start 

Initialize i 
i > N Terminate 
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Quotes? 
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tender ++ 
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Purchase 
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Rejected 

 End 

Yes 

BloSum: <H> Start <R> connected_with <T> Initialize_i <H> 

Initialize_i <R> i>N <T> Terminate_Process <H> Initialize_i <R> 

connected_with <T> Enough_Quotes? <H> Enough_Quotes? <R> 

tender++ <T> Initialize_i <H> Enough_Quotes? <R> Yes <T> Ready 

<H> Ready <R> connected_with <T> Purchase_Approval? <H> 

Purchase_Approval? <R> Rejected <T> Terminate_Process <H> 

Purchase_Approval? <R> Yes <T> End 

BloSum: <H> Begin <R> connected_with <T> 

Check_your_PC_configuration <H> Check_your_PC_configuration <R> 

connected_with <T> Install_and_configure_a_database <H> 

Install_and_configure_a_database <R> connected_with <T> 

IBM_DB2_Database? <H> IBM_DB2_Database? <R> Yes <T> Create_users 

<H> IBM_DB2_Database? <R> No <T> Create_database_schemas. <H> 

Create_users <R> connected_with <T> Create_database_schemas. <H> 

Create_database_schemas.<R>connected_with<T>Install_Oracle_Weblogi

c_Server <H> Install_Oracle_Weblogic_Server <R> connected_with <T> 

Install_Software <H> Install_Software <R> connected_with <T> 

Create_and_configure_WebLogic_Server_Domian.<H>Create_and_config

ure_WebLogic_Server_Domian. <R> connected_with <T> Perform_Steps 

<H> Perform_Steps <R> connected_with <T> Verify_your_environment. 

<H> Verify_your_environment. <R> connected_with <T> End 

 

 

 

 

 

 

 

 

 

 

 

 

 

BloSum: <H> Begin <R> connected_with <T> Alarm_Rings <H> 

Alarm_Rings <R> connected_with <T> Ready_to_face_the_world? 

<H> Ready_to_face_the_world? <R> Yes <T> Get_Up <H> 

Ready_to_face_the_world? <R> No <T> Hit_SNOOZE <H> 

Hit_SNOOZE <R> connected_with <T> Ignore <H> Ignore <R> 

connected_with <T> Alarm_Rings <H> Get_Up <R> connected_with 

<T> End 

 

BloSum: <H>Bill<R>connected_with<T>Review_Bill<H>Review_Bill 

<R>connected_with<T>Invoice_Meets_Requirements?<H>Invoice_

Meets_Requirements?<R>No<T>Return<H>Invoice_Meets_Require

ments?<R>Yes<T>Information_Required<H>Information_Required<

R>No<T>Invoice_Placed_on_Hold,_Dept_Notified_of_Required_Acti

on<H>Information_Required<R>Yes<T>Invoice_Placed_in_Payment_

Queue<H>Invoice_Placed_in_Payment_Queue<R>connected_with<

T>Payment_Processed<H>Action_Taken,_Issue_Resolved?<R>No<T>

Invoice_Placed_on_Hold,_Dept_Notified_of_Required_Action <H> 

Action_Taken,_Issue_Resolved? <R> Yes <T> Information_Required 

Figure 9: BloSum outputs (triplets) from the CBD dataset.
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BloSum + T5_Large: Begin is connected with Alarm Rings which is 

connected with Ready to face the world?. If Ready to face the world? 

is Yes then Get Up and it is connected with End. Ready to face the 

world? is No then Hit SNOOZE which is then connected with Ignore 

and finally connected with Alarm Rings. 

BloSum + T5_Large: Bill is connected with Review Bill which is then 

connected with Invoice Meets Requirements?. Invoice Meets 

Requirements? is No then Return and if Invoice Meets 

Requirements? is yes then Information Required. Information 

Required is No then Invoice Placed on Hold, Dept Notified of 

Required Action and if Information Required is Yes then Invoice 

Placed in Payment Queue which is then connected with Payment 

Processes. Action Taken, Issue Resolved is No then Invoice Placed on 

Hold, Dept Notified of Required Action and if Action Taken, Issue 

Resolved is Yes then Information Required. 

OCR-BloSum + T5_Large: Begin is connected with Input n and is 

then connected with k=1 and Sum=0 which is further connected with 

Sum=Sum+k. k=k+1 is connected with Sum=Sum+k. Sum=Sum+k is 

connected with K==n?. K==n? is 0 then k=k+1 and if K==n is 1 then 

disp Sum and then disp sum is connected with Finish. 

OCR-BloSum + T5_Large: Start is connected with Read X which is 

then connected with X>0. If X>0 is False then Read Y and if X>0 is True 

then X=2*X which is further connected with Halt. Read Y is connected 

with X=X*Y and is connected with Halt. 

OCR-BloSum + T5_Large: Begin is connected with Input n,m which 

is then connected with r=n%m. r=n%m is connected with r=0? which 

if true, then output m and if r=0? is false then n=m and m=r and is 

connected with r=n%m. Output m is connected with End. 

OCR-BloSum + T5_Large: Begin is connected with Input X and is 

then connected with n=1 and R=1 which is further connected with 

R=R*n. R=R*n is connected with n=X. n=n+1 is connected with R=R*n 

and if n=x is No then n=n+1 and if yes then Disp R. Disp R is connected 

with Stop. 

Figure 10: Sample outputs from CBD (first two rows), FC_A (third and fourth rows), and FC_B (last two rows)

datasets.
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