
COLING

International Conference on
Computational Linguistics

Proceedings of the Conference and Workshops



COLING

Volume 29 (2022), No. 17

Proceedings of 1st Workshop on NLP applications to field
linguistics

The 29th International Conference on
Computational Linguistics

October 16, 2022
Gyeongju, Republic of Korea



Copyright of each paper stays with the respective authors (or their employers).

ISSN 2951-2093

iii



Message from the Program Chairs

Field Matters is a workshop focused on various applications of NLP methods to field linguistics and
analysis of field data with the help of computational linguistics. On the one hand, field linguists
document language data, but the fieldwork involves tons of manual annotation or analysis, which might
be significantly sped up with computational instruments. On the other hand, NLP research brought
methods for different tasks that show significant performance in high-resource languages, allowing to
automate various routine tasks. The future development of NLP methods could gain from the language
diversity of under-resourced languages.

Field Matters is aimed to combine linguistic fieldwork and NLP methods. Our workshop is hosted
by the 29th International Conference on Computational Linguistics (COLING 2022). To provide the
comprehensive diverse expertise in a multidisciplinary setting, we invited linguists and NLP researchers
worldwide to our program committee. After the hard process of reviewing all submissions, the program
committee chose nine papers for a poster or oral presentation at the workshop. Accepted papers illustrate
the main idea of our workshop: how field linguistics may benefit from using contemporary methods of
computational analysis and how the NLP community may evolve its methods with the help of under-
resourced languages.

We are incredibly grateful to the Field Matters program committee, who worked on peer review to give
meaningful comments for each submission and made this workshop possible. We want to thank the
invited speakers, Antonios Anastasopoulos and Steven Bird, for contributing to the program. We would
also like to mention all the authors who submitted their papers to our workshop, and we hope to continue
to serve as a link between NLP specialists and field linguists.

You can find more details about the workshop on our website: https://field-matters.github.io/
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A Finite State Approach to Interactive Transcription

William Lane and Steven Bird
Northern Institute

Charles Darwin University

Abstract
We describe a novel approach to transcrib-
ing morphologically complex, local, oral lan-
guages. The approach connects with local mo-
tivations for participating in language work
which center on language learning, accessing
the content of audio collections, and applying
this knowledge in language revitalization and
maintenance. We develop a constraint-based
approach to interactive word completion, ex-
pressed using Optimality Theoretic constraints,
implemented in a finite state transducer, and
applied to an Indigenous language. We show
that this approach suggests correct full word
predictions on 57.9% of the test utterances, and
correct partial word predictions on 67.5% of
the test utterances. In total, 87% of the test ut-
terances receive full or partial word suggestions
which serve to guide the interactive transcrip-
tion process.

1 Introduction

Thousands of the world’s languages have small
populations and are characterized by primary oral
usage (Ong, 1982). These local languages co-exist
alongside trade languages, i.e., languages of com-
merce, education, mass media, and government.
Local languages are generally losing ground to
larger languages, a process known as language shift
(Fishman, 2001). Key features of local languages
are that they generally have no literary tradition,
and little incentive exists for writing. There is often
no established or widely known orthography, and
usually no widely accepted standard variety to ren-
der into writing. The point where a related dialect
becomes a distinct language may not be clearly
understood or widely agreed.

Many heritage communities seek to reclaim or re-
vitalize their ancestral languages (Hinton and Hale,
2001; Grenoble and Whaley, 2006). Here, people
often depend on historical sources, including infor-
mal collections of audio recordings, in order to ac-
cess the ancestral code. Scholars are also involved,

using historical recordings in the process of lan-
guage documentation and description (Woodbury,
2003). Ideally, everything would be transcribed,
and it would be easy to access the content of such
collections for the purposes of learning and scholar-
ship. However, given that these are oral languages,
there is usually no pool of readily available tran-
scribers to call upon.

None of the above is systematically addressed by
current low-resource approaches to transcription,
which require upwards of 100k words (or 12-27
hours) of training data in the language, in order for
sufficiently accurate phone recognition to support
reasonable word error rates. Such work generally
assumes that a comprehensive lexicon is available,
and we find that this is generally not the case.

We seek a new approach, one that works with
the locally available resources and human capaci-
ties. Our work is founded on three insights. First,
work on Indigenous languages proceeds from lo-
cally meaningful, locally motivated activities. This
usually prioritizes content over form, interpreting
over transcribing (Bouquiaux and Thomas, 1992;
Wilkins, 2000). Two important use cases are lan-
guage learning and accessing the content of media
collections. We devise tasks that leverage infor-
mal linguistic knowledge, such as the ability to
form morphotactically valid words, and specialized
knowledge of the vocabulary that pertains to a se-
mantic domain of interest. This insight does not
simply connect with local motivation, it is an ef-
fective way to meet the reciprocity requirement for
ethical Indigenous research (NHMRC, 2018).

Second, work with speakers of Indigenous lan-
guages is more effective when it involves collabora-
tion on realistic tasks. Thus, we operate within the
skill set and time availability of speakers and lin-
guists. In particular, we eschew artificial tasks like
phonetic transcription, instead tapping into peo-
ple’s ability to identify words in connected speech
(Meakins et al. 2018, 230; Bird 2020). This can in-
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volve learning vocabulary, and getting clear about
nuances of word meaning by drawing on usage in
context, or speech concordances. Third, we apply
what is known about the language, even when it is
a non machine readable grammar, by interpreting
it into a computational form that can be deployed
to guide language tasks.

Thus, our contribution is a novel approach to
transcribing local languages that is: locally mo-
tivated, feasible, and leverages what is already
known about the language. As proof of concept
we provide a finite state implementation, using the
framework of constraint-based Optimality Theory
(Prince and Smolensky, 2004; Ellison, 1994). We
envisage that this implementation, suitably opti-
mized, could be deployed in an interactive, collab-
orative, sparse transcription system.

2 Background

2.1 Sparse Transcription

The initial phase of working with a language – prior
to having 100k words of transcribed audio – is
characterized by uncertainty (Newman and Ratliff,
2001; Crowley, 2007). We have elicited enough
words to establish the phonemic inventory, and tran-
sition to working with texts (Hale, 2001). However,
when we listen to connected speech, we are only
able to identify a few familiar words; the rest is
a sea of undifferentiated speech sounds. We may
attempt a transcription of those sounds, but the pres-
ence of coarticulation and disfluencies confounds
our efforts to segment them and produce a contigu-
ous transcription.

A popular solution is for linguists to delegate
transcription work to literate speakers (King, 2015).
However, as we have noted, for many oral lan-
guages it can be difficult to find suitable people. In-
stead, we may ask someone to carefully “re-speak”
a recording, phrase by phrase (Woodbury, 2003,
11). Here we have found, for every place where
we have conducted fieldwork, that speakers find
this task immensely tedious. A solution is offered
by collaborative transcription, where non-linguist
speakers and non-speaker linguists work together.

Collaborative transcription, as we have experi-
enced it, involves a speaker and a linguist listening
to a recording, while revising a partial transcription
consisting of words that the linguist has identified
in connected speech. Between the identified words
is unidentified material, hence the term “sparse
transcription” (Bird, 2020). We illustrate this in (1),

showing four iterations of linguist guesses and
speaker confirmations. Not shown here is the fact
that, between each iteration, we consider dozens of
other utterances containing the words, and detect
new, frequent words to add to our lexicon. Steps (a)
and (d) may be separated in time by several days, a
period during which the linguist is steadily learn-
ing to recognize a larger set of words in connected
speech.

(1)

In (1), the x’s indicate mismatches between
phone recognizer output and the canonical tran-
scriptions of the lexicon. These are leveraged in
the optimality theoretic approach we set out below.

Sparse transcription is a shift away from cur-
rent practices of transcribing phones, transcribing
first, and transcribing fully (Bird, 2020). Instead,
the focus is on local capacity and aspirations, and
how these feed into and draw from semi-structured
linguistic activities.

Sparse transcription avoids segmenting the in-
put on the way to recognizing words; after all, hard
boundaries do not exist in the speech stream (Osten-
dorf, 1999). A sparse transcription is represented
as an audio collection, a lexicon, and a collection of
tokens that pair lexical entries with locations in the
speech stream. For each such token, we keep track
of whether it has been confirmed by a speaker.

The ultimate aim of sparse transcription is con-
ventional, dense transcription. However, the inter-
mediate products are useful: a lexicon with con-
firmed examples from the corpus; and a corpus
indexed by terms of interest. These early outputs
support oral language learning and access to the
content of informal audio collections.

We envisage a context where a background pro-
cess, a machine in the loop, continually detects
putative new tokens of words, leveraging the lexi-
con and the grammar, presenting them for human
confirmation. We anticipate a deployment of our
solution inside a collaborative transcription system,
increasing the quantity and quality of transcriptions
in the early, bootstrapping stage of language work.
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2.2 Local Word Discovery
The new task of “local word discovery” was pro-
posed by Lane and Bird (2021) to complement
the word spotting described in section 2.1 above.
They observe that, for morphologically complex
languages, a lexicon consists of morphemes, not
full words, avoiding the combinatoric explosion
of the vocabulary. Accordingly, we spot lexemes
(morphs instead of words), and just require addi-
tional computational support to expand confirmed
morph tokens into full words. They provide a
baseline implementation, a finite state morpholog-
ical analyzer, which recognizes morphotactically
valid words conditioned on a previously confirmed
morph together with its left and right phonemic
context (See Figure 1).

Figure 1: Local word discovery seeks to discover words
at the locus of known lexemes.

The phone recognizer is not, as Bird (2020)
warns, used to create output for a linguist to post-
edit. Rather, it is used as an intermediate representa-
tion of the speech, guiding the local word discovery
model as it generates plausible word candidates.

A weakness of local word discovery is that it
requires explicit alignment of the known lexemes
with the phone sequence. The present work ad-
dresses this shortcoming by proposing a finite state
solution which accepts a phone string and an or-
dered list of known lexemes as input, and handles
the alignment of lexemes to phones implicitly as
it generates predictions. This solution relieves the
original local word discovery algorithm of its de-
pendency on manual alignment.

2.3 Finite State Morphological Analysis
Finite state methods remain central to computa-
tional analysis of morphologically complex lan-
guages. Beesley and Karttunen (2003) give a thor-
ough treatment of patterns for finite state modeling
of morphology. FSTs continue to play an integral
role in the morphological analysis of complex lan-
guages, from field grammars (Lane and Bird, 2019)
to extensive multi-year projects (Harrigan et al.,
2017; Arppe et al., 2017; Schmirler et al., 2017;

Snoek et al., 2014), to robust neural models trained
on data generated by an FST (Schwartz et al., 2019;
Moeller et al., 2018; Lane and Bird, 2020a). Over
the years, several finite state toolkits have become
prevalent in research, including FOMA (Hulden,
2009) and HFST (Lindén et al., 2009).

2.4 Optimality Theory

Since the 1970’s it has been accepted that phono-
logical and syntactic processes can be influenced by
constraints on the output of a grammar (McCarthy,
2007). Optimality theory (OT) arose as is a frame-
work for modeling linguistic well-formedness by
maximizing the harmonization of ranked con-
straints (Prince and Smolensky, 2004). In short,
OT provides a formalism for flexible ranked con-
straints on the output of a process. Model output
can be optimized by ordering constraints by their
relative importance.

The process works as follows. A function GEN
generates all possible output candidates given a
particular input, or lexical, underlying form. Then
all candidates are marked for any violations of the
constraints. Finally, an evaluation function EVAL
filters out candidates which violate constraints. The
candidates which violate the fewest high-ranking
constraints are said to be the most harmonic. Sub-
optimal candidates are culled.

The application of OT to specific input is ex-
pressed in a tableau, a visual representation of
generated candidates (GEN) and the selection of
optimal candidates (EVAL) (see Fig. 2).

Figure 2: Sample OT tableau: candidates are marked
for violations of constraints ranked from left to right.
Candidates violating more highly-ranked constraints are
rejected in favor of those which only violate lesser con-
straints. Chosen candidates are marked with an arrow.

In this example, some input has prompted the
generation of several candidates (column 1). We
also see that three constraints have been chosen and
ordered according to importance, such that Con-
straint 1 ≫ Constraint 2 ≫ Constraint 3 (row 1).
The candidates are marked for violations of vari-
ous constraints with asterisks (columns 2-4). To
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identify the optimal candidate, we examine the vi-
olations marked in the columns from left to right.
When a violation occurs, the cell is marked with
an exclamation mark. So long as other, viable can-
didates remain, the current candidate is removed
from consideration. After the EVAL process is
complete, the optimal candidates are those which
violated the fewest, most minimal constraints.

Ellison (1994) showed how OT can be imple-
mented using finite state transducers, so long as
three requirements are met: all constraints are bi-
nary; the output of GEN is a regular set; and all
constraints are regular. For the present application,
the GEN function, a morphological transducer, is
regular. Equally, the transducers which count vio-
lations of phone matches can be converted into a
suite of binary, regular transducers.

3 Available Resources

Low-resource languages are not necessarily under-
studied; many have significant description. This
work benefits from an existing finite state morpho-
logical analyzer (Lane and Bird, 2019). We use it
as an acceptor of morphotactically valid strings in
the language, combining canonical lexemes with
noisy phone recognizer output.

Additionally, it is common for linguists to main-
tain a bilingual lexicon, and a corpus of up to 10k
words of human-transcribed speech. The computa-
tional model described in the following section in-
corporates these resources. We define two lexicon
classes: “topical” words, semantically relevant to
the audio we are transcribing, and “attested” words,
those known to exist in the overall corpus.

Finally, recent advances in phone recognition
have made it possible to train or fine-tune models
capable of producing phone sequences from audio
(Adams, 2017; Li et al., 2020). Allosaurus is a pre-
trained universal phone recognizer which allows
for language-specific fine-tuning. We obtained the
fine-tuned model of (Lane and Bird, 2021) and used
it to automatically generate noisy phone sequences
from field recordings of Kunwinjku speakers.

4 Joint Alignment and Local Word
Discovery

The goal of the proposed local word discovery
model is to give useful signal to the transcriber
in the form of full word suggestions–which may
be completely or partially correct–conditioned
on known lexemes provided by the transcriber.

Equally, we would like the model to be able to pro-
vide high confidence suggestions when possible,
and back off to cast a wider net when necessary.

In this section we propose a finite state imple-
mentation of local word discovery which accom-
plishes this, while also incorporating implicit align-
ment. The GEN function takes a phone string and
an ordered list of known lexemes, converts them
to FSTs, and produces a list of candidate strings
marked for constraint violations. The EVAL func-
tion converts these candidate strings to FSTs, and
passes them through a cascade of constraints, im-
plemented as FSTs and combined using lenient
composition (see Fig. 3).

We employ three types of constraint: (a) an-
chored – these constraints are anchored to the be-
ginning or end of the phone string; (b) topical – a
lexical constraint consisting of words already dis-
covered in the recording we are transcribing; (c) at-
tested – a lexical constraint consisting of words
which are attested in the language.1

We give more detail about the function of each
of these components in the following sections. The
Python implementation is available2.

4.1 GEN

The responsibility of the GEN function is to pro-
duce a list of candidate strings which could plausi-
bly be completions of the input anchor lexemes. In
this section we describe an implementation of the
different pieces of this function in detail.

Input The GEN module requires as input an or-
dered list of known lexemes, and phone string.
Known lexemes are the anchor morphs, partial
words, or full words which the transcriber has rec-
ognized in the audio. The phone string comes from
access to a phone recognizer, fine-tuned for the tar-
get language. We use the Allosaurus model from
(Lane and Bird, 2021), which was fine-tuned on 79
minutes of Kunwinjku field recordings and which
achieved a 31.8% average word error rate in a 6-
fold cross-validation.

Additionally as input we require, for each utter-
ance, an ordered list of orthographic strings. These
are the forms that have already been identified in
the utterance, the “known lexemes”. For example,
a linguist might be able to recognize the top N
most frequent morphs in the language, and write

1In practice, the attested constraints can be spread across
multiple lexical buckets according to probability estimations.

2http://cdu-tell.gitlab.io/tech-resources/
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Figure 3: High-level view of local word discovery with implicit alignment.

them out in the order that they hear them in a par-
ticular utterance. See lines 1 - 6 of Figure 5 for
the definition of input FSTs which would ideally
be composed dynamically with the input in a real
local word discovery system.

Alignment and Candidate Generation The
phone input string is converted into an FST which
recognizes and transduces the original string. This
FST is composed with an FST which converts
phones to their possible orthographic realizations.
We automatically construct an FST which trans-
duces the known lexemes into a string of the same
ordered lexemes interspersed with zero or more of
any character. The XFST code on line 17 of Fig. 5
defines the FST which accepts a list of lexemes and
transduces all possible strings which include the
lexemes interspersed with arbitrary characters.

The lower side of this relation represents the
space of all possible alignments of known lex-
emes to the phone string. This FST can be com-
posed with edit distance FSTs to transduce the lan-
guage of candidate string alignments, allowing for
alignment of known lexemes with up to N inser-
tion/deletions of flexibility. For example, consider
the utterance in (1).

In (1a), we have no known lexemes, and have
just identified kabirri “they” and manme “food.” In
the next iteration, kabirri and manme are known
lexemes, and we have identified durrkmirri “work.”
Thanks to the implicit alignment in (1b), we see
that kabirri has been aligned to a less optimal po-
sition (requiring the insertion of a), in order to
accommodate durrkmirri.

As the number of known lexemes grows, the po-
tential number of insertions and deletions required
to produce valid alignment candidates also grows.
Accordingly, we allow greater edit distance for as
the length and number of known lexemes grows: 1
edit per known segment of length 1-3 characters,
and 2 edits for each longer segment. Our edit dis-
tance FST is a minor variation of the pattern set out
by Hulden (2013) (e.g., see Fig. 5, lines 18-19).

Figure 4: Constraint tableau for local word discovery
with implicit alignment.

After having composed the FST which accepts a
phone string and known lexemes as input and trans-
duces all possible variants of the phone string with
known lexemes aligned, we compose it with a se-
ries of FSTs which recognizes and transduces any
word licensed by the morphological FST, allowing
any characters to the left or right. This word dis-
covery block can also be altered to allow for some
edit distance in order to widen the range of possible
licensed words recognized by the morphological
analyzer FST (e.g., see Fig. 5, lines 29-32).

Note that depending on which edit distance path
is taken, we can append a corresponding tag (In
our case the “^” character) to mark how many edit
violations were required to produce a particular
word candidate (See Fig. 5, lines 24-25, 30-31).

4.2 EVAL

The EVAL function filters candidates according
to prioritized constraints, assuming an FST that
accepts a phone string and a list of known lexemes,
and produces full word candidates marked for edit
distance violations (see Fig. 4).

Constraints
In optimality theory, constraints are prioritized con-
ditions that must be maximally satisfied in order to
select the optimal candidate set. Optimality theory
is traditionally applied to filter for linguistic well-
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0 # Set up Lexicons and Mappings as FSTs
1 define LEXICON [ k u m e kk e | ng a rr i b o m | n a m e kk e | ng a d b e rr e ];
2 define PHONESTR [k u m k E b E n k a r k a m b E N r b O m ñ a m E E k a b u r k m a N a t b E r E k u k u];
3 define LEXEMES [X k u X ng a rr i X ng a d X];
4 define LEXEMESB [k u | ng a rr i | ng a d];
5 define TOPICAL [b i m | k u kk u | b i m b o m];
6 define ATTESTED [k u m e kk e | ng a rr i b o m | ng a d b e rr e];
7 define PHONES2ORTH b -> [ b | bb ] .o.
8 ñ -> [ nj ] .o.
9 N -> [ ng ] .o.
10 n -> [ n ] .o.
11 t -> [ d ] .o.
12 k -> [ k | kk ] .o.
13 d -> [ t | d ] .o.
14 ...
15 i -> [ i ];
16
17 define LexemePattern [[LEXEMES .o. [X -> ?*]].i].u;
18 define Edit1 [?* [?:0|0:?|?:?-?] ?*]^<2;
19 define Edit2 [?* [?:0|0:?|?:?-?] ?*]^<3;
20
21 # GEN: Generate alignment candidates
22 define OrthStrs [PHONESTR .o. PHONES2ORTH];
23 define Edit0Align [[?]* LexemePattern [?]*]["^"]*;
24 define Edit1Align [[?]* [ Edit1 .o. LexemePattern] [?]*][0:"^"];
25 define Edit2Align [[?]* [ Edit2 .o. LexemePattern] [?]*][0:"^"][0:"^"];
26 define AlignedOrth [OrthStrs .o. [ Edit0Align | Edit1Align | Edit2Align ]];
27
28 # GEN: Generate word candidates from alignment candidates
29 define Edit0Discover [[?:0]* LEXICON [?:0]*]["^"]*;
30 define Edit1Discover [[?:0]* [Edit1 .o. LEXICON] [?:0]*][0:"^"];
31 define Edit2Discover [[?:0]* [Edit2 .o. LEXICON] [?:0]*][0:"^"][0:"^"];
32 define DiscoverWords [AlignedOrth .o. [ Edit0Discover | Edit1Discover | Edit2Discover]];
33
34 # EVAL: Evaluate word candidates
35 define AnchoredWords [?+ LEXEMESB] | [LEXEMESB ?+] | [?+ LEXEMESB ?+];
36 define TopicalWords [?* TOPICAL ?*];
37 define AttestedWords [?* ATTESTED ?*];
38 define edit1Words [[?-"^"]* ["^"]^<2 ];
39 define edit2Words [[?-"^"]* ["^"]^<3 ];
40
41 regex DiscoverWords .O. AnchoredWords
42 .O. AttestedWords
43 .O. TopicalWords
44 .O. edit2Words
45 .O. edit1Words;

Figure 5: Minimal example of local word discovery with implicit alignment. NB LEXEMES and PHONESTR FSTs
would typically be built on the fly using input to the algorithm. For this reason, our final algorithm implements the
logic presented here with the HFST Python bindings, enabling parts of the network to be compiled at input time.

formedness. However, in the case of local word
discovery, grammaticality is already captured by
GEN, and the morphological FST. Therefore, we
only need to constrain candidates on pragmatics
grounds: what context can we leverage to elevate
some words over the others? Through a trial and
error process typical of OT, we identified the fol-
lowing ranking: anchored ≫ attested ≫ topical
≫ edit distance.

Anchored candidates are words which are at-
tached to a known segment provided by the user.
The model could easily hallucinate candidates
across the entire phone string. However, such a
broad search with loose edit distance parameters
generates many spurious candidates. It is prefer-
able to focus search on candidates for which we
already have strong priors.

Attested candidates are words which are attested
in some form across a wider corpus of language.

We represent attested candidates which occur in
a lexicon of the top N% most frequently words
drawn from a corpus of public texts published in
Kunwinjku: a bible translation, a set of 45 Kun-
winjku children’s books accessed from AIATSIS
(AIATSIS Mura Collections Catalogue, 2021), and
the example sentences scraped from the Kunwin-
jku dictionary (Bininj Kunwok Regional Language
Centre, 2021). For the model evaluated in this
work, we set N to 30%.

Topical candidates are words which have already
been transcribed from audio related to the current
audio. This lexicon grows over time, but its scope
should remain topically limited to relevant themes
and locations of the audio we are currently anno-
tating. In this work, the audio we are transcribing
comes from a tour of the outstation of Kabulwar-
namyo. We have previous recordings which have
been transcribed with other speakers giving similar
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tours, and so we sample a small set of words from
these to simulate a small set of 8 words to seed the
topical lexicon.

Edit Violations are the final and lowest-priority
of the constraints. Essentially, if we arrive at a
set of words which are already anchored, attested,
and topical, then we would further filter that result
set by taking those with the least number of edit
distance violations.

These constraints are operationalized in the
EVAL function through the use of lenient com-
position, a finite state operator that allows strings
to violate constraints as long as there are no other
strings which do not violate that constraint. That
is, a set of string candidates can be passed through
a chain of leniently-composed FSTs which check
for adherence to their individual constraints. At
each successive state, strings which violate the con-
straint are filtered out, and the remaining strings are
passed to the next constraint. If no more strings are
able to pass a filter, then the last viable set of strings
is returned as the result set (Karttunen, 1998).

5 Model Evaluation and Results

The objective of this model is to provide a reason-
able set of word candidates which lead to correct
transcriptions. As such, any model suggestions
which correctly predict subword units beyond the
anchor lexemes can be useful for helping the tran-
scriber discern the full word they are hearing, as
they interactively poll the model. Accordingly, we
chose to evaluate the performance of this model by
automatically simulating a first pass at transcrib-
ing 126 utterances of the test set. These 126 ut-
terances are recorded audio segmented by breath
group, from a tour of Kabulwarnamyo, conducted
in Kunwinjku.

The input of the model requires a phone string,
and an ordered list of known lexemes. As already
mentioned, we use the Allosaurus model fine-tuned
for Kunwinjku of (Lane and Bird, 2021). Similarly,
we adopt their sparse transcription data prepara-
tion method: we simulate a sparse transcription of
the audio by selecting a vocabulary of the top 20
morphs occurring in the training set, and use that
vocabulary to manually annotate the test set. To see
how this works, suppose that the test set includes
an audio file (2).

(2) birri-wam
they-went

balanda
white.person

birri-bo-ngu-ni
they-liquid-eat-PI

‘the white people went off drinking’

The corresponding prepared sparse transcription
would be the unaligned, ordered list of morphs
from the “known” vocabulary, i.e., birri, balanda,
birri.

Using these sparse transcriptions and the auto-
matically derived phone strings, we fed the test set
to the local word discovery model to generate a
list of candidate words anchored at the locus of
the known lexemes. In this way, we found that
12.7% of all predictions across all utterances were
correct full word predictions. Additionally, 38.2%
of all model suggestions were partially correct, i.e.,
a substring of the suggested word attached to the
anchor segment was correct, and thus a useful sig-
nal for the transcriber to decide how to continue
transcribing the word (Fig. 7).

On the utterance level, 57.9% of result sets con-
tained correct full word suggestions, and 66.7%
contained correct partial word suggestions. In to-
tal, 86.5% of utterance-level result sets contained
correct full or partial word suggestions. A sample
of these results can be seen in Fig. 6.

6 Discussion

The key feature of this model is that we drop man-
ual lexeme-to-phone alignment, and instead per-
form alignment on the fly, incorporating newly
identified lexemes. This is illustrated in (1), where
newly identified morphemes for each iteration are
marked in red.

This innovation has an important consequence
for the transcription process: it can be iterative.
Each time the linguist and/or speaker revisit an ut-
terance, they consider a new set of suggestions for
building the transcription out from known lexemes
where the model has taken care of working out
where everything fits. They may also posit entirely
new lexemes and add them to the lexicon. For each
new lexeme, the user only needs to indicate their
relative position with respect to existing lexemes.

For each new visit to an utterance, the lexicon is
in an expanded state due to transcription of other
utterances, and the model makes new suggestions.

The model handles some subtle issues in tran-
scription. For example, when a morph appears
multiple times in an utterance, as we see for kabirri
“they” (1). When a transcriber adds a lexeme, the
model assigns it to the best location, but only for
the purpose of discovering words anchored at this
lexeme (1a). When the transcriber identifies a new
lexeme, e.g. durrkmirri “work”, the previously
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Figure 6: Sample of test set utterances with #suggestions by model (blue); #correct partial word suggestions
(orange); #correct full word suggestions (green).

Number of utterances 126
% predictions full correct 12.7
% predictions partial correct 38.2
% docs with full correct 57.9
% docs with partial correct 66.7
% docs with any correct 86.5

Figure 7: LWD-A Test Set Statistics

identified lexeme is aligned elsewhere (1b). Fur-
ther suggestions–by the human transcriber or an
automatic word spotter–identify a second instance
of kabirri (1c).

Alongside these benefits are some shortcomings.
First, if a transcriber is mistaken about the identity
of a lexeme, the model will not be able to come up
with better suggestions for that locus, except in the
unlikely event that there is another locus where that
incorrect lexeme can be aligned. Second, the model
may generate suggestions for a given anchor lex-
eme, when a user wants to work on a different part
of the utterance. Here, the user may need to accept
high priority suggestions (if they are correct) and
wait for a later iteration to get model suggestions
for other parts of the utterance. Third, thanks to the
iterative nature of this approach, the precision and
recall of the model for a given utterance depends on
how high we are in the constraint hierarchy when
results are returned. High priority constraints are
more precise, with results sets of 1 or 2 candidates
(varying on the size of the topical lexicon). Low
priority constraints contain edit distance-based vari-
ations on the source signal, and therefore can grow
quite large with as a function of uncertainty.

This variability with precision and recall leads
to a further benefit. The model is able to prioritize
precision when possible, while backing off to recall
when necessary. Accordingly, for our test data, the
average number of predictions per utterance is just
6.5, compared to an average of 64.1 predictions
per utterance of the non-constraint based model of

Lane and Bird (2021).
A further shortcoming of our approach is that we

must compile unique FSTs at runtime. This means
we cannot precompile the network with LEXC and
FOMA or HFST compilers, but must use Python
bindings, and compile FSTs dynamically with each
new input. This could be prohibitively slow in
some instances, as complexity increases exponen-
tially with the size of the phone stream and known
segment lists. A solution is to add a preprocessing
step: utterances are already segmented from the
original audio using silence; any overlong utter-
ances are further split on confirmed full words.

7 Conclusion

We have proposed a novel approach to collabora-
tive transcription, which works with locally avail-
able resources and human capacities. In particu-
lar, local Indigenous participation is not reduced
to laborious and unmotivated phone transcription,
but focuses on the identification of keywords in
connected speech. These may be relevant to a con-
current cultural activity, or to language learning, in
which the meaning of words in context is of more
interest than their phonemic representation. The
results suggest that this model does well in leverag-
ing a computational grammar to give meaningful,
interactive signal in a collaborative transcription
context. This model improves on previous local
word discovery models in that it is able to suggest
words while performing alignment implicitly. We
anticipate that this approach will integrate with in-
teractive, collaborative transcription systems, such
as (Lane and Bird, 2020b). We also hope to have
shown a way of bridging language data collection
to locally-motivated language work.
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Ethical Considerations

This research has been approved by traditional own-
ers in the communities where it was conducted, and
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is covered by a research permit from the Northern
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proval of Charles Darwin University. The authors
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Abstract

The study of language variation examines how
language varies between and within different
groups of speakers, shedding light on how we
use language to construct identities and how
social contexts affect language use. A com-
mon method is to identify instances of a cer-
tain linguistic feature—say, the zero copula
construction—in a corpus, and analyze the fea-
ture’s distribution across speakers, topics, and
other variables, to either gain a qualitative un-
derstanding of the feature’s function or system-
atically measure variation. In this paper, we
explore the challenging task of automatic mor-
phosyntactic feature detection in low-resource
English varieties. We present a human-in-the-
loop approach to generate and filter effective
contrast sets via corpus-guided edits. We show
that our approach improves feature detection
for both Indian English and African American
English, demonstrate how it can assist linguis-
tic research, and release our fine-tuned models
for use by other researchers.

1 Introduction

Linguistic features—such as specific phonological,
syntactic, or lexical phenomena that may be asso-
ciated with a language variety—are widely used
by sociolinguists to quantify linguistic variation
between speakers through feature frequency mea-
surements (Renn and Terry, 2009; Grieser, 2019;
Craig and Washington, 2006), even if subject to
certain limitations (Green, 2017). Since manual
annotation is limited due to the required expert hu-
man labor, automatic methods are a valuable alter-
native (Grieve et al., 2011; Jones, 2015; Eisenstein,
2015; Nguyen et al., 2016). However, accurately
detecting morphosyntactic features (e.g. Figure 1)
remains an open challenge, especially in informal
genres such as transcripts and social media, and in
low resource nonstandard languages. We explore
fine-tuning pretrained language models (LMs) for
utterance-level classification of a feature by train-
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Figure 1: Top: Example features. Bottom: Our ap-
proach to generate contrast sets for feature detection.

ing on a contrast set—a small collection of positive
and negative examples that are highly similar—as
recently introduced by Demszky et al. (2021).

Our work makes the following contributions:

• We propose a method for generating mor-
phosyntactically contrastive training data,
combining corpus-driven edits and human-in-
the-loop filtering (§4).

• We evaluate our method’s ability to detect fea-
tures against new baselines on three datasets,
encompassing two Englishes (Indian English
(IndE) and African American English (AAE))
and two centuries of speakers, and show that
our best method outperforms prior work by
up to 16 points in Prec@100 scores (§5).

• For further validation, we confirm and extend
the findings of sociolinguistic studies of AAE
which use manual feature annotation to exam-
ine if feature use aligns with social factors like
age and gender (§6).

• Finally, we release training data and models
for detecting 10 features in IndE and 17 in
AAE.1

1https://github.com/slanglab/CGEdit
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2 Related Work

Feature detection. Detecting morphosyntactic fea-
tures in low-resource domains presents significant
challenges. Rule-based approaches have used se-
quences of unigrams and POS tags to identify syn-
tactic features (Blodgett et al., 2016), but many
features cannot be defined by sequences and the
tags may be unreliable. More recently, machine
learning has been used for feature detection by
training domain-specific LMs with synthetically
augmented data (Santiago et al., 2022), fine-tuning
pretrained LMs with contrast sets (Demszky et al.,
2021), or manually filtering results from noisy clas-
sifiers (Austen, 2017). While prior work has only
considered one language variety at a time and pri-
marily evaluated with labeled test sets, we examine
performance on multiple language varieties and
analyze external sociolinguistic validity.

Contrast set generation. Manual generation
of contrast sets has mostly been used for semantic
tasks (Staliūnaitė and Bonfil, 2017; Mahler et al.,
2017; Gardner et al., 2020), and occasionally for
morphosyntactic tasks (Demszky et al., 2021). Un-
like these approaches, our proposed method gen-
erates a morphosyntactically diverse contrast set
via a corpus-guided edit system. Data augmenta-
tion methods for automatic generation of contrast
sets include random edits (Smith and Eisner, 2005;
Alleman et al., 2021), which cannot target spe-
cific linguistic features, or informed edits (Burlot
and Yvon, 2017; Sennrich, 2017; Gulordava et al.,
2018; Miao et al., 2020; Ross et al., 2021), which
require syntactic or semantic annotations that are
not easily available for datasets with nonstandard
languages.

3 Task and Data

3.1 Morphosyntactic feature detection
Given a training set T , target corpus C, and mor-
phosyntactic features F , for each f ∈ F we model

P (fx = 1 | T, x), (1)

where fx ∈ {0, 1} indicates the utterance x ∈ C
contains the feature when fx = 1. An utterance
may contain multiple features.

3.2 Language Varieties and Data
We consider two English varieties, IndE and AAE,
each with their own target corpora C and feature
inventories F ; see Appendix A for feature lists.

Indian English. The International Corpus of
English (ICE) (Greenbaum and Nelson, 1996) is a
collection of national and regional English varieties,
and contains IndE material produced after 1989.
The ICE-India subcorpus that our study uses is the
complete subset of spontaneous spoken dialogues
(21,759 utterances). We use manual annotations of
10 syntactic features from Lange (2012).

African American English. We use two un-
labeled AAE corpora. The first is the Corpus of
Regional African American Language (CORAAL)
(Kendall and Farrington, 2021), which contains so-
ciolinguistic interviews with AAE speakers from
1968-2017 from six US sites (152,069 utterances).
The second is Born in Slavery: Slave Narratives
from the Federal Writers’ Project, 1936-38 (FWP)
(Library of Congress, 2001), a digital archive con-
taining over 2,300 ex-slave narratives, with speak-
ers from 17 US states (148,018 utterances).2

We examine 17 AAE features, sourced from
Green (2002) and Koenecke et al. (2020); examples
of three features are in Figure 1, and a complete list
is in Appendix A. During evaluation, we manually
annotated the top 100 utterances per AAE feature,
for each corpus, for the Prec@100 scores in §5.

4 CGEDIT: Corpus-Guided Edits

4.1 Motivation

Our method starts with a seed set of positive exam-
ples illustrating a feature, then uses corpus n-gram
statistics to generate proposed negative (and addi-
tional positive) examples, which require manual
filtering by the user to define the final training set.
A major motivation is speed and ease of use—it is
easier to filter candidate examples than to manually
write all the examples, as in Demszky et al. (2021).

At the same time, we believe negative examples
should be intelligently synthesized. A morphosyn-
tactic feature is beholden to its syntactic constraints
(i.e. word order, co-occurrence requirements); if a
sentence does not follow these constraints then it
is not an instance of the feature (Wilson and Mi-
halicek, 2011, Ch. 5.2). For example, an instance
of zero copula must have a noun phrase immedi-
ately followed by a predicate and must not have
a copula. The positive example in Figure 2 obeys
these syntactic constraints while the negatives do

2Given authenticity and reliability concerns about FWP
(Maynor, 1988; Wolfram, 1990), we primarily use it to evalu-
ate our method, and not to pursue linguistic questions about
Early African American English.
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not. Unlike previous work which uses constraints
to detect or generate positive instances, we gen-
erate negative examples which minimally violate
these constraints to create a contrast set that defines
a tight decision boundary. Based on the view that
good syntax is largely independent from meaning
(Chomsky, 1957), we argue that focusing on syntac-
tic constraint violation is a useful first step. While
potentially valuable, semantic-preserving edits are
beyond the scope of this work.

4.2 Method

Training data. We briefly describe how the con-
trast sets are generated (Figure 2; see Appendix B
for details). For a single feature, the input is a small
set P of 5 positive examples constructed by the au-
thors and an unlabeled target corpus C to compute
n-gram statistics. The output is a contrast set T
consisting of both P plus semi-synthetic positive
and negative examples.

The first step proposes candidate examples by
perturbing words in positive examples through
corpus-guided local edits. For each overlapping
3-gram t in a positive example p, we perturb it
by swapping t for a new 2-, 3-, or 4-gram t′ that
is both similar to t, and has a high frequency in
target corpus C. Similarity is defined as having 0
to 1 subtoken difference between t and t′.3 This
step typically produces 10-50 perturbed examples,
which may or may not have the feature. Our corpus-
guided edits are effective because they generate
plausible sentences with targeted edits, while ran-
dom edits often propose ungrammatical output.4

In the second step, the perturbed examples are
manually filtered so that only 2 positive and 3 nega-
tive examples are retained for each original p. Both
p and the new examples are included in the final
training set T . This step takes 30-60 seconds per p,
and was performed by the first author.

Models. We fine-tune multiheaded BERT mod-
els, where each head is a binary classifier for a sin-
gle feature (Devlin et al., 2019). We use two sets
of models in our experiments, where a set shares
a language variety, a feature inventory F , target

3Specifically, the set difference between subtoken sets
set(t) and set(t′) must have cardinality 0 or 1; thus a 2-gram
t′ represents a (sub)token deletion, a 4-gram an insertion, and
perturbations may change order as well. Since only a single
3-gram is changed, the resulting perturbed utterance has a low
edit distance to the original.

4While our n-gram swapping heuristic is straightforward,
generating from a C-specific language model could be an
interesting alternative in future work.
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Figure 2: Examples of negative examples generated
via our approach, compared to a semantically-matched,
manually created example (MANUALGEN).

corpora C (i.e. test set for our results in Table 1),
and a BERT variant (bert-base-uncased for IndE,
bert-base-cased for AAE, selected based on pre-
liminary experiments). The only variation between
models within a set is the approach used to generate
the training set T . Models were fine-tuned with
cross-entropy loss for 500 epochs using the Adam
optimizer, batch size of 64, and learning rate of
10−5, warmed up over the first 150 epochs.5

5 Results and Analysis

Baselines. We compare our approach (which we
refer to as CGEDIT) to several baseline methods,
all of which take the same seed set of positive ex-
amples P then add negative examples to complete
the training set. Examples in P were sourced from
Demszky et al. (2021) for IndE and crafted by the
authors for AAE.

MANUALGEN: The approach used in Demszky
et al. (2021). This method involves manually gen-
erating negatives by modifying positive examples
so they are (1) semantically-similar Mainstream
American English versions, and (2) do not have the
feature (see Figure 2); see discussion in §4.1. Next,
we also test two methods to completely automati-
cally generate negative examples:

AUTOGEN: This approach automatically gen-
erates negative examples by dividing a positive
example p into n-grams and shuffling the n-grams.

AUTOID: Automatic identification randomly
chooses unlabeled examples from target corpus
C as the negatives. The assumption that unlabeled
examples are negatives with class label noise un-
derpins contrastive learning (Chen et al., 2020) and
PU learning methods (Bekker and Davis, 2020).

Overall results. Table 1 presents performance
5Early experiments indicated that class-balanced loss did

not improve scores.
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ICE-India CORAAL FWP

Approach ROC-AUC AP Prec@100 Prec@100 Prec@100
AUTOGEN 68.94 12.63 16.93 - -
AUTOID 74.90 15.24 17.87 - -
MANUALGEN 86.83 25.77 31.63 57.88 58.71
AUTOID + MANUALGEN 76.34 19.95 24.30 - -
CGEDIT 84.92 27.48 32.50 67.41 68.00
MANUALGEN + CGEDIT 88.76 29.32 35.67 64.94 74.35

Table 1: Area under precision-recall curve (ROC-AUC), average precision (AP), and precision@100 in percentages
for feature detection on all three corpora. Results are averages over all features (10 in ICE-India, 17 in CORAAL and
FWP). Reported scores for ICE-India are averaged from three runs with different random seeds. Best scores are
bolded.

of the proposed approach against baselines and
prior work. AUTOGEN and AUTOID perform
the worst across metrics. CGEDIT outperforms
MANUALGEN, the best prior work on this task,
by up to 10 points in Prec@100 scores for both
AAE datasets, CORAAL and FWP. Combining
the training sets of MANUALGEN and CGEDIT

yielded the best performance, consistently outper-
forming MANUALGEN by about 4 points across
metrics in ICE-INDIA and by about 10-15 points
in Prec@100 scores for both CORAAL and FWP.
These gains can’t simply be attributed to more
training data, as combining AUTOID and MANU-
ALGEN training sets did not improve performance.

Better performance on AAE corpora may be due
to a few variables: a higher number of AAE fea-
tures means a larger total training set; larger AAE
corpora mean more target corpus n-grams; the se-
lected AAE features may be easier to distinguish
or more prevalent than the IndE ones. Discrepan-
cies between CORAAL and FWP are likely due to
different feature prevalences.

Results by feature. Feature difficulty is similar
across approaches; invariant features are easier to
detect (i.e. focus itself in IndE; finna in AAE),
while features with long-distance dependencies are
more difficult (i.e. double object construction in
AAE). See Appendix C for complete results.

6 Replicating Prior Sociolinguistic Work

We recreate three recent studies of CORAAL where
original authors manually annotated AAE mor-
phosyntactic features and analyzed correlations be-
tween feature frequency and speaker metadata (i.e.
gender, region, socioeconomic status). We used the
combined MANUALGEN + CGEDIT model and
Classify & Count (CC, summing hard classifica-

Figure 3: African American English feature variation
by speaker’s social factor, across all of CORAAL. Re-
gions are Atlanta, GA; Princeville, NC; Washington,
DC; Valdosta, GA; Lower East Side, NY; Rochester,
NY; socioeconomic classes are Working Class, Lower
Middle Class, Upper Middle Class.

tions (Bella et al., 2010)) to calculate per-speaker
feature frequency.6 The same subsets of features
and CORAAL were used as in previous work when
possible; detailed results are in Appendix C.

Koenecke et al. (2020) annotated 35 morphosyn-
tactic features in 150 utterances. We confirm their
conclusions that average feature frequency was low-
est in Rochester, followed by DC, then Princeville;
and lower among male speakers than female.

Cukor-Avila and Balcazar (2019) looked at 3
features over 14,506 utterances. They qualitatively
found considerable variation in feature use between
speakers, even when within the same age group.
We confirm this quantitatively: standard deviation
between speakers within an age group is larger than
standard deviation between age group means.

Grieser (2019) examined 14 features over 18,553
utterances. We confirm findings that age and so-

6In early experiments we tested the Saerens et al. (2002)
EM algorithm and PCC (Bella et al., 2010) to improve fre-
quency estimation, but found few improvements.
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cioeconomic status are negatively correlated with
feature use. Grieser also found that being male was
weakly correlated with feature use; interestingly,
our results agree when we look at all 17 features
or all of CORAAL, but not when we look at the
same feature and data subsets as Grieser. This may
indicate how small sample size (in terms of both
features and datasets) can skew results.

See Figure 3 for average frequencies of our 17
features in all 152,069 utterances of CORAAL, bro-
ken down by several social factors of the speaker.
Feature detection at this scale is only possible with
automatic methods, and allows researchers to draw
more reliable conclusions about language use.

7 Discussion and Future Work

We propose a corpus-driven and manually-filtered
approach to generate contrast sets for morphosyn-
tactic feature detection in low-resource language
varieties, which may be useful for novel sociolin-
guistic analysis in future work. This approach may
be extendable to datasets with other nonstandard
language varieties (e.g. ICE with 14 English vari-
eties (Greenbaum and Nelson, 1996), QADI with
18 Arabic varieties (Abdelali et al., 2021), Cor-
pus del Español with 21 Spanish varieties (Davies,
2016), or Masakhane’s African language collection,
currently under development (∀ et al., 2020)), in
addition to social media corpora, which are largely
unlabeled and could benefit from automatic meth-
ods.

Additionally, while we only examined automatic
identification of noisy negatives, future work might
explore automatic identification of reliable nega-
tives by using an apt word representation and dis-
tance function to obtain unlabeled examples which
are least similar to the positives (Bekker and Davis,
2020). Other extensions might consider adding
manual filtering to an automatic identification ap-
proach, such as filtering through and identifying
the nearest unlabeled examples that are true nega-
tives, instead of identifying reliable (e.g. distant)
negatives.

8 Ethical Considerations and Broader
Impact

Our objective is to expand the linguistic coverage
of NLP tools to include marginalized language va-
rieties, so that they may also benefit from the lin-
guistic analysis made possible by methodological
innovation. We hope to aid both sociolinguistic and

corpus linguistic researchers studying nonstandard
language use.

Since language varieties, including the ones ex-
amined in this study, may correlate with the na-
tional origin or ethnicity of the speaker and linguis-
tic feature frequency may correlate with social fac-
tors, such as gender or socioeconomic status, there
is a risk of automatic feature detection being used to
infer personal information about a speaker (Kröger
et al., 2022; Chancellor et al., 2019; Veronese et al.,
2019). Our study has sought to show that there is a
correlation between language use and social factors,
but does not support any claims about the accuracy
or ethics of using linguistic feature frequency to
predict a given social factor.

There is not a one-to-one mapping of feature fre-
quency to ethnicity, socioeconomic status, or any
other social factor. Two speakers with the same
set of social factors may exhibit different feature
frequencies; life circumstances do not determinis-
tically produce linguistic competence. In addition,
linguistic competence does not deterministically
produce feature frequency. Every speaker has the
ability to style-shift and thus use linguistic features
to varying degrees for a given context, exhibiting a
range of feature frequencies throughout their spo-
ken interactions (Sharma, 2017, 2018). There are
many factors that may influence observed feature
frequency, including pragmatic context, register,
topic, relationship between the speakers, relation-
ship to one’s own identity, and so on. This complex
relationship between language production and ex-
ternal factors should be considered when using this
technology.
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A Feature inventories

Level IndE Feature Example utterance
Noun phrase Non-initial existential there library facility was not there

Focus itself We are feeling tired now itself
Focus only I like dressing up I told you at the beginning only

Verb phrase Zero copula Everybody (is) so worried about the exams
Sentence level Left dislocation we elders, we don’t have much time to converse

Resumptive subject pronoun the father, sometimes he is unemployed
Resumptive object pronoun also pickles, we eat it with this jaggery and lot of butter
Topicalized object (argument) brothers and sisters you have
Topicalized non-argument constituent with your child you have come
Invariant tag no/na/isn’t it both works same hours, isn’t it?

Table 2: Features of Indian English used in our study.

Level Grammatical domain AAE Feature Example utterance
Noun phrase Pronominal case Zero possessive -’s go over my grandmama(’s) house
Verb phrase Copula deletion Zero copula she (is) the folk around here

Tense marking Double marked/overregularized she likeded me the best
Aspect marking Habitual be I just be liking the beat

Resultant done you done lost your mind
Other verbal markers finna she’s finna have a baby

come she come grabbing me on my shirt
Double modal he might could really get our minds

Negation Negative concord I ain’t doing nothing wrong
Negative auxiliary inversion don’t nobody know what I had
Non-inverted negative concord nobody don’t say nothing
Preverbal negator ain’t I ain’t doing nothing wrong

Sentence level Subject-verb agreement Zero 3rd p sg present tense -s I don’t know if it count(s)
is/was-generalization they is die hard Laker fans

Number marking Zero plural -s about four or five month(s)
Ditransitive constructions Double-object construction I got me my own car
Interrogative constructions Wh-question what they was doing?

Table 3: Features of African American English used in
our study.
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B Approach descriptions

B.1 Proposed approach
A positive example p is defined as (x1, x2, ..., xn)
where xi is a subtoken. For each positive example
p:

1. A 3-gram instance t in p is defined as
(xi, xi+1, xi+2). For each 3-gram instance t
in p:
(a) For each n ∈ {2, 3, 4}, find the 3 most

frequent n-grams from the corpus where,
for each n-gram t′, the set difference be-
tween set(t) and set(t′) is at most one
subtoken.

(b) Create perturbed examples by swapping
t for t′. These perturbed examples may
or may not have the feature.

2. Randomly order the perturbed examples.
3. Manually filter and label the perturbed exam-

ples; examples that pass the filter should not
have invalid subtoken combinations, positive
examples should unambiguously have the fea-
ture, and negative examples should unambigu-
ously not have the feature. Examples that
pass the filter (positive or negative) may be
ungrammatical. Stop after 2 positives and 3
negatives have passed the filter. Including the
original positive example p, you should have
3 positives and 3 negatives.

We provide here an example of our approach.
For the feature zero copula, we are given p = He
on the five dollar. We generate:

Perturbed example
He on the last five
He on the five
on the other five dollar
He on the five hundred dollar
He was on the dollar
on the five dollar
the on five dollar
He and five on the dollar
He was on the five dollar
He on the five dollar bill
He beating on the five dollar
He on the dollar
He on the other dollar
He on five dollar
He the five dollar
He on five dollar bill
was on the five dollar

The manually filtered contrast set looks like:

Example Label
He on the five dollar 1
He on the last five 1
He on the five 1
on the other five dollar 0
He was on the dollar 0
on the five dollar 0

B.2 Manual generation
Given a positive example p, manually construct a
negative example by modifying p so they are (1)
semantically-similar MAE versions, and (2) do not
have the feature.

B.3 Automatic generation
For each positive example p:

1. Randomly choose n-gram order, where n is
some value 0 < n < length(p) - 1.

2. Split positive example into sequential non-
overlapping n-grams from left to right. If
length of sentence isn’t a multiple of n, then
the remaining words form an additional m-
gram (m < n).

3. Randomly shuffle the list of n-grams.
4. Repeat steps 1-3 until you have three distinct

shuffled negative examples per positive exam-
ple.7

B.4 Automatic identification
Randomly choose unlabeled examples from target
corpus and label them as the negative examples.
Five negatives are chosen per positive example.8

C Extended results and figures

Tables 4, 5, and 6 are per-feature results for Indian
English features in ICE-India. Tables 7 and 8 are
per-feature results for African American English
features in CORAAL and FWP. Tables 9, 10, and
11 are standard deviation scores for Indian English
features in ICE-India. Figures 4, 5, and 6 are de-
tailed results from replicating prior sociolinguistic
work.

7Number of negatives per positive was a tuned hyperpa-
rameter.

8Number of negatives per positive was a tuned hyperpa-
rameter.
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ROC-AUC

Feature AUTOG. AUTOID MNLG. AUTOID
+MNLG. CGEDIT

MNLG.
+CGEDIT

Non-init. exist. there 91.14 90.47 89.88 89.74 95.46 89.03
Focus itself 94.08 98.02 98.70 97.58 99.49 99.89
Focus only 85.38 97.00 98.94 95.40 96.72 99.02
Zero copula 53.28 61.82 73.75 67.77 73.79 75.61
Left dislocation 64.17 70.18 93.13 69.32 89.92 93.14
Res. subject pronoun 72.81 70.03 93.60 67.92 88.32 89.94
Res. object pronoun 67.49 70.46 86.87 78.24 86.44 88.93
Topic. object (arg.) 63.20 59.17 76.72 54.28 72.08 81.30
Topic. non-arg. const. 44.90 55.48 69.24 55.55 59.99 79.54
Invar. tag no/na/isn’t it 52.96 76.37 87.46 87.55 86.95 91.24
Macro average 68.94 74.90 86.83 76.34 84.92 88.76

Table 4: ROC-AUC results on ICE-India, averaged over 3 runs.

AP

Feature AUTOG. AUTOID MNLG. AUTOID
+MNLG. CGEDIT

MNLG.
+CGEDIT

Non-init. exist. there 46.56 41.32 53.16 51.84 61.11 59.56
Focus itself 39.99 40.16 74.76 72.76 78.12 75.14
Focus only 24.23 32.74 40.04 28.12 41.10 44.31
Zero copula 01.78 04.96 02.05 04.19 03.88 02.95
Left dislocation 02.78 05.70 25.78 09.47 23.07 26.63
Res. subject pronoun 03.68 03.57 21.72 07.55 20.64 20.50
Res. object pronoun 00.24 01.58 02.47 00.93 02.96 05.66
Topic. object (arg.) 02.04 15.95 06.99 02.13 06.00 10.16
Topic. non-arg. const. 01.11 02.53 03.78 02.26 02.65 06.10
Invar. tag no/na/isn’t it 03.89 04.96 26.95 20.26 37.26 42.18
Macro average 12.63 15.24 25.77 19.95 27.48 29.32

Table 5: AP results on ICE-India, averaged over 3 runs.

Prec@100

Feature AUTOG. AUTOID MNLG. AUTOID
+MNLG. CGEDIT

MNLG.
+CGEDIT

Non-init. exist. there 78.33 74.00 86.00 82.00 84.33 87.00
Focus itself 15.67 18.67 28.00 25.00 28.00 28.00
Focus only 34.33 41.33 48.33 39.67 45.00 48.33
Zero copula 03.33 01.67 03.33 05.00 03.00 05.33
Left dislocation 08.33 18.33 46.33 27.00 42.67 42.00
Res. subject pronoun 09.67 13.67 39.00 24.67 36.00 31.67
Res. object pronoun 00.00 01.00 03.67 01.67 04.67 08.33
Topic. object (arg.) 05.67 03.00 15.00 06.67 12.33 19.33
Topic. non-arg. const. 01.33 01.00 07.33 06.33 07.00 13.67
Invar. tag no/na/isn’t it 12.67 06.00 39.33 25.00 62.00 73.00
Macro average 16.93 17.87 31.63 24.30 32.50 35.67

Table 6: Prec@100 results on ICE-India, averaged over 3 runs.Prec@100 results on CORAAL. Note that if there are
less than 100 instances of a certain feature (e.g. finna occurs only 35 times in this dataset, confirmed via keyword
search), then its Prec@100 score will have an upper bound of less than 1.
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Prec@100

Feature MNLG. CGEDIT
MNLG.

+CGEDIT

Zero possessive -’s 030.0 071.0 088.0
Zero copula 089.0 100. 0 100.0
Double marked 024.0 031.0 045.0
Habitual be 100.0 100.0 100.0
Resultant done 089.0 097.0 097.0
finna 035.0 035.0 035.0
come 011.0 016.0 015.0
Double modal 014.0 014.0 013.0
Negative concord 100.0 096.0 077.0
Neg. auxiliary inversion 078.0 096.0 089.0
Non-inverted neg. concord 009.0 010.0 012.0
Preverbal negator ain’t 100.0 100.0 100.0
Zero 3rd p sg pres. tense -s 096.0 100.0 098.0
is/was-generalization 063.0 100.0 100.0
Zero plural -s 017.0 062.0 059.0
Double-object construction 050.0 030.0 018.0
Wh-question 079.0 088.0 058.0
Macro average 057.9 067.4 064.9

Table 7: Prec@100 results on CORAAL. Note that if there are less than 100 instances of a certain feature (e.g. finna
occurs only 35 times in this dataset, confirmed via keyword search), then its Prec@100 score will have an upper
bound of less than 1.

Prec@100

Feature MNLG. CGEDIT
MNLG.

+CGEDIT

Zero possessive -’s 011.0 042.0 026.0
Zero copula 097.0 099.0 100.0
Double marked 053.0 049.0 095.0
Habitual be 078.0 099.0 097.0
Resultant done 093.0 100.0 100.0
finna 000.0 000.0 000.0
come 001.0 050.0 082.0
Double modal 004.0 005.0 004.0
Negative concord 100.0 100.0 100.0
Neg. auxiliary inversion 093.0 100.0 100.0
Non-inverted neg. concord 015.0 024.0 056.0
Preverbal negator ain’t 100.0 100.0 100.0
Zero 3rd p sg pres. tense -s 100.0 100.0 100.0
is/was-generalization 100.0 100.0 100.0
Zero plural -s 024.0 070.0 096.0
Double-object construction 036.0 028.0 020.0
Wh-question 093.0 090.0 088.0
Macro average 058.7 068.0 074.4

Table 8: Prec@100 results on FWP. Note that if there are less than 100 instances of a certain feature (e.g. finna
occurs 0 times in this dataset, confirmed via keyword search), then its Prec@100 score will have an upper bound of
less than 1.
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ROC-AUC Standard Deviation

Feature AUTOG. AUTOID MNLG. AUTOID
+MNLG. CGEDIT

MNLG.
+CGEDIT

Non-init. exist. there 03.29 00.69 00.65 07.39 01.89 08.42
Focus itself 03.38 00.54 00.42 00.45 00.47 00.03
Focus only 06.40 01.59 00.66 01.25 02.74 00.48
Zero copula 04.63 03.80 07.95 04.71 06.87 01.04
Left dislocation 07.90 01.83 01.24 16.00 01.62 00.78
Res. subject pronoun 04.62 07.10 00.39 17.13 04.77 05.24
Res. object pronoun 04.73 06.15 05.66 07.79 01.77 00.70
Topic. object (arg.) 06.20 02.88 10.93 06.49 04.89 05.39
Topic. non-arg. const. 03.25 05.52 03.87 01.79 05.57 03.31
Invar. tag no/na/isn’t it 07.64 04.35 03.04 01.59 10.77 04.97
Macro average 05.20 03.45 03.48 06.46 04.14 03.04

Table 9: Standard deviation of ROC-AUC results on ICE-India over 3 runs.

AP Standard Deviation

Feature AUTOG. AUTOID MNLG. AUTOID
+MNLG. CGEDIT

MNLG.
+CGEDIT

Non-init. exist. there 09.52 03.07 04.32 15.13 09.13 08.09
Focus itself 09.87 11.30 03.44 08.26 04.30 08.19
Focus only 08.36 02.62 05.68 08.01 04.74 00.43
Zero copula 01.79 05.45 01.22 02.07 01.50 01.36
Left dislocation 00.80 01.31 04.90 05.84 01.36 00.78
Res. subject pronoun 00.70 03.12 07.30 05.54 08.82 04.91
Res. object pronoun 00.07 01.77 00.72 00.89 00.65 01.83
Topic. object (arg.) 01.29 25.05 02.46 00.57 01.31 01.18
Topic. non-arg. const. 00.13 01.93 00.99 00.96 00.93 00.39
Invar. tag no/na/isn’t it 00.73 03.02 13.96 07.02 25.90 16.98
Macro average 03.33 05.86 04.50 05.43 05.86 04.41

Table 10: Standard deviation of AP results on ICE-India over 3 runs.

Prec@100 Standard Deviation

Feature AUTOG. AUTOID MNLG. AUTOID
+MNLG. CGEDIT

MNLG.
+CGEDIT

Non-init. exist. there 08.02 07.00 04.00 12.90 04.16 03.61
Focus itself 03.51 04.04 00.00 31.19 00.00 00.00
Focus only 06.03 04.16 06.43 07.13 05.57 05.51
Zero copula 01.15 01.53 02.08 01.30 03.00 01.53
Left dislocation 04.04 06.66 05.20 34.27 05.51 02.65
Res. subject pronoun 04.51 03.21 14.73 21.81 17.69 07.09
Res. object pronoun 00.00 00.00 01.15 02.89 00.58 02.52
Topic. object (arg.) 03.79 02.65 05.20 06.48 02.31 03.51
Topic. non-arg. const. 00.58 00.00 03.21 07.57 03.00 03.79
Invar. tag no/na/isn’t it 04.16 04.36 16.20 38.91 25.51 17.09
Macro average 03.58 03.36 06.15 16.45 06.73 04.73

Table 11: Standard deviation of Prec@100 results on ICE-India over 3 runs.
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Figure 4: Confirming results from Koenecke et al. (2020). Examined 17 features over entire DCB, PRV, and ROC
subcorpora. We find higher feature frequencies among male speakers than female speakers; and highest feature
frequency in Princeville, followed by DC, and then Rochester.

Figure 5: Confirming results from Cukor-Avila and Balcazar (2019). Examined 3 features over files specified in
their study from DCA and DCB subcorpora. Ag1 corresponds to ages less than 20, ag2 corresponds to ages 20-29,
ag3 corresponds to 30-50, and ag4 corresponds to 50+. We find that standard deviation between speakers in an age
group is equal to or larger than standard deviation between age groups.
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Figure 6: Confirming results from Grieser (2019). Examined 14 features over files specified in their study from
DCA subcorpus. Age group 1 corresponds to ages less than 20, age group 2 corresponds to ages 20-29, age group
3 corresponds to 30-50, and age group 4 corresponds to 50+; the socioeconomic classes, from left to right, are
Lower Working Class, Upper Working Class, and Middle Class. We find that age and socioeconomic status are
negatively correlated with feature use. We find that men have a slightly lower average feature frequency; however,
when looking at all of CORAAL for all of our features, we confirm that men have a higher average feature frequency.
This is perhaps an example of how small sample size can skew results.
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Abstract
Language documentation encompasses transla-
tion, typically into the dominant high-resource
language in the region where the target lan-
guage is spoken. To make data accessible to
a broader audience, additional translation into
other high-resource languages might be needed.
Working within a project documenting Kotiria,
we explore the extent to which state-of-the-art
machine translation (MT) systems can support
this second translation – in our case from Por-
tuguese to English. This translation task is chal-
lenging for multiple reasons: (1) the data is
out-of-domain with respect to the MT system’s
training data, (2) much of the data is conver-
sational, (3) existing translations include non-
standard and uncommon expressions, often re-
flecting properties of the documented language,
and (4) the data includes borrowings from other
regional languages. Despite these challenges,
existing MT systems perform at a usable level,
though there is still room for improvement. We
then conduct a qualitative analysis and suggest
ways to improve MT between high-resource
languages in a language documentation setting.

1 Introduction

We report on our investigations of whether and
how existing machine translation (MT) systems can
support the work of documenting and describing
endangered languages. Rather than targeting low-
resource MT, we look at translating between high-
resource languages, aiming to save time for the lan-
guage experts and language community members
working on the language documentation project.

Specifically, we are working with a linguist doc-
umenting Kotiria (also known as Wanano), an East
Tukano language spoken in the Brazil-Colombia
borderlands in northwestern Amazonia. Documen-
tation and description of Kotiria on the Brazilian
side of the border has been ongoing since 2000, re-
sulting in numerous publications, including a Ref-
erence Grammar (Stenzel, 2013), and a documen-
tary archive of primarily monologic language data

(approx. 10 hours of mythical, historical, and per-
sonal narratives, public addresses, and instructional
speech). A second documentation project focus-
ing on language use and interaction in daily life
resulted in a much larger corpus – approximately
60 hours – of primarily conversational data. Both
projects were carried out within the participatory re-
search paradigm (Stenzel, 2014), with indigenous
speakers involved in both recording and annota-
tion of data in ELAN,1 including translation of the
indigenous language data into Portuguese.

Further grammatical analysis and annotation of
these documentary materials, including translation
from Portuguese into English, is ongoing but pro-
ceeds slowly. Researchers of endangered languages
worldwide generally work alone or at best in small
teams to deal with enormous amounts of data, fur-
ther underscoring the gap between technological
advances that facilitate production of large, high
quality documentary corpora and researchers’ abil-
ity to single-handedly process the resulting materi-
als. The Kotiria case is no different, and even basic
tasks, such as adding English translations to the
two existing corpora, extend over years.

The corpus from the more recent Kotiria lan-
guage documentation project presents additional
challenges. First, language use in conversation is
by its very nature more complex to annotate and
analyze than monologic speech because it is rife
with features such as reductions, cut-offs, overlaps,
intonational contours, and other details of produc-
tion, as well as grammatical structures whose mean-
ing can only be understood in sequential context
(Hepburn and Bolden, 2013). Additionally, due to
the multilingual nature of social life in the region
where Kotiria is spoken (Stenzel, 2005; Stenzel
and Williams, 2021), recordings contain numerous
instances of speech in other indigenous languages,
such as Tukano. Though extremely rich, such data
constitutes a lifetime (or perhaps several lifetimes)

1https://archive.mpi.nl/tla/elan
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of processing work for a lone-wolf researcher.

Automatic translation – or machine translation
(MT) – has made tremendous progress over the
last few years (Sutskever et al., 2014; Bahdanau
et al., 2014; Vaswani et al., 2017), and MT sys-
tems are used more and more in everyday life, e.g.,
in browser extensions, smartphone apps, or as a
first translation pass in software for professional
(human) translators. Initial translations in a lan-
guage documentation project are often made into
the dominant high-resource language in the docu-
mented language’s region (Portuguese for Kotiria).
As MT between high-resource languages is typi-
cally of high quality (Akhbardeh et al., 2021), we
investigate if MT systems can assist with producing
additional translations between the region’s domi-
nant high-resource language (Portuguese) and En-
glish, which can help make the created resources
accessible to a broader community. Our goal is to
produce first-pass translations automatically, such
that the language experts in the language documen-
tation project need not devote years to the process,
but rather can do post-correction of the first-pass
translations. This should yield significant time sav-
ings (Toral et al., 2018), freeing up the experts to
work on other aspects of the project.

Importantly, such a translation in a documen-
tation context constitutes multiple challenges not
present in general MT: (1) the sentences that need
to be translated are out-of-domain with respect
to the system’s training data, (2) the data is con-
versational, (3) the source-side data contains non-
standard and uncommon expressions, often reflect-
ing properties of the documented language, and (4)
the text includes borrowings from other regional
languages. While those challenges could be mini-
mized by training on in-domain data from the con-
crete translation task, such data is generally either
not available or too small for effective finetuning.

First, we employ 3 state-of-the-art MT systems
to translate Portuguese sentences for which we
have gold-standard translations into English. We
evaluate the results both manually and with auto-
matic metrics and find that Google Translate per-
forms best. Second, we analyse the outputs of
Google Translate, exploring what types of exam-
ples it fails and succeeds on. We observe that the
conversational nature of the Kotiria data and par-
ticular properties of Kotiria-to-Portuguese transla-
tions cause many errors. We end by discussing how
to improve MT for language documentation data.

2 Related Work

NLP for Language Documentation One goal
of language documentation is to create permanent
records of the linguistic and cultural practices of un-
derstudied speech communities and combat loss of
linguistic diversity. It encompasses the audio and
video recording of speech as well as the transcrip-
tion, translation, and analysis of the recordings.
This process is costly in terms of time and money,
and, besides MT into additional high-resource lan-
guages, NLP has the potential to aid documenta-
tion via automatic speech recognition (Adams et al.,
2018; Prud’hommeaux et al., 2021; Shi et al., 2021;
Liu et al., 2022), improve access to legacy mate-
rials through OCR (Rijhwani et al., 2020), enrich
text data with part-of-speech tags (Eskander et al.,
2020) or word boundaries (Okabe et al., 2022) to
eventually obtain interlinear glossed text, or to sup-
port the analysis of a language’s morphology (Jin
et al., 2020; Moeller et al., 2020), inter alia.

MT of Out-of-Domain Data Our setting re-
quires MT models to generalize to out-of-domain
data: available translations are too few for training
or finetuning, and, in other language documenta-
tion settings, no translations into additional high-
resource languages might be available at all. How-
ever, MT systems often struggle to perform well on
data they have not been trained on – e.g., systems
trained on 2019 news do not perform well on 2020
news, due to a topic shift towards the coronavirus
(Anastasopoulos et al., 2020). Domain adaptation
(DA), which has been studied extensively (Yang
et al., 2018; Chu et al., 2018; Adams et al., 2022),
though not in the context of a language documen-
tation workflow, can yield improvements. Tech-
niques include finetuning (Luong and Manning,
2015; Freitag and Al-Onaizan, 2016) or backtrans-
lation (Sennrich et al., 2016). For surveys on DA
for MT, we refer readers to Chu and Wang (2018);
Saunders (2021). We investigate how well general
state-of-the-art MT systems translate between high-
resource languages in a language documentation
setting. In future work, we will take inspiration
from research on DA and investigate how to build
better systems for our use case.

3 Experimental Setup

3.1 Data

Our dataset draws from the two Kotiria documenta-
tion projects described in Section 1, i.e., we have a
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M
ea

ni
ng

5 Exactly the same meaning as gold (except for parts that appear in Portuguese but not in gold)
4 About the same meaning as gold; maybe minor differences (like singular/plural or similar)
3 Meaning can maybe be guessed but is not clear from the translation or something is misleading
2 The meaning is different/partially misleading and only a few words are in common with gold
1 The meaning of this translation has absolutely nothing to do with gold or is misleading

R
el

.F
lu

en
cy 5 Completely fluent in English; maybe more fluent than reference translation

4 As fluent as reference translation or minor grammatical error that does not affect understanding
3 Understandable, but not completely fluent
2 Not a fluent sentence, understandable with lots of effort
1 Not understandable because of lack of fluency

Table 1: The annotation instructions we provide to our annotators to assess translation quality in terms of meaning
and relative fluency.

mix of monologic and conversational texts. Across
the two projects, we have 2267 sentences with refer-
ence English translations, which we divide evenly
into development and test sets. We report results
on the development set to reserve the test set for
future research on MT systems for this setting.2

3.2 MT Systems
M2M-100 M2M-100 (Fan et al., 2021) is a model
trained to handle many-to-many translation be-
tween 100 languages. It is a transformer encoder–
decoder, and for this work we use the version
with 418M parameters. M2M-100 uses Senten-
cePiece (Kudo and Richardson, 2018) tokenization
and is trained on mined parallel data, extending
prior work (El-Kishky et al., 2020; Schwenk et al.,
2021). The model is not trained on data from all
possible pairs – rather, languages are grouped, and
only within-group language pairs are used for train-
ing. Bridge languages are chosen for each language
group and trained against other bridge languages.
In addition, all languages are trained against En-
glish. The training set has 7.5 billion examples.

mBART50 mBART (Liu et al., 2020) is a
sequence-to-sequence autoencoder, pretrained with
a denoising objective. The model is pretrained on
25 languages, with the goal of recovering the orig-
inal input after it has been corrupted with a noise
function, which involves sentence re-ordering and
span masking. It is then finetuned for translation
using parallel data. However, since Portuguese is
not included in the original set of languages, for
this work we use mBART50 (Tang et al., 2021),
which builds upon the original mBART model and
extends the number of languages from 25 to 50. We
use the version trained with multilingual finetuning,
allowing for many-to-many translation.

2Our data is publicly available at https://nala-cub.
github.io/resources.

Google Translate We also compare to a state-of-
the-art commercial MT system: Google Translate.3

For our experiments we use Googletrans,4 a python
library accessing the Google Translate Ajax API.

3.3 Automatic Metrics

We use two automatic metrics for evaluation, which
we calculate using SacreBLEU (Post, 2018).

BLEU First, we evaluate our outputs with BLEU
(Papineni et al., 2002), the standard metric for MT.
BLEU measures word overlap between the trans-
lation and the reference. We use SacreBLEU’s
default settings and tokenization.

ChrF We further compute ChrF (Popović, 2015).
In contrast to BLEU, this metric measures the char-
acter overlap between a translation and a reference.

3.4 Human Evaluation

In addition to employing automatic metrics we also
perform a manual/human evaluation of translations
for a subset of 100 randomly sampled sentences
from the development set. We show annotators the
Portuguese source sentence, the English reference,
and the system output and ask for an assessment
along two axes: meaning (does the translation’s
meaning correspond to the reference?) and (rel-
ative) fluency (is it as grammatical as the refer-
ence?). Both meaning and fluency are assessed us-
ing a Likert scale from 1 to 5, with higher numbers
indicating better quality. We give annotators the
option to skip examples whose fluency and mean-
ing they feel unable to judge, e.g., "Uhh". Each
translation is rated by two annotators, and reported
scores are averages over annotators. Table 1 shows
the complete instructions given to annotators.

3https://translate.google.com
4https://py-googletrans.readthedocs.

io/
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System BLEU ChrF

Google Translate 19.96 42.83
mBART 9.40 31.39
M2M-100 10.25 30.50

Table 2: Automatic evaluation: BLEU and ChrF for all
systems on the development set. Best scores in bold.

4 Results and Discussion

4.1 Translation Performance

Automatic Evaluation Table 2 displays the per-
formance of all systems on the development set
according to automatic metrics. The best system is
Google Translate with a BLEU (resp. ChrF) score
of 19.96 (resp. 42.83). The other two systems
obtain considerably lower and, surprisingly, quite
similar scores: mBART achieves a BLEU and ChrF
of 9.40 and, respectively, 31.39, while M2M-100’s
scores are 10.25 and 30.50.

In absolute terms, the score of Google Translate,
the best system in our experiments, is reasonable,
but not as good as for general in-domain MT, where
BLEU scores higher than 40.00 were reported by
Google already in 2017 (Johnson et al., 2017).

Human Evaluation Table 3 shows meaning (i.e.,
how well the translation represents the meaning
of the gold translation) and fluency scores (i.e.,
how grammatical the sentence is, given the refer-
ence translation). They range from 2.57 to 3.82 for
meaning and from 3.72 to 4.07 for fluency. As both
scores are on a scale from 1 to 5 with higher being
better, all systems perform reasonably well on our
task. Thus, our first and main conclusion is that MT
systems can indeed help with language documen-
tation; specifically with translating from the dom-
inant high-resource language in the region of the
documented language into another high-resource
language. However, there is room for improvement.

Comparing the 3 systems we get a picture similar
to the one we get with automatic metrics: Google
Translate performs best for both meaning and flu-
ency. Surprisingly, mBART has with 4.04 a high
fluency score, which nearly matches that of Google
Translate, but a comparatively low meaning score
with 2.57. M2M-100 is with 3.07 between the other
two systems with regards to meaning, but lags be-
hind the other two as far as fluency is concerned.

Comparing meaning with fluency scores, we ob-
serve that systems are similar with respect to the

System Meaning Fluency

Google Translate 3.82 4.07
mBART 2.57 4.04
M2M-100 3.07 3.72

Table 3: Manual evaluation: meaning and fluency of
all systems on 100 sentences from the development set.
Scores are averaged over annotators. Best scores in bold.

latter (max. delta: 0.35), but vary considerably for
the former (max. delta: 1.25). This shows that
all systems have been trained on enough English
data to produce grammatical sentences. However,
generating text that represents the meaning of the
Portuguese sentence is more challenging.

4.2 Qualitative Analysis

We continue our analysis to investigate particu-
lar weaknesses and some unexpected strengths of
MT by investigating the translations produced by
Google Translate, the best performing system, ac-
cording to both automatic and manual evaluations.
We focus on issues relevant for data from a lan-
guage documentation context.

Conversational/Dialog Speech Many fluency er-
rors we see in the MT output can be at least par-
tially attributed to the conversational nature of the
original text. For example:

(1) é, jogar, amanha vamos quebrar com chute
(Ref) yeah, thrown away, and tomorrow we can kick

them in
(GT) yeah, play, tomorrow we’re going to break with kick

The utterance in (1) makes sense in its discourse
context, with confirmation that an unspecified
something has been thrown away: jogar means
both "play" and "throw" and is used here as a short-
ened form of jogar fora ("throw out/away"). It
is followed by a clause with a pronominal object.
Absent that context, though, the MT system se-
lects the wrong meaning, supplies no referents, and
treats the verbs as infinitives. The result is a nearly
incoherent English translation.

Transfer from Kotiria Some of the most inter-
esting errors stem from L1 transfer, as nearly all of
the Portuguese translations were written by speak-
ers of Kotiria who had later learned Portuguese as
one of their additional languages. In some transla-
tions, grammatical properties of Kotiria are trans-
ferred into Portuguese, resulting in non-standard
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forms: e.g., serial verb constructions, in which
multiple roots occur contiguously to form a sin-
gle verb stem, are common in Kotiria but not in
Portuguese. In (2), the Kotiria serialized verb con-
struction indicating associated motion is rendered
as a sequence of separately inflected verbs, result-
ing in understandable but odd-sounding Portuguese.
Some differences reflect the different morphologi-

(2) levaram arrastando e que ele estava sentindo mal
(tristeza, raivoso)

(Ref) they dragged him off and he was full of regret
(GT) led dragging and that he was feeling bad

(sadness, angry)

cal inventories of the languages: Portuguese uses a
range of different locative markers (indicating dif-
ferent spatial configurations, such as in, on, or to),
but Kotiria has a single locative marker subsuming
all of these functions. In cases like (3), we see em
("in") used as a generic locative marker rather than
the context-appropriate a ("to") in Portuguese.

(3) em são gabriel?
(Ref) to São Gabriel?
(GT) in san gabriel?

Borrowings Another class of translation errors
occurs when lexical borrowings from other regional
languages appear in the Portuguese text. These are
often not translated into English by the MT system.

Unexpected Strengths The translations found in
our data often include clarifications/explanations
(as seen in (2)) or reduced forms ((4), in which pra
is a non-standard reduced form of para). Google
Translate handles these issues surprisingly well.

(4) pra bateria nao mexer
(Ref) So the battery won’t move again
(GT) so the battery doesn’t move

4.3 How to MT for Language Documentation

Here, we investigate how general state-of-the-art
models perform in a language documentation con-
text. However, while existing MT models work
surprisingly well for language documentation pur-
poses, we believe that model adaptation to this
specific domain (cf. Section 2) could further im-
prove performance: English translations from doc-
umentation corpora of other languages could famil-
iarize the model with conversational English and
recurrent themes (e.g., travel, food or ceremonies).

The more linguistically similar the documented lan-
guages are and the more topic overlap of collected
text there is, the more this should help.

Another option – potentially combinable with
the first one – would be a multilingual model that
is trained (also) on parallel data between the doc-
umented language and the first high-resource lan-
guage. This could teach the model about word
choices and expressions, which, later on, would be
beneficial for their translation into English.

Finally, the error types pointed out in Section
4.2 are frequent in our corpus, suggesting that MT
models would benefit from incorporating explicitly-
specified prior knowledge about key structural
properties of the language being documented.

5 Conclusion

Using data from the documentation of Kotiria, we
investigated how general state-of-the-art MT sys-
tems perform when translating from Portuguese to
English in a language documentation setting. We
found that, among 3 systems, Google Translate per-
forms best and at a level that makes it a promising
option for documentary linguists. We then per-
formed a qualitative analysis of Google Translate
and observed a number of systematic error patterns
directly linked to properties of our language docu-
mentation project. Finally, we suggested multiple
ways to improve systems for this setting, including
model adaptation, targeted multilinguality, and the
incorporation of linguistic features.
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Abstract 

Linguistic borrowings occur in all 

languages. Andic languages of the 

Caucasus have borrowings from different 

donor-languages like Russian, Arabic, 

Persian. To automatically detect these 

borrowings, we propose a logistic 

regression model. The model was trained 

on the dataset which contains words in IPA 

from dictionaries of Andic languages. To 

improve model’s quality, we compared 

TfIdf and Count vectorizers and chose the 

second one. Besides, we added new 

features to the model. They were extracted 

using analysis of vectorizer features and 

using a language model. The model was 

evaluated by classification quality metrics 

(precision, recall and F1-score). The best 

average F1-score of all languages for words 

in IPA was about 0.78. Experiments showed 

that our model reaches good results not 

only with words in IPA but also with words 

in Cyrillic. 

1 Introduction 

Field linguistics develops and practises methods 

for obtaining information about a language 

unknown (or little known) to the researcher based 

on work with native speakers. Such languages are 

called low-resource languages; they represent a 

group of languages for which the development of 

information technology is insufficient. There are a 

number of criteria (for example, speech processing, 

speech recognition, automatic translation, and 

others) according to which experts classify specific 

languages as low-resource. 

Lexical borrowings are very common to 

languages, including those with few resources; this 

phenomenon is caused by interlingual interaction 

and influence. If borrowings from languages with 

limited resources (for example, Botlikh) are 

effectively identified, then automatic detection of 

borrowings with a universal base for related 

languages can be created and used. This article 

studies the method of identifying borrowings in 

low-resource Andic languages on a linguistic basis. 

It implies that the model imitates the borrowing 

rules in the receiving language based on identifying 

the most relevant n-grams and generating words 

based on the identified borrowing patterns. 

Many tools for working with Andic languages 

are currently being developed, such as 

morphological parsers. Even though each language 

is unique and has linguistic properties, all of them 

are underprivileged and endangered, as the number 

of their speakers is constantly decreasing, and 

transmission from generation to generation 

becomes unstable. That makes developing any 

NLP tools essential as it can help in their further 

exploration and potential revival. In addition, the 

detection of borrowings will help to study the 

language more deeply and try to preserve its 

identity. In the future, the work could be used to 

create a universal transliteration so that as many 

linguists as possible could work with languages 

and, for example, with texts. 

The paper's main goal is to explore the 

possibility of automatic borrowing detection 

without the usage of a bilingual dictionary since 

automation can contribute to future field studies of 

target languages. The limited amount of available 

data complicates the situation by reducing the 

number of possible analysis methods that can be 

implemented. The first task was to analyze the 

existing dictionaries. The analysis showed that the 

dictionaries had duplicates, which were later 

removed. After removing duplicates, the general 

borrowing rules were determined and a baseline 

was written with further verification of its quality. 

The next step was to calculate and describe insights 

that helped to improve the quality of the baseline. 

As a result, previous steps helped to cope with 

implementing a language model for generating 

additional features. To assess the quality, it was 
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necessary to perform tasks such as writing a quality 

metric for the language model and statistical 

analysis of features. These steps will be discussed 

in more detail in the following sections. 

The rest of the article is structured as follows: the 

second section briefly overviews the target 

languages and their problems. After that, the 

review of the relevant literature in computational 

linguistics continues. The third section describes 

the methodology and strategies that have been used 

to implement the structures of each language. The 

fourth and fifth sections evaluate and discuss the 

results obtained from the available language data. 

The conclusion also discusses the problems that 

have occurred in working on the model, as well as 

a short description of plans for the future. 

2 Literature review 

2.1 Low resource language 

The term "low-resource languages" (or under-

resourced languages) was initially proposed by the 

Dutch scientist S. Krauwer. This concept refers to 

natural languages with some (or all) of the 

following properties (Vincent, B., 2004): 

• the lack of their writing system or stable 

spelling; 

• lack of qualified linguists and translators 

for the given language; 

• limited distribution on the Internet; 

• lack of electronic resources for language 

and speech processing, including 

monolingual corpora, bilingual electronic 

dictionaries, spelling and phonetic 

transcriptions of speech, pronunciation 

dictionaries, and more. 

2.2 Theories of borrowing analysis 

The term "borrowing" refers to complete language 

change, a diachronic process that once began as an 

individual innovation but then spread throughout 

the speech community. The most common 

borrowing theories for under-resourced languages 

are based on language rules or systems based on the 

constraints of those rules. While a constraint-based 

system basically ends up within optimality theory, 

rules describe how adaptation occurs and is set 

according to a particular borrowed word in the 

language's phonology (Jacobs, H., & 

Gussenhoven, C., 2000). Therefore, rules must be 

added for each specific borrowing, considering the 

functional aspect of speech. In addition, the rule-

based model only includes rules for a particular 

language, so each language needs either a separate 

word adaptation system or a family-wide one. 

A constraint-based system is analogous to a rule-

based system. Constraints are included in the 

Optimality Theory (OT) structure. Basically, all 

studies of borrowings are based on this system 

(Turchin, P., 2010). In a constraint-based system, 

several constraints are defined and ranked. The 

input of the model is the source word with its 

pronunciation in the source language. 

As for research in the field of borrowings by 

computer linguists, there are several main 

approaches. They can be based on both neural 

networks and the Optimality Theory. Neural 

networks are used to determine loanwords in the 

Uyghur language (low resource) in (Mi et al., 

2018). The authors used a recurrent neural network 

with BiLSTM architecture, training it on a dataset 

with borrowings in the Uighur language. As a 

result, the model showed promising results, as 

presented in Table 1 (Mi et al., 2018). “Chn”, “rus” 

and “arab” suffixes mean Chinese, Russian and 

Arabic languages respectively. 

For lexical borrowings, OT is also used. The 

usage of OT is described in (Tsvetkov, Y., & Dyer, 

C., 2016). Authors' implemented model was based 

on OT, and it used various restrictions for Swahili, 

which contains borrowings from Arabic (Table 2). 

Similar restrictions the model uses allow one to get 

better results compared to simple implementations 

of borrowing detection. 

As for neural network approaches, a possible 

problem is a lack of sufficient data and the need for 

Model Pchn Rchn F1chn Prus Rrus F1rus Parab Rarab F1arab 

CRFs 69.78 62.33 66.35 71.64 63.25 67.18 72.50 65.32 68.72 

SSIM 66.32 77.28 71.38 75.39 70.02 72.61 73.76 67.51 70.50 

CIBM 78.82 68.30 73.18 81.03 73.22 76.93 75.22 70.71 72.90 

RNN 78.97 79.20 79.08 82.55 75.93 79.10 83.26 77.58 80.32 

Ours 80.24 81.02 80.63 82.95 76.30 79.49 84.09 78.28 81.08 

Table 1. Experimental results of borrowings identification models based on a recurrent neural network with 

BiLSTM architecture. 
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enormous computing power. In addition, OT has 

the disadvantage of building restriction systems for 

each Andic language. Such an approach will not 

have universality property, and its implementation 

will take a long time. For these reasons, we have 

chosen a baseline based on logistic regression, 

which will be presented later in the paper. 

2.3 Materials for research 

The collection of Andic language dictionaries 

(Moroz, G. et al., 2021) is used as a dataset. In total, 

at the moment, it contains nine (9) languages; 

however, for our study, we analyze only eight (8) 

of them since there is not enough data for the Tokita 

for a full-fledged study. The dataset contains two 

Botlikh dictionaries used in the work as sources for 

one language, without separation. Table 3 shows 

the glottocode of the language (a bibliographic 

database of obscure languages), its name, and the 

number of words in it. 

Each word in the database contains a form 

translated into the International Phonetic Alphabet 

(IPA), its canonical form (lemma), and an 

indication of whether the word is borrowed or not 

(bor). In turn, each borrowing has a short 

description, indicating the language from which the 

word came (borrowing_source_language). Some 

words can have different meanings or borrowing 

source languages. To make the task easier, we 

dropped duplicates and kept last occurrence of the 

dropped word. This approach is not quite accurate, 

but the number of such cases is very low. Column 

“meaning_ru” is written in Russian but for this 

paper it has an English translation. All data was 

collected by authors of the dataset, so we did not 

make any transliteration, normalization and so on. 

An example of a dataset with important columns 

for the model is presented in Table 4. 

3 Method 

3.1 Baseline training 

The dataset presented in the previous section is at 

the heart of our research into language patterns and 

baseline learning. Since the task is to determine 

borrowing, models for classification are suitable 

for this. Also, words in IPA will be used to train the 

model, as they give a cleaner characteristic of 

borrowing. In addition, most of the work is done in 

the IPA, as it, unlike transcription in Cyrillic, marks 

the sounds of the language, which helps to conduct 

a cleaner analysis. 

Of all classifier models, logistic regression was 

chosen. We decided to use TfIdf Vectorizer to 

transform list of words in IPA to matrix with tf-idf 

weights. In this matrix rows are input words and 

columns are symbol n-grams of each input word. 

To work correctly with these words, we wrote the 

specific token pattern that removes hyphens and 

splits word to IPA-symbols. In addition, we added 

from 2 to 4 n-grams to n-grams hyperparameter of 

the vectorizer. The resulting combination of models 

was trained in each dataset language. Training took 

place on the training set, validation on the test set, 

/ εg/ DEP-IO MAX-IO ONSET NO-CODA 

a. ☞ εg   * * 

b.     εgɘ *!  *  

c.     ε  *! *  

d.     ʡεg *!   * 

Table 2. Restrictions for Swahili in the study by Tsvetkov and Dyer. 

Glottocode Language Number of 

Words 

akhv1239 Akhvakh 14007 

andi1255 Andi 6144 

bagv1239 Bagvalal 12706 

botl1242 Botlikh 21483 

cham1309 Chamalal 9721 

ghod1238 Godoberi 7423 

kara1474 Karata 6650 

tind1238 Tindi 12419 

Table 3. Glottocode of low-resource Andic 

languages. 

lemma ipa glottocode bor borrowing_source_language meaning_ru 

аба'далIи a-b-'a-d-a-t-ɬː-i akhv1239 1 arab Eternal 

а/б/а'жве a-b-'a-ʒʷ-e akhv1239 0 NaN everlasting 

а/б/ажу'рулъIа a-b-a-ʒ-'u-r-u-t-ɬ-a akhv1239 0 NaN communicate 

Table 4. Dictionary description for the Akhvakh language. 
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while the partition was based on the 80/20 

principle. The macro average f1-score metric was 

used to assess the model's quality since the classes 

in the dataset are not balanced. After training and 

testing the models, it turned out that their quality 

was low. It was easier for Baseline to say that a 

word was not borrowing than the other way around. 

The metrics for this model for each language can 

be seen in Table 5. 

3.2 Selection of hyperparameters 

Since the baseline quality turned out to be poor, the 

next step was to select hyperparameters using 

heuristics for the vectorization model. We decided 

to use CountVectorizer instead of TfIdfVectorizer. 

This decision was based on several experiments 

with the same hyperparameters. CountVectorizer 

works like TfIdfVectorizer except for output. The 

output of CountVectorizer is the matrix of counted 

words. We added hyperparameters 

(min_df = 0.001, max_df = 0.1) responsible for 

filtering rare and frequent n-grams to get rid of 

noise. The number of features limitation was also 

removed. Experiments showed that chosen 

hyperparameter values are the most optimal for the 

model. 

This implementation of the vectorization model 

significantly increased the model's quality, but in 

some languages, the F1-score remained low. To fix 

this problem, we analyzed the n-grams (or features) 

from the vectorizer matrix. The analysis showed 

that some of the features contribute the most to the 

model’s quality. From these features we selected 

some of them which value corresponds to the set 

hyperparameters. Then we filtered part of selected 

features by a threshold value. It allowed us to select 

features more like the borrowing patterns we 

studied in languages. For each word in the dataset, 

it was determined whether n-grams are included in 

this list of features. We added a positive coefficient 

for the word in the case of such a feature in the n-

gram of the word. The optimal coefficients and 

hyperparameters were selected by experiments. As 

a result, this approach allowed us to improve the 

model by small values. In the next sections this 

model is called as BF (baseline with features). 

Table 6 presents the quality metrics for the model. 

3.3 Language model approach 

Borrowings are characterized by the fact that they 

may contain those phonemes that are not typical for 

the receiving language, which belongs to OOV (out 

of vocabulary). Accordingly, such sequences may 

indicate that the word is borrowed. This knowledge 

underlies the model built on the language model on 

Markov chains (on n-grams), which was 

implemented at the next stage of the study. For the 

language model, a perplexity metric (Jurafsky, D., 

& Martin, J., 2009) was also developed to evaluate 

the similarities of a word to a language. 

Since perplexity shows how unfamiliar the word 

is for the model, it can be said that the model 

Language Precision Recall F1 

Ahvakh 0.90 0.57 0.60 

Andi 0.80 0.56 0.58 

Bagvalal 0.81 0.60 0.63 

Botlikh  0.88 0.74 0.78 

Chamalal 0.97 0.51 0.50 

Godoberi 0.89 0.61 0.65 

Karata 0.96 0.51 0.49 

Tindi 0.97 0.53 0.54 

Table 5. Metrics for Andic languages obtained after training the baseline. 

Language Precision Recall F1 

Ahvakh  0.79 0.72 0.74 

Andi  0.75 0.69 0.71 

Bagvalal  0.80 0.71 0.74 

Botlikh  0.86 0.83 0.85 

Chamalal  0.80 0.65 0.70 

Godoberi  0.82 0.77 0.79 

Karata  0.76 0.65 0.69 

Tindi  0.73 0.65 0.68 

Table 6. Metrics for Andic languages obtained after selecting hyperparameters. 
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trained on the language will have a lower 

perplexity value for non-borrowings than for 

borrowings. For verification, an auxiliary dataset 

was collected, consisting of the perplexities of each 

word. The language model was trained for each 

language of the initial dataset. The model 

calculated the perplexity value for the input word 

over several n-grams. After the calculation, the 

value was written to the dataset, which consisted of 

a word in the IPA, a lemma, a borrowing label, and 

perplexity values for each n-gram. 

When splitting the dataset by language, we got 

results that visually confirmed the hypothesis. 

Moreover, the Wilcoxon-Mann-Whitney 

nonparametric statistical test confirmed the 

hypothesis about high perplexity of borrowing 

words put forward; at the same time, it can be seen 

that the differences in perplexities are most 

pronounced for trigrams. Visualization is shown in 

Figure 1. 

The difference between perplexities further 

helped to implement a model that, according to 

trigrams, speaks of borrowing. In our study, we 

conducted experiments that showed that trigrams 

work better than bigrams (four-grams were not 

considered due to the identical distributions). Thus, 

trigrams were chosen because they best represent 

foreign words and experiments with bigrams and 

trigrams. The model is based on a language model 

that works like those presented above. The 

difference is that the language model is trained on 

non-borrowings since borrowings are 

characterized by combinations of phonemes that 

may not be in the language. 

The language model helps to get new features 

from words using the algorithm. Each input word 

is divided into trigrams, checked in the language 

model: if it does not have such a trigram, then the 

word is borrowed and is set some positive 

coefficient that was selected by experiments. 

Otherwise, the highlighted word has a negative 

rate. With the help of that algorithm, a list of 

borrowing marks was collected for each word and 

added to other features. 

3.4 Combining Models 

Implicit knowledge of phoneme sequences can 

improve a regression model, as it can sometimes 

generate false positives on its own. For example, 

suppose some algorithm generates a word 

produced by a language model trained on 

borrowings. In that case, it may be borrowing since 

it contains a sequence of phonemes that are not in 

the language, although the opposite was meant. 

Alternatively, there may be such a situation when 

the language model does not have many examples. 

In this case, the probability of error also increases. 

For these reasons, additional knowledge about the 

language (in this case, the use of regression) can 

improve the results. 

To implement such a model, we combined the 

results of the regression and trained language 

model. As a result, the model began to work better, 

although, in some languages, the quality decreased 

 

Figure 1. Graphs of the obtained results of perplexity. 
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slightly compared to the previous model. The 

model was tested on test split, but the 

hyperparameters were fitted by K-fold validation, 

which showed high quality. The cross-validation 

results can be seen in Table 7. 

4 Results 

In addition to learning words in the IPA, the model 

was also trained on lemmas (BFLMlem). This 

experiment was carried out to compare the purity 

of words written in phonemes and graphemes. As a 

result, it turned out that the quality of the model is 

higher than BFLM (baseline with selected features 

and the language model) on IPA. Hence, the BFLM 

will work well for words written in IPA and Cyrillic 

both. A comparison of the models implemented in 

the article, according to the F1-score metric, is 

presented in Table 8. 

We compared our models with others mentioned 

in related works. We calculate mean precision, 

recall, and F1-score metrics from our experiments 

and the results in other articles. Comparison shows 

that our models work slightly worse than the others, 

but scores remain high. Hence, simple models with 

feature extraction based on linguistics knowledge, 

such as knowing about OOV, can show results 

close to complicated neural network architecture 

models. Models’ comparison is presented in Table 

9. 

In addition to the experiments, we tested 

BFLMlem on random letters and numbers. We got 

0.93 mean accuracy of language models. Besides, 

we examined BFLM trained on IPA on English 

words and got 0.51 mean accuracy. 

5 Discussion 

In continuation of the idea of assessing perplexity 

in words, neural network models can be used in the 

future. A recurrent neural network is perfect for 

this. The neural network can be trained on 

borrowings and then generate new words and find 

specific patterns. 

The dictionary does not fully reflect the quality 

of the model since it does not consider various 

morphological features, such as declension. For 

this reason, the model must be tested on work with 

texts. This way, it will be possible to take each word 

in context and determine whether it is borrowing. 

On the other hand, texts in languages are not 

presented in IPA but are written in Cyrillic. In this 

case, it will be possible to use the epitran tool, 

having previously written the rules for converting 

graphemes to phonemes (Mortensen, R. D., 

Dalmia, S., & Littell, P., 2018). In addition to the 

problem with the transformation, there is also the 

possibility that word declensions will also 

negatively affect the model. In general, this 

approach will show the actual quality of the model 

and can further help field linguists. 

Now the model works for each language, 

classifying the words in it as borrowing. In the 

future, it may be worth refining the model, adding 

to it not only a binary classification but also a 

definition of the language from which the 

borrowing occurred. In this case, the problem can 

Language Precision Recall F1 

Ahvakh 0.75 0.83 0.78 

Andi 0.72 0.76 0.74 

Bagvalal 0.78 0.82 0.80 

Botlikh  0.80 0.88 0.83 

Chamalal  0.76 0.80 0.78 

Godoberi 0.78 0.86 0.81 

Karata  0.70 0.73 0.71 

Tindi  0.70 0.77 0.73 

Table 7. Cross-validation results. 

Model Akhvakh Andi Bagvalal Botlikh Chamalal Godoberi Karata Tindi 

Baseline 0.60 0.59 0.63 0.78 0.50 0.65 0.50 0.54 

BF 0.73 0.69 0.74 0.84 0.68 0.78 0.68 0.66 

BFLM 0.78 0.74 0.80 0.83 0.78 0.81 0.71 0.73 

BFLMlem 0.82 0.77 0.84 0.86 0.79 0.84 0.75 0.75 

Table 8. Model quality comparisons. 
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be reformulated not within the framework of the 

classification but within the framework of BIO-

encoding, which has already been solved for the 

Spanish corpus in (Alvarez-Mellado, E., & Lignos, 

C., 2022). Also, if we consider borrowings 

separately by language, it makes sense to look at 

the n-grams characteristic of borrowings from a 

particular language. Perhaps a combination of such 

phonemes will also speak of the source language. 

In this paper, we proposed methods that can be 

used in a borrowings detection task. It is possible 

that our findings might be implemented in other 

models which find borrowings in low-resource 

languages. Besides, detected borrowings by the 

model might be helpful for field linguists working 

with Andic languages to understand deeply these 

languages. 

6 Conclusion 

This article has shown how to solve the problem of 

classifying borrowings in Andic low-resource 

languages. For this, a baseline was first used, 

consisting of logistic regression and TfIdf of the 

vectorization model. Due to unsatisfactory results, 

the vectorization model was changed from 

TfIdfVectorizer to CountVectorizer, and 

hyperparameters were selected for it. In addition, a 

simple model based on implicit language 

knowledge was written. After combining these 

models, the quality has improved significantly. As 

a result, our models have scores close to neural 

network solutions. Hence, simple binary 

classification can be used in tasks such as detecting 

borrowings. However, since the model solves a 

binary classification problem, it cannot tell the 

origin of the borrowing. In the future, it is planned 

to supplement the model by teaching it to solve 

either the problem of multiclass classification or 

BIO-encoding. For these problems, the future 

models can be based on the already implemented. 

Code and research are available on the GitHub 

repository1. 

 
1 https://github.com/Knzaytsev/Borrow-

Detection 
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1 Introduction

Across languages, it is common for words to be
associated with multiple meanings. Moreover, cer-
tain meanings are expressed by the same form more
often than others (Jackson et al., 2019; Xu et al.,
2020). For instance, the colexification –i.e., the
conventional association of multiple meanings with
the same form– of TOE and FINGER is found in at
least 135 languages (Rzymski et al., 2020). These
languages are spoken throughout the world and
span multiple unrelated language families.

Recent research suggests that semantic related-
ness increases colexification likelihood (Xu et al.,
2020). Semantic memory may favor colexifying
meanings that are easy to relate to one another.
This, in turn, may aid vocabulary acquisition, lexi-
cal retrieval and interpretation. Building on these
findings, we investigate the interplay between this
and another major force: pressure for the lexicon
to be informative, in the sense of supporting accu-
rate information transfer (e.g., Regier et al., 2015).
We hypothesize that languages strike a balance be-
tween these two forces. In particular, we expect
colexification likelihood to increase with seman-
tic relatedness, until a point is reached at which
meanings are too related; for these highly related
meanings, we expect pressure for informativeness
to counteract the increasing trend, because these
meanings would not be easy to disambiguate even
in context. We find support for this hypothesis in
two large scale analyses.1

2 Analysis 1

To study the relationship between semantic relat-
edness and colexification, we fit three generalized

1This abstract is based on the following article: Brochha-
gen, T., G. Boleda. 2022. When do languages use the
same word for different meanings? The Goldilocks Principle
in colexification. Cognition, Volume 226, 105179. Avail-
able at https://doi.org/10.1016/j.cognition.
2022.105179.

additive logistic models to colexification data span-
ning over 1200 languages and more than 1400
meanings, totaling 203056 data points. This data
comes from CLICS3 (Rzymski et al., 2020), the
largest cross-linguistic database of colexifications
available to date. The models characterize how
likely a pair of meanings is to colexify in a given
language as a function of one of three data-induced
estimates of relatedness: distributional similarity,
using pre-trained embeddings (Grave et al., 2018);
associativity data (De Deyne et al., 2018); and the
first principal component of these two measures
(PC1). Both distributional and associative infor-
mation are based on Dutch and English glosses of
the meanings found in CLICS3; that is, Dutch and
English words are used as surrogates for meanings
to estimate the latter’s relatedness. Since language
contact and common linguistic ancestry influence
colexification (Jackson et al., 2019; Xu et al., 2020),
the models are also passed information about how
often a pair of meanings colexifies in other lan-
guages. This information is weighted by the phy-
logenetic/geographic distance to the response lan-
guage. An indicator codifies whether a relatedness
estimate stems from Dutch or English data.

Model comparison using approximate leave-one-
out cross-validation suggests that PC1 is the best
predictor of colexification, with a difference of
−715 in expected log pointwise predictive den-
sity to the second highest ranked model. Figure 1
shows its estimated marginal effects. These results
largely support to our hypothesis: colexification
increases with relatedness until meanings are “too
related", which makes their colexification decrease.
Note, however, that the data are also consistent
with a plateau rather than a decrease for highly
related meanings (see shaded area in the figure).
This is still consistent with the main hypothesis –
informativeness counteracting simplicity for highly
related meanings–, with a smaller effect of infor-
mativeness than we had expected.

42



−1

0

1

2

3

−2 0 2 4 6
PC1

E
st

im
at

ed
 e

ffe
ct

 o
n 

co
le

xi
fic

at
io

n
A

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

PATH/ROAD

MOON/MONTH

NORTH/SOUTH

TUESDAY/THURSDAY

TOWN/PEOPLE

BRIGHT/YELLOW

CALF/CATTLE

TOE/FINGER

WARM/FIRE

THREE/YES

SPIDER/ANT

WEAK/SMALL

STALLION/MAREFOOT/TOE

LOOK/CHOP

0.00

0.25

0.50

0.75

1.00

−2 0 2 4 6
PC1

M
ea

n 
po

st
er

io
r 

pr
ed

ic
tio

n

B

Figure 1: A: Marginal effects of standardized PC1. Shading shows 95% credible intervals. The smooth function
s(·) characterizes how PC1’s contribution to colexification likelihood changes across values. B: Mean posterior
predictions for exemplary meaning pairs across PC1 values.

3 Analysis 2

Our hypothesis specifically predicts that the de-
crease in colexification likelihood for highly re-
lated meanings is due to their confusability. We
next probe confusability more directly, focusing on
the kind of relationship meanings stand in.

Pressure for informativeness should make colex-
ifying opposites (e.g., LEFT and RIGHT) less likely
than colexifying meanings in other kinds of rela-
tionships. Opposite meanings express contrasts,
being maximally similar in every respect but one
(e.g., Kliegr and Zamazal, 2018). Therefore, losing
the distinction they encode can be expected to be
particularly harmful in communicative terms. We
compare opposites to meaning pairs standing in
two semantic relations that do not necessarily lead
to high confusability: part-whole (e.g., TOE-FOOT)
and subsumption (e.g., CALF-CATTLE).

Colexification rates were estimated from 1416
meanings and 2279 languages from CLICS3. Se-
mantic relations are from WordNet (Fellbaum,
2015), using English words as proxies for mean-
ings. Pairs in none of the three relations were
classified as ‘none/other’. As expected, this group
has the lowest mean percentage of colexification
(0.06, with a 95% CI of [0.06, 0.06]), followed
by opposites (1.4 [1.3, 1.5]), then by subsumption
(3.1 [3.0, 3.3]) and part-whole pairs (3.7 [3.5, 3.8]).
These results suggest, first, that standing in one of
the three relations increases the odds for meanings
to colexify compared to ‘none/other’; and second,
that not all relations are equally conducive to colexi-
fication, with opposites being less likely to colexify.

We thus again find that relatedness makes colexifi-
cation more likely, but that the need to distinguish
confusable meanings can counteract this trend. Un-
der our interpretation, simplicity makes colexifi-
cation likelihood for opposites increase, whereas
informativeness makes them decrease, resulting in
their position in the middle compared to the other
relations.

4 Conclusions

A growing body of research supports the idea that
languages are efficient in the sense that they strike
a good balance between informativeness and sim-
plicity (e.g., Christiansen and Chater, 2008; Regier
et al., 2015). Our large scale analyses suggest such
a balance in the lexicon. We find that colexifica-
tion likelihood increases with semantic relatedness,
until an inflection point is reached, after which it
decreases or flattens out (Analysis 1). This shift
may be a consequence of a need for meanings to
be distinguishable in context (Analysis 2).
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Abstract

We present the first neural machine translation
system for translation between the endangered
Erzya language andRussian and the dataset col-
lected by us to train and evaluate it. The BLEU
scores are 17 and 19 for translation to Erzya and
Russian respectively, and more than half of the
translations are rated as acceptable by native
speakers. We also adapt our model to trans-
late between Erzya and 10 other languages, but
without additional parallel data, the quality on
these directions remains low. We release the
translationmodels alongwith the collected text
corpus, a new language identification model,
and a multilingual sentence encoder adapted
for the Erzya language.

1 Introduction

Out of the 7 thousand languages spoken around the
world, only a minor fraction is covered by machine
translation tools. For example, Google Translate1
supports only 133 languages, and a recent model by
NLLB Team et al. (2022) supports 202 languages.
Most other languages are often considered “low-
resource”, although some of them have millions
of native speakers. In the context of machine
translation, the resources that are low are, primarily,
parallel and monolingual text corpora. In this work,
we create a machine translation system for the
previously uncovered Erzya language with only
publicly available resources, a very small budget,
and limited human efforts. We hope that it will
inspire researchers and language activists to enlarge
the coverage of existing NLP resources, and in
particular, translation systems.
Our language of choice is Erzya (myv), which

is spoken primarily in the Republic of Mordovia,
located in the center of the European part of the

∗The research was conducted between the author’s em-
ployments at Skolkovo Institute of Science and Technology
(Skoltech) and at Meta AI.

1https://translate.google.com

Russian Federation. The language, along with
its close relative Moksha (mdf), belongs to the
Mordvinic branch of the Uralic language family.
These two languages, although not mutually intel-
ligible (Janurik, 2017), are often referred to under
the common name “Mordovian”. Erzya has had
a written tradition since the beginning of the 19th
century (Rueter, 2013). Its most widely used al-
phabet is Cyrillic, although there is a Latin-based
alternative alphabet2. Erzya has supposedly 300
thousand speakers3, and it is one of the three official
languages inMordovia. According to the UNESCO
classification, the Erzya language has a status of
“definitely endangered” (UNESCO, 2010). Some
researchers (Janurik, 2017) put it between the levels
6b (“threatened”) and 7 (“shifting”) on the EGIDS
scale (Lewis and Simons, 2010), as it is widely
used and transmitted between generations in rural
communities but is being gradually displaced by
Russian in urban areas. More details about the use
of Erzya are given by Rueter (2013), who is also a
major current contributor to Erzya NLP resources.

As far as we know, prior to this work, no neural
machine translation (NMT) systems for Erzya have
been published. To fill this gap, we create and
publicly release4 the following deliverables:

• A language identification model with en-
hanced recall for Erzya andMoksha languages;

• A sentence encoder for Erzya compatible with
LaBSE (Feng et al., 2022);

• A small parallel Erzya-Russian corpus and a
larger monolingual Erzya corpus;

• Two neural models for translation between
Erzya and 11 other languages.

For translation between Russian and Erzya, we
validate our models both by automatic metrics and
with judgments of native speakers. More than half

2http://valks.erzja.info (currently blocked in Russia)
3In the 2010 census, 430 thousand people reported speak-

ing Erzya or Moksha, but their proportions are unclear.
4The source code and links to other resources are provided

at https://github.com/slone-nlp/myv-nmt.
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of the translations are rated as acceptable.

2 Related Work

Low-resourceNLP and, in particular, machine trans-
lation, have attracted a lot of attention. Among the
recent ambitious projects are Bapna et al. (2022)
and NLLB Team et al. (2022) that aim at creating
NMT systems for hundreds of languages and rely
heavily on collection of large online corpora and
transfer learning. Other works, such as Hämäläinen
and Alnajjar (2019), focus on efficient use of exist-
ing vocabularies and morphosyntactic tools to train
machine translation systems for very low-resourced
languages.
As far as we know, there are no published large

parallel corpora or NMT systems for Erzya. Rueter
and Tyers (2018) develop an Erzya treebank with
a few hundred translations to English and Finnish.
Архангельский (2019) present an Erzya web cor-
pus5 along with the way it was collected, but the
corpus is available only via the web interface. For
other published corpora, the situation is similar.
There exists a half-finished rule-based machine
translation system between Erzya and Finnish6, and
a grammar parser for Erzya7. The software pack-
age UralicNLP (Hämäläinen, 2019) supports Erzya
among other languages.
There have been a few attempts to transfer ma-

chine learning-based NLP resources to Erzya from
high-resource languages. Alnajjar (2021) adapt
Finnish, English, and Russian word embeddings
to Erzya. Muller et al. (2021), Ács et al. (2021)
and Wang et al. (2022) evaluate the performance of
multilingual BERT-like models on natural language
understanding tasks for new languages, including
Erzya.
None of the works known to us train machine

learning-based models that are capable of generat-
ing Erzya language.

3 Methodology and Experiments

3.1 Data Collection
As there are no large open-access corpora for Erzya,
we compile Erzya and Erzya-Russian data from
various sources:

• 12K parallel sentences from the Bible8;
5http://erzya.web-corpora.net/
6https://github.com/apertium/apertium-myv-fin
7https://github.com/timarkh/

uniparser-grammar-erzya
8http://finugorbib.com

• 3K parallel Wikimedia sentences from OPUS
(Tiedemann, 2012);

• 42K parallel words or short phrases collected
from various online dictionaries;

• the Erzya Wikipedia and the corresponding
articles from the Russian Wikipedia;

• 18 books, including 3 books with Erzya-
Russian bitexts9;

• Soviet-time books and periodicals10;
• The Erzya part of Wikisource11;
• Short texts by modern Erzya authors12;
• News articles from the Erzya Pravda web-
site13;

• Texts found in LiveJournal14 by searchingwith
the 100 most frequent Erzya words.

A more detailed account of the data sources is given
in Appendix A.

After filtering these texts with the language iden-
tification model (Section 3.2), we gathered 330K
unique Erzya sentences. A bilingual part of the texts
was used for mining additional parallel sentences
in Section 3.4.

3.2 Language Identification
To make sure that the extra collected data is in the
Erzya language, we train a FastText (Joulin et al.,
2016) language classifier for the 323 languages
present in Wikipedia. The 267 thousand training
texts were sampled fromWikipedia with probabilit-
ies proportional to n1/5

lang, where nlang is the size of
Wikipedia in that language15. To increase the recall
for Erzya and Moksha languages, we augment this
training dataset with Erzya and Moksha Bible texts.
The resulting model has 89% accuracy and 86%
macro F1 score on the Wikipedia test set (sampled
with the same temperature). For Erzya, it has 97%
precision and 82% recall. Hyperparameters for all
trained models are listed in Appendix B.

3.3 Erzya Sentence Encoder
To compute sentence embeddings, we use an en-
coder based on LaBSE (Feng et al., 2022), with
an extended vocabulary. First, we use the BPE al-
gorithm (Sennrich et al., 2016) over a monolingual

9http://lib.e-mordovia.ru
10https://fennougrica.kansalliskirjasto.fi
11https://wikisource.org/wiki/Main_Page/?oldid=

895127
12https://rus4all.ru/myv/
13http://erziapr.ru
14https://www.livejournal.com
15We adopted the idea of temperature sampling with T=5

from Tran et al. (2021) and several other works.
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Erzya corpus to add 19K extra merged tokens to
the vocabulary. Then, we fine-tune the model on
the limited initial parallel data (the Bible, OPUS,
and dictionaries): we update only the token embed-
dings matrix, using the contrastive loss from Feng
et al. (2022) over computed sentence embeddings.
Finally, after collecting more parallel sentences,
we fine-tune the full model on a mixture of tasks:
contrastive loss over sentence embeddings, stand-
ard masked language modeling loss, and sentence
pair classification to distinguish correct translations
from random pairs.

3.4 Mining Parallel Sentences
When mining parallel sentences, we strive for high
precision. To compensate for the questionable qual-
ity of our sentence encoder, we apply the following
procedure16.

• We perform only local mining, i.e. we com-
pare sentences only across paired documents
(forWikipedia and translated books), or within
one document (for the web sources).

• To evaluate similarity of two sentences, we
multiply the cosine similarity between their
LaBSE embeddings by the ratio of the length
of the shortest sentence to that of the longest
one.

• We further penalize the similarities by partially
subtracting from them the average similarities
of each sentence to its closest neighbors, sim-
ilarly to using distance margin from Artetxe
and Schwenk (2019).

• Given two documents inRussian andErzya, we
use dynamic programming to select a sequence
of sentence pairs that have the maximal sum of
pairwise similarity scores and go in the same
order in both documents.

• We accept only the sentence pairs with a score
above a threshold, which was manually tuned
for each source of texts.

In total, this approach yielded 21K more unique
parallel sentence pairs. The manual inspection
found that more than 90% of them were matched
correctly.

3.5 Training Machine Translation Models
To benefit from transfer learning, we base our
model on the mBART50 model (Tang et al., 2020)
pretrained on multiple languages, including two

16For more details on the mining procedure, please read
the source code in the repository that we release.

Uralic ones (Finnish and Estonian). We extend its
BPE vocabulary with 19K new Erzya tokens, using
the same method as in Section 3.3, and add a new
myv_XX language code to it. Embeddings for
the new tokens are initialized as the averages of
the embeddings of the Russian tokens aligned with
them in the parallel corpus17, inspired by Xu and
Hong (2022).

We make two copies of this model and train them
to translate in the myv-ru and ru-myv directions,
respectively. The myv-ru model is trained on
the joint parallel corpus of sentences and words.
The ru-myv model is trained on the union of this
corpus and the back-translated corpus generated
by the myv-ru model from the monolingual myv
data.

After training the models on these two languages,
we adapt them to 10 more languages: ar, de, en, es,
fi, fr, hi, tr, uk, and zh, resulting in the myv-mul
andmul-myvmodels (below, bymulwe denote any
of these 10 languages). We fine-tune the twomodels
jointly, using a version of online-back translation
and self-training. Specifically, we generate the
training pairs in four alternating steps:
1. Sample a ru-mul sentence pair from the

CCMatrix (Schwenk et al., 2021) dataset,
translate from ru to myv with the mul-myv
model;

2. Sample a ru-mul pair from the CCMatrix,
translate from mul to myv with the mul-myv
model;

3. Sample a ru-myv pair from our parallel cor-
pus, translate from myv to mul with the myv-
mul model;

4. Sample a myv text from the monolingual myv
corpus, translate frommul tomyv and ruwith
the myv-mul model.

At each step, we update both models on the myv-
mul and myv-ru pairs in both directions. For the
self-training updates, we multiply the loss by the
coefficient λST = 0.05 to decrease the impact
of self-training relatively to back-translation (the
choice of the coefficient is suggested by experiments
in He et al. (2022)).
During the initial experiments, we noticed that,

when translating from Russian to Erzya, the model
often just copied Russian phrases with only word

17We compute alignments with a naive formula: the align-
ment weight between tokens ti and tj is estimated as

n2
ij

njnj
,

where ni and nj are their respective frequencies in the paral-
lel corpus, and nij is the number of sentence pairs with ti in
one sentence and tj in another.
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endings sometimes changed. Sometimes this is
acceptable because Erzya has multiple Russian
loanwords, but often there exist native words that
are preferable. To alleviate this problem, in step 1
we generate 5 alternative ru-myv translations using
diverse beam search (Vijayakumar et al., 2016), and
choose the one with the largest proportion of words
recognized as myv by our language identification
model. This problem was also the reason why we
chose to train two different models from translation
to Erzya and from Erzya: this way, the decoder
and encoder of a model never work with the same
language.

4 Evaluation

4.1 Data
For model evaluation, we prepare a held-out corpus
of 3000 aligned Erzya-Russian sentences from 6
diverse sources: the Bible, Erzya folk tales (Shey-
anova, 2017), the Soviet 1938 constitution, descrip-
tions of folk children’s games (Брыжинский, 2009),
modern Erzya fiction and poetry, and Wikipedia.
To evaluate English and Finnish translation, we use
translations from the Erzya universal-dependency
treebank (Rueter and Tyers, 2018): 441 sentence
pairs for en, and 309 for fi. We split all these
sets into development and test parts, and report the
results on the test set.

4.2 Automatic Metrics
For all evaluated directions (between myv and
ru, en, fi) we calculate BLEU (Papineni et al.,
2002) and ChrF++ (Popović, 2017). Both these
metrics estimate the proportion of common parts
in the translation and the reference, but BLEU is
calculated as precision over word n-grams, whereas
ChrF++ aggregates precision and recall of word
and character n-grams (which is more suitable for
morphologically rich languages such as Erzya and
Russian). The values of these metrics on the test
set are given in Table 1. For translation from and
to Russian, the BLEU scores are 17 and 19 points,
respectively. For English and Finnish, however,
BLEU is well below 10. We hypothesize that
the low quality may be attributed to the domain
mismatch between the Erzya-origin and English-
or Finnish-origin training corpora, but without
detailed test sets we cannot verify this.
For the Russian test set, the performance varies

greatly depending on the domain (Table 2). The
constitution has the highest scores because its Erzya

Direction BLEU ChrF++
ru-myv 17.71 41.16
myv-ru 19.68 38.63
en-myv 2.77 28.03
myv-en 5.44 25.99
fi-myv 4.79 27.42
myv-fi 3.02 22.34

Table 1: Reference-based scores on the test sets.

ru-myv myv-ru
Source BLEU ChrF++ BLEU ChrF++
bible 10.00 36.92 10.71 33.55
tales 7.00 33.90 7.30 28.42
constitution 27.82 62.96 33.31 60.60
games 10.33 31.19 9.85 26.57
fiction 8.68 30.59 5.95 26.60
wiki 28.39 48.56 32.24 47.55

Table 2: Scores by section on the myv-ru test set.

text is saturated with Russian loanwords and is easy
to generate and understand. For Wikipedia, the
scores are also high, probably because its Erzya
articles are often translated from Russian in a rather
literal way. The other domains have a more artistic
style, and the translations are on average much less
literal.

Some examples of the translations and references
are given in Table 3.

4.3 Manual Evaluation
We recruit three native speaker volunteers to eval-
uate some translations manually. The evaluation
protocol is similar to XSTS (NLLB Team et al.,
2022), but evaluates fluency in addition to semantic
similarity. The scores are between 1 (a useless trans-
lation) and 5 (a perfect translation), with 3 points
standing for an acceptable translation without ser-
ious errors. Criteria for each score are given in
Appendix C.

Each of the 3 annotators rated a few randomly
sampled translations from the dev split of each
source: 12 pairs in the ru-myv and 17 pairs in the
myv-ru directions, which amounts to 87 sentence
pairs annotations in total. The average length of
the labelled texts was 97 characters, or 14 words.
It turned out that, despite the specified annota-

tion criteria, the annotators were calibrated very
differently: their average ratings were 2.9, 3.5, and
4.1. We chose a pessimistic aggregation strategy:
for each of the 29 evaluated sentence pairs, we took
the worst of the scores by our 3 volunteers.

For translation to Erzya, the average pessimistic
score was 2.75, and 58% translations were rated
as acceptable (i.e. all the 3 reviewers rated them
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Type Text
source (ru) И вот что рассказывают наши русские старики: «Когда здесь не было этого села, в

этом овраге были разбойники; у них были землянки.
source (myv) Вана мезе ёвтнить миненек рузонь атятне: зярдо велесь тесэ арасель, се латксонть

эрясть розбойникть, эрясть землянкасо.
translation (ru-myv) Ды вана мезе ёвтнить минек эрзянь атятне: «Зярдояк те велесэнть арасель, тосо

оврагасо ульнесть розбойникть; сынст ульнесть землянкаст.
translation (myv-ru) Вот что нам говорят русские старцы: когда деревня здесь не была, то там

жилибойники, жили на земле.
source (myv) Кода авазо, анокстась лапужа кирькст, истя жо педявтнинзе, валаськавтнинзе

педявтома таркатнень начко кедьсэ.
source (en) Like his mother, he prepared flat rings, and stuck them onto the patty in the same way,

and smoothed out the seams with his wet hands.
source (fi) Samalla tavalla kuin äitinsä Ketšai valmisti litteitä rinkuloita liitti ne samalla tavalla, ja

siloitti liitoksen märällä kädellä.
translation (myv-en) Like his mother, he prepared flat circles, and also filled the canvas with a needle.
translation (myv-fi) Kuten äiti, valmistelee tasa-alaiset kentät, myös venytetään, lyödään venyttäjän käsillä.
translation (en-myv) Кода аванзо, сон анокстыль валаня суркст, теке ладсо педявтызе сынст пацьказонзо

ды вадяшась кедень летькенть марто.
translation (fi-myv) Истя жо, кода авазо Кетшай анокстыль лаҥгсо кевпанть, сон солодиль сынст теке

ладсо ды солодиль эйсэст кедьлапушкасо.

Table 3: A few examples of translations and references.

with at least 3 points). For translation to Russian,
the average score was 2.71, with 53% acceptable
translations.

An additional comment from the annotators was
that some of the source Erzya texts were inadequate.
In particular, some games sentences contained
grammatical errors18, and most constitution sen-
tences contained Russian words with Erzya endings
instead of their Erzya equivalents. This suggests
that one of the next steps in improving our NMT
system might be to filter the training and evaluation
data for better language quality.

5 Conclusions and Future Work

In this paper, we present the first NMT system
for the endangered Erzya language, capable of
translating between it and 11 diverse languages,
primarily Russian. During its development, we
have collected about 30K parallel Russian-Erzya
sentences and 300K monolingual Erzya sentences,
and trained a language identification model and a
BERT-based sentence encoder that support Erzya.
All the resources are publicly released. These
efforts have occupied about two man-weeks of
working time and almost no expenses19. We hope
that these results will inspire the NLP community to
develop resources for other endangered languages.

18We are not certain whether these errors are due to the low
quality of the source text, or to the natural variations within
the Erzya language.

19All the expenses incurred totalled $9.99 for the paid
subscription to the Google Colab system (https://colab.
research.google.com/signup).

The quality of our system may be improved by
collecting more texts in Erzya and filtering them
better than we did. Another promising direction
is a more efficient usage of the vocabularies and
parsers that are already available for the language,
e.g. for generating synthetic training data. Finally,
we hope to attract more native speakers for creating
larger and cleaner train and test datasets.
One open research question is that of transfer

between languages: whether Erzya translation be-
nefits from knowledge of, for example, Hungarian
or Estonian, and whether knowledge of Erzya can
bring improvements to other languages, such as
Moksha. In further studies, we hope to shed some
light on this direction as well.
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Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Hef-
fernan, Elahe Kalbassi, Janice Lam, Daniel Licht,
Jean Maillard, Anna Sun, Skyler Wang, Guillaume
Wenzek, Al Youngblood, Bapi Akula, Loic Barrault,
Gabriel Mejia-Gonzalez, Prangthip Hansanti, John
Hoffman, Semarley Jarrett, Kaushik Ram Sadago-
pan, Dirk Rowe, Shannon Spruit, Chau Tran, Pierre
Andrews, Necip Fazil Ayan, Shruti Bhosale, Sergey
Edunov, Angela Fan, Cynthia Gao, Vedanuj Gos-
wami, Francisco Guzmán, Philipp Koehn, Alexandre
Mourachko, Christophe Ropers, Safiyyah Saleem,
Holger Schwenk, and Jeff Wang. 2022. No language
left behind: Scaling human-centered machine trans-
lation.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

50
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A Data sources

Source Type Size
Erzya-Russian dictionaries: marlamuter.com, mordovians.ru, mord-
varf.com, Рябов et al. (2011), Щанкина (2011), Эрюшов

phrase pairs 47860

The myv-ru Wikimedia corpus on OPUS (Tiedemann, 2012) sentence pairs 3202
The Bible (finugorbib.com) sentence pairs 12483
Sheyanova (2017) (aligned) sentence pairs 1023
Брыжинский (2009) (aligned) sentence pairs 4203
Erzya and Russian Wikipedia (wik, a) (aligned) sentence pairs 11479
Livejournal (lj) (aligned) sentence pairs 1799
Modern Erzya fiction and poetry (rus) (aligned) sentence pairs 916
The Soviet 1938 constitution (con, 1938) (aligned) sentence pairs 304
Mordovian tales and riddles (Евсевьев, 1964) (aligned) sentence pairs 3776
Various Erzya fiction books (lib.e mordovia.ru) sentences 52870
Various Soviet-time books and periodicals (fen) sentences 54798
Erzya Wikisource, filtered by language (wik, b) sentences 120470
Articles from the Erzya Pravda website (pra) sentences 43772
Livejournal (lj) sentences 36584
Erzya Wikipedia (wik, a) sentences 59569
Брыжинский (2009) sentences 5194

Table 4: The sources used to construct the training and evaluation datasets. The “size” column denotes the number
of sentences or phrases in the source.

B Models’ hyperparameters
B.1 Language identification
For the language identification model, we use the official FastText implementation20. We train it with initial
learning rate of 0.05 for 100 epochs, using minimum word count of 100, 64-dimensional embeddings and
200K hash buckets for character n-grams with n from 1 to 4. Then we quantize the model with retraining
on the same dataset, a cutoff of 50000, and norm pruning.

B.2 Sentence encoder
For the sentence encoder model, we use a PyTorch port of LaBSE21, in which we remove tokens for
all languages, except Russian and English, and add Erzya tokens. For vocabulary extension, we set the
minimal token count for stopping BPE at 30.
After extending the vocabulary, we fine-tune the model on the initial parallel sentences and phrases

using the LaBSE contrastive loss with margin 0.3 and batch size 4 for 500K steps, updating only the
embeddings, and passing the gradient only through the encoded myv sentence. We use the Adafactor
optimizer with learning rate of 10−5 and clipping the gradient norm at 1. Then we update the model for
500K steps with learning rate 2 × 10−6, updating all the parameters, and alternating batches with the
LaBSE loss, MLM loss, and the loss of classifying the correct and incorrect sentence pairs. Incorrect
pairs are generated either by sampling one of the sentences randomly, or by randomly inserting, deleting,
or swapping words in one of the sentences in a correct parallel pair.

B.3 Machine translation models
Both myv-ru and ru-myv models were initialized from mBART5022 with the vocabulary extended with
Erzya tokens. They were trained with Adafactor optimizer using batch size of 8 and learning rate of 10−6

20https://github.com/facebookresearch/fastText
21https://huggingface.co/sentence-transformers/LaBSE
22https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt
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for 4 epochs: on the first epoch, only token embeddings were updated, and on the remaining epochs, all
parameters were updated.
The myv-mul and mul-myv models were initialized from myv-ru and ru-myv, respectively. They

were jointly trained for 40K updates with batch size of 1.
For inference, we used beam size of 5 and repetition penalty of 5.0.
Both the sentence encoder and the translation models were trained using the PyTorch23 and Trans-

formers24 Python packages.

C Quality annotation guidelines
The following annotation criteria (in Russian) were suggested to the annotators in Section 4.3.

• 5 points: a perfect translation. The meaning and the style are reproduced completely, the grammar
and word choice are correct, the text looks natural.

• 4 points: a good translation. The meaning is reproduced completely or almost completely, the style
and the word choice are natural for the target language.

• 3 points: an acceptable translation. The general meaning is reproduced; the mistakes in word choice
and grammar do not hinder understanding; most of the text is grammatically correct and in the target
language.

• 2 points: a bad translation. The text is mainly understandable and mainly in the target language, but
there are critical mistakes in meaning, grammar, or word choice.

• 1 point: a useless translation. A large part of the text is in the wrong language, or is incomprehensible,
or has little relation to the original text.

23https://pytorch.org
24https://huggingface.co/docs/transformers/
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Abstract

This paper describes a procedure to link a Tool-
box dictionary of a low-resource language to
correct synsets, generating a new wordnet. We
introduce a bootstrapping technique utilising
the information in the gloss fields (English, na-
tional, and regional) to generate sense candi-
dates using a naive algorithm based on multilin-
gual sense intersection. We show that this tech-
nique is quite effective when glosses are avail-
able in more than one language. Our technique
complements the previous work by (Rosman
et al., 2014) which linked the SIL Semantic Do-
mains to wordnet senses. Through this work we
have created a small, fully hand-checked word-
net for Abui, containing over 1,400 concepts
and 3,600 senses.

1 Introduction

This paper describes the development of a wordnet
for Abui, one of more than twenty Timor-Alor-
Pantar languages of Eastern Indonesia. The Timor-
Alor-Pantar (TAP) languages are a western outlier
among other Papuan languages, the bulk of which
are spoken in and around the island of New Guinea.
While the TAP languages constitute a coherent fam-
ily (Holton et al., 2012; Kaiping and Klamer, 2022),
their relationship to other Papuan families of New
Guinea has not been demonstrated (Holton and
Robinson, 2014; Schapper et al., 2014).

Within the TAP language family dictionaries ex-
ist for only a handful of languages, listed here in
alphabetical order: Abui (Kratochvíl and Delpada,
2008), Blagar (Steinhauer and Gomang, 2016), Ka-
mang (Schapper and Manimau, 2011), Sawila (Kra-
tochvíl et al., 2014), Teiwa (Klamer, 2012), and
Western Pantar (Holton and Koly, 2007). These
dictionaries exist in printed form and have been
also distributed in the speech community. For the
remaining languages a number of wordlists exist:
from 1930s the Holle lists (Holle et al., 1980),
Stokhof lists (Stokhof, 1975), and various wordlists

produced by the Indonesian Language Develop-
ment and Fostering Agency (Pusat Bahasa Indone-
sia). All available wordlists are consolidated in the
LexiRumah online database (Kaiping et al., 2022)
which contains at least two hundred words per lan-
guage.

None of the above listed TAP dictionaries con-
tain more than 4,000 words although each of them
took several years to create. Beyond the basic vo-
cabulary, which is also included in the LexiRumah
wordlists, the dictionary coverage is determined
by the collected texts and the preferences of the
compilers. As a result each dictionary inevitably
contains random gaps. The lexicographic work-
flow in language description is slow, over-reliant
on a single author or a small team; it does not pro-
duce lexicographic materials suitable for language
revitalisation or natural language processing appli-
cations. There is generally little concern for "open"
data and shared formats.

1.1 Lexicography of low-resource languages

Field linguists use a variety of lexicographic tools.
Their main producer is the Summer Institute of
Linguistics (SIL) which developed the SIL multi-
dictionary format (MDF) described in Coward and
Grimes (2000) and utilised it in the following tools:

• SIL Shoebox1 (1st generation corpus manage-
ment tool, parser, and dictionary builder)

• SIL Toolbox2 (2nd generation corpus manage-
ment tool, parser, and dictionary builder)

• SIL Lexique Pro3 (2nd generation dictionary
management tool)

• SIL FieldWorks4 (3rd generation, with all pre-
vious functionalities, plus automated grammar
generation)

1https://software.sil.org/shoebox/
2https://software.sil.org/toolbox/
3https://software.sil.org/lexiquepro/
4https://software.sil.org/fieldworks/
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• SIL WeSay5 (4th generation, a collaborative
native-speaker oriented lexicographic tool)

• LanguageForge6 (a web-based dictionary de-
velopment tool sharing the data format with
FieldWorks but running on any OS with a
browser)

In addition, the Max Planck Institute introduced
the MPI Lexus online plaform7 which did not be-
come mainstream. For comparative wordlists the
comma-separated-value format is now mainstream
and it is used in all Cross-Linguistic Linked Data8

databases such as Dictionaria9 or the The Austrone-
sian Comparative Dictionary Online10.

1.2 Desiderata

Lexicography of low-resource language requires
tools with broad functionality. Firstly, the tools
should support making fine-grained meaning dis-
tinctions (instead of 5 verbs glossed as ‘cut’ offer
means to systematically distinguish them). The
tools should also allow the lexicographer to monitor
the coverage of various semantic fields to produce
balanced resources. Finally, a dictionary should be
structured in a way that enables its use in semantic
typology.

Next, the tools should complement grammatical
description, embedding information on phonetics,
morphosyntax, usage, etc., and support semantic
tagging of the corpus. The tools should support
itegration of the lexicon and corpus, to draw natu-
ralistic examples.

Another concern are the data formats which
should rely on the maturing standards in the NLP.
The interoperability with such standards is a pre-
requisite for gaining benefits from existing re-
sources for major languages. For example, when
identifying the most appropriate sense of a word
in the low-resource language, equivalents in other
major languages should be discoverable automati-
cally.

Finally, the lexicographic tools should system-
atically support crowd-sourcing and community
maintenance because it is unlikely that the number
of professional linguists studying a low-resource

5https://software.sil.org/wesay/
6https://languageforge.org/
7https://www.mpi.nl/corpus/html/lexus/

index.html
8https://clld.org/
9https://dictionaria.clld.org/

10https://acd.clld.org/

language can ever become adequate for the task at
hand.

We believe that wordnets are tools that meet the
above desiderata and we will briefly characterise
them in the next section.

2 Wordnets and Low-resource Languages

There are two main methods to build wordnets
(Vossen, 1998). The first is known as the ‘expan-
sion approach’, where the semantic hierarchy of
another wordnet is used as pivot. In this approach,
the required work is essentially a translation effort
– conserving the structure of the pivot wordnet and
translating individual nodes of the hierarchy, which
can be done incrementally (i.e. usually starting by
a subset of frequent concepts) but can take in princi-
ple infinitely long until all language specific senses
are identified. The Princeton Wordnet (PWN, Fell-
baum, 1998) is, by far, the most frequently used
pivot for projects that employ the ‘expansion ap-
proach’.

The second method is known as the ‘merge ap-
proach’. And while this approach is perhaps more
principled, in theory, it is both slow and it also re-
quires more resources. In the ‘merge approach’ no
pivot structure is assumed. As such, this method
can ensure higher degrees of freedom while model-
ing the structure of the wordnet without depending
on pre-assumed semantic relations. One of the im-
mediate benefits of this approach is the ability to
freely add new concepts that are not part of the
pivot language – a problem many wordnet projects
that followed the ‘expansion’ approach have strug-
gled with. The major drawback of this approach,
however, is its inability to immediately benefit from
the parallel translations available from all other
projects that used the same pivot.

2.1 The Collaborative Interlingual Index
(CILI)

In recent years there have been two major changes
to wordnets that have made wordnets more suitable
to deal with low-resource languages. These are:
the Collaborative Interlingual Index (CILI, Bond
et al., 2016) and a new and improved Wordnet Lex-
ical Markup Framework (WN-LMF, P. McCrae
et al., 2021).

CILI has solved the linking problem: before
CILI it was necessary to use one language as a
pivot to link other languages. Historically, this
pivot has been the Princeton WordNet (Fellbaum,
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1998) – a decision embraced by the Open Multilin-
gual Wordnet 1.0 (OMW, Bond and Foster, 2013),
a projected that linked dozens of wordnets projects
using English as a pivot language. Even though
the choice of English as a pivot brought forth many
benefits, this quickly became problematic to de-
scribe non-main-stream languages whose concept
inventories often differ from English (i.e., many
languages have senses for concepts that had not
been described for English, making it quite diffi-
cult to streamline the development of a wordnet
that did not largely overlap with English).

As an alternative, instead of chosing English as
a pivot, wordnets were developed independently
from English, but the downside of such approach
is that wordnets can no longer be linked together.
The independent construction has historically only
been viable for very large projects, with a strong
funded agenda, and is not really recommended for
smaller projects.11

CILI, which was largely inspired by the Interlin-
gual Index (ILI) developed for the EuroWordNet
(Vossen, 1998), ended the need to use any specific
language as pivot. CILI not only allows any lan-
guage to contribute to a language-agnostic concept
inventory, but also allows a language to link directly
to other languages without using English as pivot,
harnessing the advances in meaning description
made in any linked language.

As an example we may give the Abui word liik
‘elevated wooden platform’ which can refer to a
chair, table, a gazebo, wooden house floor, veran-
dah, gallery or a stage and corresponds quite well
to the Indonesian and Malay words balai-balai
or bale-bale, which have no simple equivalent in
English. English does not have a generic word de-
scribing an elevated wooden platform but usually
lexicalises its size or purpose. In CILI the Abui
and Indonesian/Malay words can be linked without
the need to link to English.

There may also be words that are unique for
Abui (and perhaps related languages) which have
no counterparts in English or Indonesian, but may
have one in one of the languages already linked to
CILI. Examples of such words are the Abui neura
‘sibling of the opposite gender’ and nemuknehi ‘sib-
ling of the same gender’. Interestingly, English
and Malay lexicalise the gender of the referent
while Abui distinguishes the same-gender siblings
(brother-brother, and sister-sister nemuknehi) from

11This is discussed in greater detail more in Section 4.

opposite gender (brother-sister = neura).

2.2 WN-LMF

The second major breakthrough that now extends
the utility of wordnets (for fieldwork or otherwise)
is the improved and continuously expanding WN-
LMF. Wordnets traditionally contained only open
class words (i.e., nouns, verbs, adjectives and ad-
verbs) – which immediately raised limitations on
the use of wordnets as fuller lexicons. However,
this restriction is no longer true, as can be seen by
an increasing trend in expanding wordnets not only
to other word classes – e.g., pronouns (Seah and
Bond, 2014), exclamatives (Morgado da Costa and
Bond, 2016), classifiers (Morgado da Costa et al.,
2016) – but also to expand wordnet towards new
depths of linguistics analysis, to include new layers
of annotation that include better ways to represent
regional or diachronic orthographic variation, pro-
nunciation (incl. links to audio files), syntactic
modeling, and much more. These efforts are con-
stantly being updated on a need basis, and are sum-
marized in a publicly released WN-LMF schema
that strongly encourages different languages to en-
code this information in a shared format.

2.3 Open Multilingual Wordnet

The Open Multilingual Wordnet (OMW, Bond and
Foster, 2013) is, perhaps, the best example of the
benefits provided by the ‘expansion approach’. The
OMW currently links dozens of open wordnets
using PWN as the pivot structure. The language
alignments provided by all these parallel wordnets
are extremely useful for many downstream NLP
tasks, such as Machine Translation and Word Sense
Disambiguation.

A recent change to the way the OMW oper-
ates was introduced with the creation of the Col-
laborative Interlingual Index (CILI, Bond et al.,
2016) – an open, language agnostic, flat-structured
index that links wordnets across languages with-
out imposing the hierarchy of any single wordnet.
Through CILI, multiple projects are now able to
link to each other and to contribute directly to the
set of CILI’s concepts without the penalty of being
frozen within an imposed structure.

Naturally, CILI was initially created using the
concept set provided by the PWN (i.e. all PWN
concepts have a direct link to CILI), the quickest
and easiest way to link a new wordnet to CILI is
still to use the expansion approach with PWN’s
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hierarchy as pivot – and this is what we chose to
do.

The architecture linking multiple wordnets has
been implemented in the Open Multilingual Word-
net (OMW) allowing the low-resource wordnets
to be linked and studied so that their properties
can inform the future development and design deci-
sions. The authors of OMW make a strong point for
unrestricted (u) or attribution required (a) license
release (Bond and Foster, 2013).

The new (upcoming) version of the OMW will
enforce the use of the WN-LMF, further encour-
aging the adoption of this schema among existing
wordnets, and most certainly also encouraging fur-
ther discussion on future needs to expand the WN-
LMF to accommodate new/missing information.

2.4 Integration of low-resource languages into
global wordnet

As described in the beginning of this section, word-
nets constructed before the introduction of CILI
had to either be developed independently of En-
glish (merge approach) or use the PWN as their
pivot (expansion approach). An example of the
merge-approach is the Yami wordnet whose au-
thors attempted to incorporate elaborate and spe-
cific information on certain semantic domains,
taking the Yami fish terminology as a test case
(Yang et al., 2010). As other examples may serve
the Vietnamese wordnet (Lam and Kalita, 2018),
Mansi wordnet (Horváth et al., 2016) or the human-
curated wordnet of Old-Javanese (Moeljadi and
Aminullah, 2020), which has to rely on deep philo-
logical knowledge in the absence of native speak-
ers.

The Cantonese wordnet (Sio and Costa, 2019)
is an example of the extension approach. It is a
high-quality human-curated resource derived from
the Chinese Open Wordnet and the PWN.

The extension approach is suitable for automatic
methods, as demonstrated by the Shipibo-Konibo
wordnet (Maguiño-Valencia et al., 2018) which was
derived from Spanish glosses extracted from a 1993
Spanish-Shipibo-Konibo dictionary. The outcome
of the automatic linking was manually evaluated.

Our approach is the closest to that taken in the
creation of the wordnets for Kristang (Morgado da
Costa, 2020) and Coptic (Slaughter et al., 2019) to
which we will refer in more detail in section 4.2.

3 Lexicographic resources for Abui

Abui (ISO 639-3: abz, abui1241) is a Timor-Alor-
Pantar (TAP) language spoken by about 17 thou-
sand speakers in an area stretching from the north-
ern to the southern coast in Central Alor. Abui
is classified by Kaiping and Klamer (2022) to the
Central Alor branch of TAP. The work reported
here focusses on the variety spoken in the village
of Takalelang at the northern coast.

The earliest lexicographic work on Abui comes
from the pen of two anthropologists who conducted
their research in late 1930s in the Abui village of
Atengmelang. Cora Du Bois, who published a
monograph on the Abui culture (Bois and Kardiner,
1944), left behind extensive lexical and grammati-
cal notes (part of the Cora Du Bois Personal Papers
at the Tozzer Library, Harvard University, [CDBpa-
pers]). Martha Maria Nicolspeyer appended to her
PhD thesis an Abui-Dutch wordlist (Nicolspeyer,
1940) [N1940]. This work served as a base for W.
A. L. Stokhof, who worked on Abui in late 1970s
and 1980s and published the Du Bois wordlists and
provided an Abui text with a grammatical commen-
tary (Stokhof, 1975, 1984) [S1975].

Since 2003 the Abui language has been subject
to more intensive study which resulted in a full
grammatical description (Kratochvíl, 2007) and a
dictionary primer (Kratochvíl and Delpada, 2008)
[KD2008]. The dictionary is derived from a Tool-
box corpus and contains only words which are at-
tested in texts that were recorded during the docu-
mentation.

The dictionary was revised and expanded in
its second edition (Kratochvíl and Delpada, 2014)
[KD2014], available online and counting over 400
pages. It includes Abui-English, Abui-Indonesian
and reverses, as well as a semantic ontology based
on the SIL semantic domains (Moe, 2013).

Between 2013 and 2016, three Rapid Words
workshops were conducted, during which about
17 thousand words [RW2016] were collected using
a crowd-sourcing approach designed by the Sum-
mer Institute of Linguistics (Boerger and Stutzman,
2018). Currently, these words are being digitised
and equiped with their English, Indonesian and
Malay glosses before the method described here
can be applied. Table 1 offers an overview of the
available Abui lexicographic work to date includ-
ing its size and estimation of the production time
(in years). The works are identified by the abbrevi-
ations used above.
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Author(s) Type Words Years
N1940 dictionary 710 0.5
CDBpapers wordlist 2063 2
S1975 wordlist 117 n.a.
KD2008 dictionary 1757 4
KD2014 dictionary 2389 6
RW2016 wordlist >17k >6

Table 1: Overview of the Abui lexical resources

4 Developing the Abui Wordnet

Building and maintaining a wordnet is extremely
time-consuming, especially when this is done man-
ually. For this reason, the large majority of word-
nets are built by bootstrapping their development
using one or more existing wordnets, referred to as
the “pivot languages”, as we discussed in section 2.
In this section we discuss the methods to build the
Abui wordnet.

4.1 Extracting Toolbox Data

The SIL Toolbox dictionaries are based on the
Multi-dictionary format (MDF) by Coward and
Grimes (2000). The format defines a broad range
of fields which are marked by a generic ID starting
with a backslash (eg. \lx, \ph, \ps, etc.). MDF is
rich and versatile: it incorporates linguistic infor-
mation (pronunciation, morphosyntactic properties,
meaning, examples), cultural information, sources
(e.g. books, narratives, speakers), etc. An example
of a lemma can be seen in Figure 1 which contains
the Abui verb pok ‘split, burst’. The figure consists
of two blocks. The left block in sans-serif case con-
tains the data from the Abui dictionary. The right
column and the shading is our own and separates
the lemma fields into blocks and characterises their
content.

The first field of each entry is a lemma (\lx),
which is followed by its pronunciation (\ph) and
part-of-speech (\ps). The meaning is captured by a
gloss, reverse gloss, and definition in English (\ge,
\re, \de), Indonesian (\gn, etc.), and Alor Malay (\gr,
etc.) Finally, the entry also contains an example
sentence and its translations in English, Indonesian
and Malay.

Figure 1 shows that there is some redundancy
in the MDF format. For example the information
in the gloss field (\ge, \gn, \gr) is always repeated
in the reversal field (\re, \rn, \rr). The definition
field (\de, \dn, \dr) may occasionally contains more
information than the gloss and the reversal, as it

Figure 1: The lemma for pok ‘split, burst’ (MDF
format)

Abui Lemmas 2,508
English Lemmas 4,985
English Definitions 2,766
Indonesian Lemmas 3,829
Indonesian Definitions 5,771
Malay Lemmas 3,267
Malay Definitions 2,633

Table 2: Summary of data extracted from Toolbox

is the case also in the lemma for pok ‘split, burst’
above.

For the work presented in this paper, we used
only the information contained in the Abui lemma,
part-of-speech, reverse glosses (referred as indi-
vidual language lemmas) and definitions. Table 2
provides a summary of the amount of information
extracted from the Abui Toolbox dictionary.

The table reveals that the number of Indonesian
definitions is higher than the number of lexemes
because different senses of the word were included
under the same lexeme, such as aha for which three
senses were listed: (i) ‘outside’, (ii) ‘outside, in the
fields’ and (iii) ‘blade, the sharp part of a cutting
tool’. Each sense contains a separate definition, but
the reverse glosses for Indonesian are shared across
all available senses.

4.2 Multilingual Sense Intersection

In our work, we exploit the existing lexicographic
work on Abui to bootstrap the development of
the wordnet following the expansion approach

58



while acquiring sense candidates through a naive
algorithm inspired by multilingual sense intersec-
tion (Bonansinga and Bond, 2016; Bond and Bo-
nansinga, 2015) to determine potential senses of
a new wordnet – a similar method to the one em-
ployed to build Coptic Wordnet (Slaughter et al.,
2019), while using field data instead of dictionary
data.

Multilingual sense intersection has a simple log-
ical foundation. The base idea is that the semantic
space of a polysemous word in any language can
be constrained by aligned translations of the same
word in other languages. This same concept has
been used in automatic Word Sense Disambigua-
tion (WSD) using parallel text. And using data
with an increasing number parallel languages has
been shown to incrementally improve the sense dis-
ambiguation. In our case, however, instead of using
parallel text to disambiguate multiple languages at
the same time, we use existing wordnets as pivots
to generate candidate senses for a new wordnet.
Figure 2 shows a conceptualization of this logic,
for three languages.

We used available wordnet data for the three
languages present in our Toolbox data – English,
Indonesian and Alor Malay (a Vehicular Malay va-
riety). English wordnet data came primarily from
the Princeton Wordnet (Fellbaum, 1998). Indone-
sian and Malay data came primarily from Wordnet
Bahasa (Noor et al., 2011; Bond et al., 2014).

In addition to these wordnets, we used data
made available by the Extended Open Multilin-
gual Wordnet (Bond and Foster, 2013), which con-
tains automatically collected data from Wiktionary
and the Unicode Common Locale Data Repository
(CLDR), as well as data made available through the
ongoing sense annotation efforts of the NTU Mul-
tilingual Corpus (Tan and Bond, 2014; Bond et al.,
2021) – which have expanded the sense inventory
of the above mentioned wordnets.

Figure 2 illustrates a hypothetical scenario where
a single Abui lemma is a candidate sense for nine
possible concepts (concept.1–9). However, these
nine senses are not all equally suggested by the
three languages. In this example, the available En-
glish (ENG) translations suggest five concepts, the
Indonesian (IND) translations also suggest five con-
cepts (although not the same five), and the Malay
(ZSM) translations suggest three concepts.

A natural way to organize this data is by the
number of languages that suggest any given sense.

ENG IND

ZSM

concept.1

concept.2

concept.3
concept.4

concept.5

concept.6

concept.7

concept.8

concept.9

Figure 2: Sense Intersection visualisation: coloured
circles represent lexemes which refer to a number of
senses (concept.1-9). Unrelated languages are less

likely to colexicalise the same set of senses.

In our example, concept.1 would be suggested by
all three languages, while both concept.4 and con-
cept.5 would be suggested by alignments in only
two languages. Empirically, it is easy to understand
that senses suggested by more languages have a
higher likelihood of being correct.

In addition to determining the number of inter-
sected languages, our current algorithm also uses
other simple metrics to rank Abui sense candidates,
including: number of individual senses matched
within a concept for each language (each worth ten
points); and the number of matches between an
existing wordnet sense and the definition extracted
through Toolbox (each worth one point).

Since most synsets in wordnet have more
than one sense, the ranking score in our al-
gorithm seeks to reward candidates that show
a greater overlap with the information con-
tained in each wordnet. This means, for exam-
ple, that the Princeton Wordnet concept for the
verb 00056930-v (cause to be born),
which has five difference senses (bear; have; birth;
deliver; give birth), would contribute with a score
of ten points for each lemma that was included in
the English translations of Abui Toolbox dictionary
entry for the corresponding verb. Scores gathered
by each language are summed into a final score.

In order to reduce spurious candidates, only data
with congruent parts-of-speech (between the word-
nets and the Toolbox data) was used. This was
done by creating a hand mapping between the fine-
grained parts-of-speech labels included in the Tool-
box dictionary, and the simpler tags that used in
wordnets.
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4.3 Results

The results of our sense intersection experiment are
summarized in Tables 3 and 4. Table 3 shows the
results in relation to the number of languages that
were intersected for each sense candidate. As it
would be expected, three-way intersection happens
much less frequently than two-way intersection or
than senses suggested by a single language. We
hand-checked all 2,368 candidate senses suggested
by the intersection of three languages. In addition,
for candidates informed by either two or one lan-
guage, we performed a stratified sampling (based
on score bands shown in Table 4) and checked an
extra 1,200 candidate senses. From this evalua-
tion, we can show that senses suggested by three
languages were correct around 99% (0.989) of the
time, followed by 50% accuracy for senses sug-
gested by two languages, and 35% of the time for
senses suggested by a single language.

These results are in line with those reported by
Slaughter et al. (2019), for the Coptic Wordnet,
where senses triangulated by three languages were
shown to be correct as high as 98% of the time. Our
findings are also in line with other similar work,
such as Bond and Ogura (2008), who found scores
of about 97% when aligning lexicons with three
languages.

Table 4 shows a more detailed picture of our
sense intersection experiment. It shows results fil-
tered for different language pairings (for the case
of two-way intersection), and also filtered by differ-
ence score bands for the same type of intersection.
The scoring method was briefly described in Sec-
tion 4.2.

One interesting aspect shown in Table 4 is the
fact that two-way language intersection was compa-
rable across all language pairs. Given the proximity
between Indonesian and Malay, one would expect
that intersection of English with one of the two
other languages would result in better sense candi-
dates – but this was not the case. Table 4 also shows
that the naive scoring algorithm that expanded the
simple metric of number of intersected languages
reported in Slaughter et al. (2019) is useful enough
to differentiate between candidates that received
the same broad triangulation type. Candidates with
higher scores in the same intersection type are cor-
rect more often. These differences become increas-
ingly relevant the fewer the languages that inform
that sense candidate. For senses suggested by a
single language, we can see that higher ranking

Intersection Cand. Sample Acc.
3 languages 2,368 2,368 0.99
2 languages 8,115 600 0.50
1 language 28,678 600 0.35

Table 3: Summary of results filtered by number of
intersected languages

Intersection Cand. Score Samp. Acc.
eng+ind

3,032
31-61 100 0.61

eng+ind 20 100 0.34
eng+zsm

206
21-31 60 0.65

eng+zsm 20 140 0.44
ind+zsm

4,877
31-63 100 0.61

ind+zsm 20 100 0.42
eng

9,716
20-32 100 0.67

eng 10 100 0.07
ind

17,380
21-32 100 0.57

ind 10 100 0.11
zsm

1,582
11-21 100 0.44

zsm 10 100 0.22

Table 4: Summary of results for one and two-way
intersection filtered by languages and ranking score

scores (which reflect that more than one sense in
that language was match for a single concept) can
be extremely useful to discern likely candidates. In
our data, the most extreme case can be seen for En-
glish, where senses presenting a ranking score of
10 (i.e., informed by a single English sense) have
an average accuracy of 7% but senses with a score
between 20 and 32 (informed by more than one
English sense) have an average accuracy score of
67%.

These results show that even though our ranking
algorithm is very naive, we are moving in the right
direction. It would most certainly be beneficial
to improve our ranking algorithm with other clas-
sic features used in Word Sense Disambiguation,
such as exploiting the semantic hierarchy or using
wordnet glosses and definitions.

5 Release and Licensing

A summary of the size and part-of-speech coverage
of the first release of the Abui Wordnet is given
in Table 5. This first release includes only data
derived from candidates generated by three-way
intersection – which we showed yielded data with
a confidence score of 99%. Since all candidates
intersected by three languages were hand-checked,
we include only those that were confirmed. In addi-
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tion, compatible morphological alternations were
added, semi-automatically (using Toolbox data) to
each sense. This increased the number of available
senses considerably.

Note the low number of adjectives (which in-
clude quantifiers) and adverbs in Table 5, which
is a consequence of Abui having just a handful of
adjectives and encoding other properties as stative
verbs, and similarly expressing event properties
mostly by finite verbs (Kratochvíl, 2007, 109-110).

POS No. Synsets No. Senses
nouns 818 1,466
verbs 590 2,013
adjective 46 82
adverb 21 45
Total 1,475 3,606

Table 5: Abui Wordnet Coverage (v1.0)

One key motivation for this project was to in-
spire other field linguistics to follow on our foot-
steps and release their data using open licenses.
Field linguists have a responsibility towards the
communities they work with, and should embrace
an open-shared ownership of the work that is de-
veloped with the help of these communities.

We want to encourage other field linguistics to
use and replicate our work, while working towards
the maintenance and preservation of Abui and its
community. For this reason, the Abui Wordnet is
released under a Creative Commons Attribution
4.0 International License (CC BY 4.0)12. We have
produced OMW tsv files, which can also be used
in the Python Natural Language Toolkit (Bird et al.,
2009). In addition, and keeping up with the recent
requirements to belong to the OMW, we will also
release this data using the WN-LMF format13.

The Abui Wordnet data will be made avail-
able on GitHub at https://github.com/
fanacek/abuiwn.

6 Discussion and Future Work

We have sketched a procedure that facilitates the
transfer of the Toolbox MDF-formatted data into a
wordnet. And we have also shown that it is possible
to generate very high quality data through a naive
algorithm based on sense intersection.

We believe our results could be improved further
by improving our sense intersection algorithm to

12https://creativecommons.org/licenses/by/4.0/
13https://github.com/globalwordnet/schemas

include, for example, semantic domain informa-
tion,14 or by attempting to exploit other available
information often used in the task of Word Sense
Disambiguation such as wordnets’ semantic hierar-
chy, glosses and definitions.

In addition, we would like to work towards in-
cluding pronunciation, grammatical information
(aspectual class, valency, etymology and borrow-
ings) and example sentences, all of which we track
in the Abui Toolbox dictionary, and which can be
accommodated by the Wordnet Lexical Markup
Framework (WN-LMF, P. McCrae et al., 2021).

In the near future we also expect to have to deal
with many specific features particular to Abui: (i)
concepts unique to Abui or the region; (ii) exten-
sive specific taxonomy for animals and plants15;
(iii) many non-lexicalised CILI concepts in Abui
(especially linked to technology and modernity).

Finally, another challenge we would like to
work on relates to the fact that there is no official
Abui orthography and many writing conventions
exist which reflect dialectal and idiolectal varia-
tion as well as individual preferences regarding the
spelling of vowel length, velars and uvulars, tone,
and clitics. We are taking an aggregating approach
and register all examples of alternative spelling and
link them to the respective lemma. In the future we
would like to use the full extent of the WN-LMF to
make this information available in our wordnet.

7 Conclusion

This paper shows the viability of the intersection
method in rapid building of wordnets for low-
resource languages using data collected in field
linguistics. Applying a similar method as Slaugh-
ter et al. (2019) we have reached a overall accuracy
of 99% when the sense is defined by the intersec-
tion of three languages. The accuracy however
does drop steeply when fewer than three languages
are available.

14Semantic domains (http://semdom.org/) is an on-
tology organised in an associative way, grouping words used to
talk about an area together, regardless of the subtle differences
among them. For example, the English domain Rain includes
words such as rain, drizzle, downpour, raindrop, puddle. The
ontology tracks both collocations, as well as paradigm forms
such as synonyms, antonyms, generic and specific relations.
For example, fly will contain a reference to bird as a prototypi-
cal agent of that event. While bird is a generic term chicken is
more specific.

15Blake, A.L. 2018. Documenting environmental knowl-
edge in Abui, a language of eastern Indonesia. London:
SOAS University of London, Endangered Languages Archive.
https://www.elararchive.org/dk0574.
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Abstract
In this paper, we present a straightforward tech-
nique for constructing interpretable word em-
beddings from morphologically analyzed ex-
amples (such as interlinear glosses) for all of
the world’s languages. Currently, fewer than
300–400 languages out of approximately 7000
have have more than a trivial amount of dig-
itized texts; of those, between 100–200 lan-
guages (most in the Indo-European language
family) have enough text data for BERT embed-
dings of reasonable quality to be trained. The
word embeddings in this paper are explicitly
designed to be both linguistically interpretable
and fully capable of handling the broad vari-
ety found in the world’s diverse set of 7000
languages, regardless of corpus size or mor-
phological characteristics. We demonstrate the
applicability of our representation through ex-
amples drawn from a typologically diverse set
of languages whose morphology includes pre-
fixes, suffixes, infixes, circumfixes, templatic
morphemes, derivational morphemes, inflec-
tional morphemes, and reduplication.

1 Better representations are needed
The past several years have seen the develop-
ment of neural techniques capable of creating ex-
tremely high quality word embeddings, most no-
tably BERT (Devlin et al., 2019) and its many vari-
ants. In total, however, fewer than 300–400 lan-
guages have have more than a trivial amount of
digitized text data, thus rendering data-driven NLP
approaches including BERT futile for more than
6000 remaining languages (representing over 1.2
billion people; Vannini and Crosnier, 2012; Joshi
et al., 2020), even with aggressive multilingual
models, transfer learning, bilingual anchoring, and
typologically-aware modelling (Ponti et al., 2019;
Michel et al., 2020; Eder et al., 2021; Hedderich
et al., 2021).

Somewhere between 100–200 languages (most
in the Indo-European language family) have
enough digitized text data (Joshi et al., 2020; Con-
neau et al., 2020) for BERT embeddings of rea-
sonable quality to be trained using a combination
of techniques including unsupervised sub-word
segmentation methods, multilingual bootstrapping,
and transfer learning. Quality of word embeddings
is substantially lower when corpus sizes are in-
sufficiently large; Alabi et al. (2020), for exam-
ple, constructed word embeddings using approx-
imately 10 million tokens for Yorùbá1 and Twi,2
and found that the resulting embeddings are sub-
stantially poorer in quality those for high-resource
languages.

1.1 Complex morphology is the norm
The issue of insufficient training data is exacer-
bated even more when productive derivational and
inflectional morphology plays a significant role in
word formation in a language. The average number
of morphemes per word is medium or high for the
vast majority of the world’s approximately 7000
languages (see World Atlas of Language Structures,
including Bickel and Nichols, 2013; Dryer, 2013).
Despite this fact, since at least Oettinger (1954),
the primary meaning-bearing unit used to repre-
sent language in natural language models has been
the word.

While many modern NLP models can and some-
times do represent higher-level linguistics units
(representing phrases, clauses, or sentences) and
lower-level linguistic units (such as morphemes,
sub-word chunks, or characters), and notwithstand-
ing the widespread use of unsupervised subword

1ISO 639-3: yor, an analytic language in the Yoruboid
branch of the Niger-Congo language family

2ISO 639-3: twi, an analytic language in the Tano branch
of the Niger-Congo language family
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segmentation methods (BPE, SentencePiece, etc),
there remains a very common yet rarely stated as-
sumption that the word should be treated as the
primary meaning-bearing unit of language. This
assumption likely stems from the historical and
current dominance of English3 as the language of
study in NLP (Bender, 2011; Joshi et al., 2020),
and the fact that in English, many words do in fact
consist of only a single morpheme. English and
Standard Mandarin Chinese4 are prime examples
of analytical languages where the average number
of morphemes per word is low and for which ex-
isting neural representations such as BERT work
very well (Peters et al., 2018; Devlin et al., 2019;
Zhang et al., 2019).

1.2 Novel Contributions
Existing neural representations are insufficient
(§1) for the thousands of languages which lack cor-
pora. In this work, we take up this challenge,5
surveying existing NLP methods for representing
words (§2) and presenting a robust technique (§3)
for constructing interpretable word embeddings
from morphologically analyzed examples (such as
interlinear glosses) for all of the world’s languages,
even when no corpus exists, and show how linguis-
tic information encoded in these vectors can be suc-
cessfully recovered.

As the primary contribution of this work, we
present extensive proof-of-concept of our model
gracefully handling immense morphological va-
riety and hierarchical linguistic structures using
complex examples that include concatenation and
zero inflection (§4.1), circumfixation (§4.2), fu-
sion (§4.3), polysynthesis (§4.4), agglutination
(§4.5), infixation (§4.6), reduplication (§4.7), and
templatic morphology (§4.8).

2 Existing Word Representations are
Insufficient for Most Languages

Computational processing of natural language re-
quires practical digital representations of the words
of a language. We survey existing methods for rep-
resenting words, arguing that while existing word
representations work well for high resource ana-

3ISO 639-3: eng, an analytic language in the Germanic
branch of the Indo-European language family

4ISO 639-3: cmn, an analytic language in the Sinitic
branch of the Sino-Tibetan language family

5“It is better to address the core scientific challenges than
to continue to look for easy pickings that are no longer there.”
(Church, 2011)

lytic languages like English, existing representa-
tions are insufficient for effectively representing
morphologically complex words in thousands of
languages for which large corpora do not exist.

2.1 Representing characters as integers
Oettinger (1954, ch. 2, p. 11), in the very first Ph.D.
granted in the field of NLP, defined a word as “any
string of letters preceded and followed by a space
or a punctuation mark,” and stored each word in an
electronic dictionary as a sequence of characters,
with each character represented digitally as a 5-bit
integer. Nearly seventy years later, with relatively
minor variations, this definition is still widely used
in the NLP research community. Most digital word
representations incorporate this technique, storing
each character (or Unicode codepoint, as Clark
et al., 2022, do) in a word as a multi-bit integer.

2.2 Representing words as feature bundles
During the 1960s through the early 1990s, most
NLP systems utilized a knowledge-based paradigm
in which words were represented as complex bun-
dles of linguistic features, which were subse-
quently processed using linguistically-motivated
rules (Hutchins, 1986). Finite-state morphological
analyzers (Beesley and Karttunen, 2003) can be
used to segment words into sequences of compo-
nent morphemes; such segmentations can include
explicit linguistic features such as case, number,
and mood in addition to morpheme identity. An-
other modern example of this type of linguistically
feature-rich word representation can be seen in the
attribute-value matrices (AVMs) of Head-driven
Phrase Structure Grammars (HPSG; Pollard and
Sag, 1994). Such linguistically-based feature bun-
dle representations can in principle work with any
language, regardless of corpus size or morpholog-
ical characteristics, but must be constructed by an
expert linguist for each language, and do not natu-
rally fit with many existing neural techniques.

2.3 Representing words as integers
The development of large digital corpora (primar-
ily in English) and the rise of empirical approaches
to NLP in the late 1980s and early 1990s, led to
widespread use of statistical language models and
translation models (see Church and Mercer, 1993;
Manning and Schütze, 1999; Koehn, 2010). When
implementing these statistical models, it is often
convenient to map each word type to an integer,
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allowing these integer word representations to di-
rectly serve as indices into probability tables (see
for example §5 of Brown et al., 1993). A special
integer value (often zero) is typically reserved to
represent all words not seen during training.

While representing words as integers is efficient
in its use of RAM, it suffers from a serious short-
coming first observed by Bull et al. (1955), namely
that no semantic, syntactic, or morphological infor-
mation is encoded in the word representation (for
example, dog and dogs are treated as completely
unrelated word types). This problem is seriously
exacerbated in languages with rich morphology,
as productive derivational and inflectional mor-
phology may result in extremely large numbers of
closely-related word types, few of which are likely
to appear in corpora. Schwartz et al. (2020a), for
example, found that in one polysynthetic language,
approximately every other word in running text
will have never been previously seen.

2.4 Representing subwords as integers
Unsupervised techniques can be used to automati-
cally segment words into sequences of shorter sub-
word tokens generally longer than the character but
shorter than the word. These techniques include
approaches such as Morfessor (Creutz and La-
gus, 2002; Smit et al., 2014) designed to segment
words into units approximating morphemes, and
compression-based subword segmentation tech-
niques such as BPE (Sennrich et al., 2016; Wu
et al., 2016; Kudo and Richardson, 2018). Most
neural NLP systems in broad use today utilize in-
teger representations of unsupervised subword to-
kens for both input and output.

This approach is more successful at represent-
ing words in languages with highly productive mor-
phology than the integer word representations de-
scribed in §2.3. When corpus sizes are small or
nonexistent, however, as is the case for most of the
world’s languages, insufficient training signal ex-
ists to reliably train high-quality unsupervised sub-
word segmentation. This problem can be mitigated
through the use of a linguistically-based finite-state
morphological analyzer (§2.2) for word segmenta-
tion instead of unsupervised segmentation meth-
ods (Park et al., 2021).

2.5 Representing (word or subword) types as
embeddings

Distributed representations (Hinton et al., 1986),
also called continuous representations and word

embeddings, represent each word as a point em-
bedded in a high-dimensional vector space. When
feed-forward or recurrent neural networks are
trained as language models with the task of pre-
dicting the next element in a word sequence or
a subword sequence, a side effect of the training
process is a table of embeddings which can be in-
dexed by the integer representation corresponding
to each word (§2.3) or subword (§2.4) type. Other
techniques for learning context-independent vec-
tor representations for each type include word2vec
(Mikolov et al., 2013a) and GloVe (Pennington
et al., 2014).

2.6 Representing (word or subword) tokens
as embeddings

More recent neural techniques such as ELMo (Pe-
ters et al., 2018), BERT (Devlin et al., 2019), and
Canine (Clark et al., 2022) can be used to obtain
a context-dependent vector representation for each
word or subword token. ELMo uses convolutional
techniques to generalize over character sequences
within the word in conjunction with deep bidi-
rectional recurrent neural networks, while BERT
utilizes unsupervised subword tokenization tech-
niques (§2.4) in conjunction with a transformer ar-
chitecture (Vaswani et al., 2017). Canine treats
Unicode codepoints as the subword unit.

Learned context-free word embeddings empiri-
cally appear to implicitly encode at least some syn-
tactic and semantic information (Mikolov et al.,
2013b). Substantial recent work, summarized by
Rogers et al. (2020) indicates that contextualized
word embeddings learned by BERT are even more
successful at implicitly encoding syntactic, seman-
tic, and possibly morphological information. In-
terpretability of these embeddings is a challenging
problem which is far from solved.

While multilingual training, transfer, and an-
choring methods have been shown in some cases
to somewhat improve the quality of very low-
resource word embeddings over monolingually-
trained low-resource word embeddings (see, for ex-
ample, Eder et al., 2021), such methods rely on dig-
itized monolingual and bilingual resources that ex-
ist for only a few hundred languages. It remains the
case that at present, training high quality word em-
beddings is dependent on the availability of large
corpora (Alabi et al., 2020; Joshi et al., 2020; Wu
and Dredze, 2020; Budur et al., 2020; Michel et al.,
2020) consisting of tens or hundreds of millions of
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tokens, which are available for at most a few hun-
dred languages (see §1).

2.7 Linguistically-informed word embeddings

No existing word representation is capable of ro-
bustly representing words in all of the world’s lan-
guages regardless of corpus size and morphologi-
cal characteristics. The existing representation that
comes closest to meeting these needs is Linguis-
tically Informed Multi-Task BERT (LIMIT-BERT
Zhou et al., 2020b), a semi-supervised approach
in which a trained parser (Zhou et al., 2020a) is
used to annotate large unlabelled corpora. During
LIMIT-BERT training, these silver linguistic an-
notations (part-of-speech tags, constituency trees,
and dependency trees) are used along with the
words themselves to train contextualized embed-
dings on five parsing-related tasks.

Unlike the embeddings learned by LIMIT-
BERT, the representations we propose are explic-
itly interpretable by design, allowing for direct re-
covery of any linguistic features encoded in our
word embeddings. Unlike LIMIT-BERT, our ap-
proach can produce high-quality word embeddings
in the presence of arbitrarily complex morphology
and in the absence of a corpus.

3 Embedding and retrieving rich
linguistic information

As established in §1, there are thousands of lan-
guages which lack the large corpora needed for
reliably training neural language models such as
BERT. For many of these cases, the size of corpora
may be very small or even nonexistent. While mul-
tilingual and bootstrapping approaches certainly
have a role to play, we ought not ignore the rich
linguistic information embedded in morphological
analyses.

Essentially every language that is even partly
documented has numerous such analyses in the
form of interlinear glossed text (ILGs) created by
expert linguists. Instead of relying on neural net-
works to induce linguistic patterns by processing
massive corpora, we argue that for more than 6000
so-called “low-resource” languages, a more fruit-
ful method for initializing meaningful word and
subword embeddings is by directly embedding the
rich linguistic information included in the morpho-
logical analyses found in ILGs and (when they ex-
ist) other morphologically analyzed corpora.

3.1 Word Embedding Desiderata
We argue that the following desiderata are neces-
sary in order to fulfill the use case of establish-
ing meaningful word embeddings for all languages,
even in the absence of any corpus. The representa-
tion must easily model words from polysynthetic
languages, agglutinative languages, fusional lan-
guages, and isolating languages equally well, natu-
rally incorporating any and all linguistic features
which may be present in an interlinear gloss or
available from other external resources. The repre-
sentation must model words in ultra-low-resource
settings where corpus sizes are very small or even
non-existent just as well as it handles words in high-
resource settings with very large corpora. Finally,
the representation must be interpretable; all lin-
guistic features encoded in the resulting word em-
beddings should easily retrievable from the word
embeddings.

3.2 Tensor Product Representation
To satisfy the word representation desiderata spec-
ified in §3.1, we utilize the Tensor Product Rep-
resentation (TPR) proposed by Smolensky (1990).
The use of TPRs provides a principled way of rep-
resenting hierarchical symbolic information from
external resources such as interlinear glosses or
morphological analyzers into vector spaces, such
as those used as the input and output domains of
neural networks. The nature of TPRs enable sim-
ple linear algebra operations to be used to easily
and fully recover this symbolic structure, including
its compositional structure.

Constructing a TPR for a linguistic unit (such as
a morpheme or a word) begins by decomposing the
symbolic structure of that unit into roles and fillers.
Each role represents a linguistic feature, while each
filler represents the actual value of that feature.

The symbolic structure of a word is then rep-
resented as the bindings of fillers to roles for all
feature-value pairs associated with that unit. Once
decomposed, both roles and fillers are embedded
into a vector space such that all roles are linearly
independent from one another. Let b be a list of or-
dered pairs (i, j) representing filler i (with embed-
ding vector f̂i) being bound to role j (with embed-
ding vector r̂j). The tensor product representation
T of the information is then given by

T =
∑

(i,j)∈b
f̂i ⊗ r̂j ∈ Rd ⊗ Rn. (1)
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3.3 Constructing a TPR from an ILG
Our use of TPRs to represent ILGs is meant to be
agnostic to linguistic theory. Considerable flexi-
bility is available to the computational linguist in
determining exactly how to map linguistic features
from an ILG into the structure of a TPR. For exam-
ple, one TPR design choice might involve linguis-
tic features such as noun case or verb mood serving
as roles, while the corresponding fillers represent
actual values of those features, such as associative
case or indicative mood.

For the sake of expositional simplicity in pre-
senting a multilingual and typologically diverse set
of linguistic examples (and without loss of gener-
ality), in Examples (1) and (2) below and in §4 we
opt for a simplistic linguistic mapping where each
TPR role represents a (grapheme or morpheme) po-
sition within the word and where the correspond-
ing TPR fillers represent (grapheme or morpheme)
identity at that position. Concretely, given a word
comprised of ℓ graphemes and m morphemes, r̂i
and r̂mj are one-hot6 vectors respectively repre-
senting grapheme position i (where 0 ≤ i < ℓ) and
morpheme position j (where 0 ≤ j < m) within
the word. For each linguistic element (grapheme
or morpheme) γ in the language, f̂γ is a vector7

representing that element.
We now illustrate how morpheme and word

embeddings can be constructed from interlinear
glosses, using the English words ‘dog’ and ‘dogs
as Examples (1) and (2), respectively.

d
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o
f̂o

r̂1

g
f̂g

r̂2

r̂
m

0
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um
=Sg
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(1) dog -∅
dog -SG
“dog” (English)
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(2) dog -s
dog -PL
“dogs” (English)

Each example is shown within a rounded rectangle;
the example number and interlinear gloss are found
at the bottom of the rounded rectangle, while a vi-
sualization of the TPR is shown at the top of the
rectangle. At the top of each example is a label for

6In the general case, role vectors need not necessarily be
one-hot.

7For simplicity in our case, these filler vectors are one-
hot. In the general case, filler vectors need not necessarily
be one-hot, and may be separately pre-trained grapheme or
morpheme embeddings if desired.

the resulting word embedding. Colors are used to
differentiate morpheme positions within the word.

In Example (1), r̂0 is a one-hot vector represent-
ing the initial grapheme position within the word,
and f̂d is a one-hot vector representing the English
letter ‘d’. The outer product r̂0⊗ f̂d now represents
a one-hot matrix encoding that the grapheme at po-
sition 0 is the English letter ‘d’. Applying Equa-
tion (1), we add together three one-hot matrices
(r̂0⊗ f̂d + r̂1⊗ f̂o + r̂2⊗ f̂g), to obtain a sparse ma-
trix that encodes the surface form of the morpheme
‘dog.’ Similarly, r̂m0 ⊗ f̂Noun=dog encodes that the
identity of the initial morpheme in Example (1) is
the noun ‘dog.’

Recursive applications of Equation (1) result in
multi-dimensional tensors Tdog (encoding the sur-
face form and morpheme identity of each mor-
pheme in the word ‘dog’) and Tdogs (encoding the
surface form and morpheme identity of each mor-
pheme in the word ‘‘dogs’).

3.4 Dense vectors from TPRs
Depending on how much linguistic information is
encoded, each TPRs may consist of approximately
103 to 109 floating point values per tensor. Tensors
of this size are far too large to be directly usable
as neural word representations. It is therefore nec-
essary to map each sparse TPR into an equivalent
dense vector representation. Any of several exist-
ing techniques may be used to achieve this task;
for simplicity in our work to date, we make use
of an autoencoder. The autoencoder is trained us-
ing a dictionary of word or morpheme TPRs. The
trained autoencoder can be used to encode a low-
dimensional vector from a high-dimensional tensor
by running the tensor through the first half of the
autoencoder, and can be used to reconstitute the
high-dimensional tensor from a vector by running
the vector though the latter half of the autoencoder.
For additional details, see Appendix A.

4 Supporting full linguistic diversity

We now demonstrate the broad applicability of our
technique for encoding rich linguistic information
from morphologically analyses such as ILGs using
examples drawn from a typologically diverse set
of polysynthetic, agglutinative, fusional, and ana-
lytic languages. The following examples include
prefixes, suffixes, infixes, circumfixes, templatic
morphemes, derivational morphemes, inflectional
morphemes, and reduplication. The notation in the
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following examples follows the conventions estab-
lished in §3.3.

4.1 Concatenative morphology and zero
inflection in English

Concatenative morphology is extremely common
cross-linguistically. Examples (1) and (2) in §3.3
demonstrate basic concatenative morphology in
the English words ‘dog’ and ‘dogs’. Example (1)
illustrates that linguistic features of a word can be
encoded even when those features are not explic-
itly marked in the surface form of the word. In Ex-
ample (1), the tensor Tdog explicitly encodes the
null singular morpheme -∅ marking number as sin-
gular in the word ‘dog,’ just as the morpheme -s
marks number as plural in the word ‘dogs in Exam-
ple (2).’ Unlike existing representations discussed
in §2, Tdog and Tdogs are clearly distinguishable as
variant inflections of the same root word.

4.2 Circumfixes in Chukchi
The Chukchi8 word гаԓявтыма is composed of a
noun root morpheme ławət and an inflectional cir-
cumfix ɣa…ma. The tensor Tгаԓявтыма is a TPR that
represents this word, explicitly including all infor-
mation shown in Example (3):

г
ɣ
f̂г

r̂0

а
а
f̂а

r̂1

ԓ
ł
f̂ԓ

r̂2

я
a
f̂я

r̂3

в
w
f̂в

r̂4

т
t
f̂т

r̂5

ы
ə
f̂ы

r̂6

м
m
f̂м

r̂7

а
a
f̂а

r̂8

r̂m0 f̂Noun=ławət

r̂m1 f̂Case=Assoc

Tгаԓявтыма

(3) ɣa- łewət -ma
ASSOC- head -ASSOC
“with the head” (Chukchi)

The individual characters positions in the word
comprise roles r̂0 through r̂8, while the characters
(and respective phonemes) at those respective po-
sitions comprise fillers f̂г, f̂а, f̂ԓ, f̂я, f̂в, f̂т, f̂ы, and f̂м
that encode character and phoneme identity. Roles
r̂m0 and r̂m1 represent morpheme positions within
the word, and are respectively filled by f̂Noun=ławət
(denoting the identity of the root morpheme) and

8ISO 639-3: ckt, a polysynthetic language in the
Chukotkan branch of the Chukotko–Kamchatkan language
family

f̂Case=Assoc (denoting the identity of the circumfix
morpheme marking associative case).

4.3 Fusional suffixes in Catalan
Fusional morphology is also common cross-
linguistics, as we can see in the Catalan9 word tinc
in Example (4), which is comprised only of only
a verb root ten- ‘to have’ and a single inflectional
suffix marking person, number, tense, and mood.

t
f̂t

r̂0

i
f̂i

r̂1

n
f̂n

r̂2 r̂m0

f̂V
=ten-

c
f̂c

r̂3 r̂m1

f̂PERNUM=1SG
TENSE=PRES
MOOD=IND

Ttinc

(4) tinc
ten -c
to.have -1SG.PRES.IND

“I have” (Catalan)

4.4 Polysynthesis with derivational and
inflectional suffixes in Akuzipik

Productive derivational and inflectional suffixes
are pervasive in the polysynthetic languages of
the Inuit-Yupik language family. Words with 2-
5 derivational morphemes are very common, of-
ten representing in a single word what in English
would be represented by an entire clause or sen-
tence.

The Akuzipik10 word mangteghaghruglla-
ngllaghyunghitunga shown in Example (5) can be
translated into English as the sentence ‘I didn’t
want to make a huge house’ (Jacobson, 2001, pg.
43). The tensor Tmangteghaghrugllangllaghyunghitunga encodes
the hierarchical structure of this word. Each
grapheme position within the word is assigned a
role (r̂0 . . . r̂25). For each of these grapheme po-
sition roles, a filler vector encodes the identity of
the grapheme and corresponding phoneme at that
position in the word (̂f0 . . . f̂25). The binding of
grapheme position roles to grapheme filler vectors
represents the first level of hierarchy in the TPR.
The word is composed of 7 morphemes: a noun
root mɑŋtəʁɑʁ, four derivational morphemes
(-ʁɻuxɬɑɣ, -ŋɬ̊ɑʁ, -juɣ, -nʁitə) and two inflectional
morphemes (-tu and -ŋɑ). The subsequent levels
of the TPR encode the identity, underlying form,
surface form, and hierarchical scope of each

9ISO 639-3: cat, a fusional language in the Romance
branch of the Indo-European language family

10ISO 639-3: ess, a polysynthetic language in the Yupik
branch of the Inuit-Yupik-Unangan language family
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m
m
f̂m

r̂0

a
ɑ
f̂ɑ

r̂1

ng
ŋ
f̂ŋ

r̂2

t
t
f̂t

r̂3

e
ə
f̂ə

r̂4

gh
ʁ
f̂ʁ

r̂5

a
ɑ
f̂ɑ

r̂6

gh
ʁ
f̂ʁ

r̂7

r
ɻ
f̂ɻ

r̂8

u
u
f̂u

r̂9

g
x
f̂x

r̂10

ll
ɬ
f̂ɬ

r̂11

a
ɑ
f̂ɑ

r̂12

ng
ŋ̊
f̂ŋ̊

r̂13

ll
ɬ
f̂ɬ

r̂14

a
ɑː
f̂ɑː

r̂15

gh
ʁ
f̂ʁ

r̂16

y
j
f̂j

r̂17

u
u
f̂u

r̂18

n
n
f̂n

r̂19

gh
ʁ
f̂ʁ

r̂20

i
iː
f̂iː

r̂21

t
t
f̂t

r̂22

u
u
f̂u

r̂23

ng
ŋ
f̂ŋ

r̂24

a
a
f̂a

r̂25

r̂m0f̂Noun=mɑŋtəʁɑʁ r̂m1

f̂N→N=AUG

r̂m2

f̂N→V=ŋɬ̊ɑʁ

r̂m3

f̂V→V=juɣ

r̂m4

f̂V→V=NEG

r̂m5

f̂MOOD=IND

r̂m6

f̂PERNUM=1SG

Tmangteghaghrugllangllaghyunghitunga

(5) mɑŋtəʁɑʁ -ʁɻuxɬɑɣ -ŋɬ̊ɑʁ -juɣ -nʁitə -tu -ŋɑ
house AUG build want NEG IND 1SG
‘I didn’t want to make a huge house’ (Akuzipik)

morpheme. The resulting word representation is
compositional and easily interpretable.

By inspecting the resulting tensor, the following
structure of the word can be clearly observed:

• The noun root for ‘house’ mɑŋtəʁɑʁ is mod-
ified by the augmentatitive derivational mor-
pheme -ʁɻuxɬɑɣ, resulting in an extended
noun stem meaning ‘big house’ spanning
grapheme positions 0 through 12.

• The resulting extended noun stem (mɑŋtəʁɑ-
ʁɻuxɬɑɣ) is verbalized by the derivational
morpheme -ŋɬ̊ɑʁ, resulting in an extended
verb stem meaning ‘to build a big house’
spanning grapheme positions 0 through 16.

• The resulting extended verb stem (mɑŋtəʁɑ-
ʁɻuxɬɑŋɬ̊ɑʁ) is modified by the derivational
morpheme -juɣ, resulting in an extended verb
stem meaning ‘to want to build a big house’
spanning grapheme positions 0 through 18.

• The resulting extended verb stem (mɑŋtəʁɑ-
ʁɻuxɬɑŋɬ̊ɑʁjuɣ) is modified by the negating
derivational morpheme -nʁitə), resulting in
an extended verb stem meaning ‘to not want
to build a big house’ spanning grapheme po-
sitions 0 through 21.

• The resulting extended verb stem (mɑŋtəʁɑ-
ʁɻuxɬɑŋɬ̊ɑʁjunʁitə) is marked as being in

the indicative mood by the inflectional mor-
pheme -tu and as having a first person singu-
lar subject by the inflectional morpheme -ŋɑ,
resulting in the fully inflected word spanning
grapheme positions 0 through 25.

4.5 Agglutination in Guaraní
In the Guaraní11 word aikosente shown in Exam-
ple (6), the verb root ko ‘to live’ is modified in ag-
glutinative manner by two suffixes (-se and -nte)
and one inflectional prefix (ai-) which indicates a
first person singular subject. Note that unlike the
preceding example, which also encoded phoneme
identity, in this example character fillers encode
only character identity.

a
f̂a

r̂0

i
f̂i

r̂1

k
f̂k

r̂2

o
f̂o

r̂3

r̂m3 f̂PerNum=1Sg

r̂
m

0
f̂Verb=live

s
f̂s

r̂4

e
f̂e

r̂5

r̂
m

1
f̂VOL n

f̂n

r̂6

t
f̂t

r̂7

e
f̂e

r̂8

r̂
m

2
f̂JUST

Taikosente

(6) aikosente
ai- ko -se -nte
SG1- live -VOL -JUST
‘I would just like to live’ (Guaraní)

11ISO 639-3: gug, an agglutinative language in the Tupian
language family
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4.6 Infixation in English
Linguistic features such as infixes that are attested
but relatively rare can also be included with no dif-
ficulty. Infixes are morphemes that break a given
stem and appear inside it. In Seri,12 for example,
infixation after the first vowel in the root is used to
mark number agreement. In Example (7), we ob-
serve an example of expletive infixation in English
(McCarthy, 1982) with the infix fuckin serving to
intensify the adverb absolutely.

a
f̂a

r̂0

b
f̂b

r̂1

s
f̂s

r̂2

o
f̂o

r̂3

f
f̂f

r̂4

u
f̂u

r̂5

c
f̂c

r̂6

k
f̂k

r̂7

i
f̂i

r̂8

n
f̂n

r̂9

l
f̂l

r̂10

u
f̂u

r̂11

t
f̂t

r̂12

e
f̂e

r̂13

l
f̂l

r̂14

y
f̂y

r̂15

r̂m1 f̂Intensifier

r̂m0 f̂Adv=absolutely

Tabsofuckinlutely

(7) abso- fuckin -lutely
abso- INTENSIFIER -lutely
“absofuckinlutely” (English)

4.7 Reduplication in Malaysian
The Malaysian13 word orang-orang ‘people’, is
formed through reduplication of the noun root
orang ‘person’. Unlike in previous examples, in
which morpheme fillers encoded underlying lex-
ical form in addition to morpheme surface form
and identity, in Example (8), the plural morpheme
has no inherent underlying lexical form separate
from the morpheme identity (NUM=PL). Instead
the surface form of the plural morpheme (here,
orang) is formed through reduplication, duplicat-
ing the form of the noun to which it attaches.

o
f̂o

r̂0

r
f̂r

r̂1

a
f̂a

r̂2

n
f̂n

r̂3

g
f̂g

r̂4

o
f̂o

r̂5

r
f̂r

r̂6

a
f̂a

r̂7

n
f̂n

r̂8

g
f̂g

r̂9

r̂m1 f̂NUM=PLr̂m0 f̂Noun=orang

Torang-orang

(8) orang -orang
orang -PL
“people” (Malaysian)

12ISO 639-3: sei a language isolate in north-west Mexico
13ISO 639-3: zsm, a language in the Malayo-Polynesian

branch of the Austronesian language family

4.8 Templatic morphology in Maltese
Our representation can easily encode non-
concatenative morphology such as that seen in the
Maltese14 words ktieb ‘book’ and kotba ‘books.’

k
f̂k

r̂0

∅
f̂∅

r̂1

t
f̂t

r̂2

ie
f̂ie

r̂3

b
f̂b

r̂4

r̂m0 f̂Noun=k_t_b

r̂m1 f̂Num=Sg

Tktieb

(9) ktieb
k_t_b ∅_ie
book SG

“book” (Maltese)

k
f̂k

r̂0

o
f̂o

r̂1

t
f̂t

r̂2

∅
f̂∅

r̂3

b
f̂b

r̂4

a
f̂a

r̂5

r̂m0 f̂Noun=k_t_b

r̂m1 f̂Num=Pl

Tkotba

(10) kotba
k_t_b o_∅_a
book PL

“books” (Maltese)

The noun root k_t_b acts as a template whose slots
are filled by the vowels in the inflectional singu-
lar morpheme ∅_ie (in Example (9)) or plural mor-
pheme o_∅_a (in Example (10)).

5 Conclusion

While corpora of anything greater than trivial size
exist only for a few hundred languages (§1), mor-
phologically analyzed examples in the form of in-
terlinear glosses exist for essentially every human
language. The vast array of human languages in-
clude a rich variety of morphological phenomenon
that are not easily handled by existing word embed-
ding methods (§2). This work presents a straight-
forward mechanism whereby meaningful, linguis-
tically interpretable word and morpheme embed-
dings can be created for any word in any language
(§3–§4). We have demonstrated the applicability
of our method using linguistic examples of con-
catenation and zero inflection (§4.1), circumfixa-
tion (§4.2), fusion (§4.3), polysynthesis (§4.4), ag-
glutination (§4.5), infixation (§4.6), reduplication
(§4.7), and templatic morphology (§4.8).

In addition to their direct use in future research
involving language documentation and revitaliza-
tion, we anticipate that embeddings created using
the methods described in this work may provide an
important initial step in bootstrapping vastly multi-
lingual models capable of embedding words from
thousands of languages.

14ISO 639-3: mlt, a templatic language in the Semitic lan-
guage family
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A Unbinding
The core operation in retrieving structure from a
TPR is called unbinding. Exact unbinding requires
linear independence of the roles; however, Haley
and Smolensky (2020) present an accurate approx-
imate unbinding strategy for even densely packed
TPRs. In this work, we use self-addressing un-
binding, as it is quick to compute and proved suffi-
ciently accurate for our purposes. Self-addressing
unbinding retrieves the filler f̃i for the role r̂i by
simply computing the inner product between the
role vector and the TPR:

f̃i = T · r̂i (2)

This unbinding is exact if the role vectors are or-
thogonal to one another. In our case, since we have
a fixed filler vocabulary, we were able to snap our
unbindings to the filler with the highest cosine sim-
ilarity to the unbound vector with sufficient accu-
racy to render this intrusion irrelevant. Other un-
binding strategies involve computing an inverse or
pseudoinverse of a matrix of role vectors to per-
form a change of basis and decrease the intrusion.

A.1 Unbinding loss
In order to effectively train the autoencoder in §3.4,
gold standard TPRs must be compared against pre-
dicted tensors reconstituted by the autoencoder.
However, these tensors are very high dimensional.
In initial experiments, we used mean squared error
as a loss function, but we found this was unable to
converge for auto-encoding sparse TPRs.

To enable effective training of the autoencoder,
we therefore define a novel loss function that makes
use of the information encoded in the TPR. We
define a loss function called unbinding loss that
examines the unbinding properties of a predicted
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morpheme tensor to answer the question, “What
filler is closest to the unbinding of each role in the
TPR?”

Given a predicted tensor, the unbinding loss is
computed by recursively unbinding roles until the
leaves of the structure are reached – that is, unbind
each role until the result of unbinding is a single
vector (rather than a higher-order tensor). When
this point is reached, we compute the cosine sim-
ilarity between the result of unbinding and all the
fillers in the vocabulary.

This similarity vector can be used to define
a probability distribution over possible fillers
through the use of a softmax. We take the loga-
rithm of the result of this computation to obtain
log-probabilities. We call this distribution P . We
then treat each filler (in this case, each character)
as a class, and compute the negative log-likelihood
loss over this probability distribution.

As we consider tree-structured representations,
the number of fillers needing to be checked is expo-
nential with the depth of our representation. This
difficulty could be overcome by parallelizing the
independent matrix computations for the loss of all
the position roles for a given morpheme, trading
space for time. For more complex TPRs, a poten-
tial avenue would be to exploit the fact that most
roles will be empty (and their unbindings thus a
matrix of zeros) by replacing the loss computations
for unbound roles with mean squared error (which
need only push that part of the representation to 0).

A.2 Unbinding loss example

Given a predicted tensor, the first step to com-
puting the unbinding loss is recursively unbinding
roles until the leaves of the structure are reached –
that is, unbind each role until the result of unbind-
ing is a single vector (rather than a higher-order
tensor). When this point is reached, we compute
the cosine similarity between the result of unbind-
ing and all the fillers in the vocabulary. For ex-
ample, assume a depth-4 structure is encoded in a
morpheme TPR T, where the fillers are character
embeddings, the second level is left-to-right posi-
tional roles, the third level is morpheme identity,
and the fourth level is left-to-right morpheme posi-
tion in the word. If we want to see what is bound
to the first position of the English dog morpheme
in T, we would first unbind from T as follows (as-

suming self-addressing unbinding):

fdog,1 = T · r̂m0 · f̂Noun=dog · r̂1 (3)

We then get the vector of similarities ŝdog,1 be-
tween this filler and the each of character embed-
ding vectors in the vocabulary matrix V as follows:

ŝdog,1 =
fdog,1 · V

||fdog,1||ViVi
(4)

where ViVi denotes the column-wise vector
norm of the vocabulary matrix (using Einstein
summation notation).

This similarity vector can be used to define
a probability distribution over possible fillers
through the use of a softmax. We take the loga-
rithm of the result of this computation to obtain
log-probabilities. We call this distribution P .

P = log
( eŝdog,1
∑

eŝdog,1

)
(5)

We then treat each filler (in this case, each char-
acter) as a class, and compute the negative log-
likelihood loss over this probability distribution.
The resulting loss for the first character of dog be-
ing “d” is then

loss(ŝdog,1, d) = −ŝdog,1,d + log(
∑

j

eŝdog,1,j ).

(6)
If the Tensor this loss is computed over is exactly
Tdog or Tdogs, then this loss term would be 0. If we
instead considered the loss for the fourth character
of the word being “s” in the Num=Pl morpheme,
This would be 0 only for Tdogs.

A.3 Successfully recovering surface forms
from vectors

To demonstrate the successful recovery of lin-
guistic data from embeddings, we construct
TPRs for a dictionary of 6372 unique Akuzipik
morpheme surface forms obtained by apply-
ing the finite-state morphological analyzer of
Chen and Schwartz (2018) on a selection of
Akuzupik New Testament data from https:
//github.com/SaintLawrenceIslandYupik/
digital_corpus. Using TPRs constructed from
these morphemes, we trained a 3-layer autoen-
coder with vector sizes of 64, 128, 256, and 512
using unbinding loss (§A.1) as the loss function.
We then reconstructed the morpheme surface
forms from the trained morpheme vectors. For
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vector size of 64, the reconstructed morpheme sur-
face form exactly matched the original morpheme
surface form for 97.8% of the morphemes. For
vector sizes of 128, 256, and 512, the morpheme
surface form reconstruction accuracy was 100%.
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Abstract
This paper presents a set of experiments in the
area of morphological modelling and predic-
tion. We test whether morphological segmen-
tation can compete against statistical segmenta-
tion in the tasks of language modelling and pre-
dictive text entry for two under-resourced and
indigenous languages, K’iche’ and Chukchi. We
use different segmentation methods – both sta-
tistical and morphological – to make datasets
that are used to train models of different types:
single-way segmented, which are trained us-
ing data from one segmenter; two-way seg-
mented, which are trained using concatenated
data from two segmenters; and finetuned, which
are trained on two datasets from different seg-
menters. We compute word and character level
perplexities and find that single-way segmented
models trained on morphologically segmented
data show the highest performance. Finally, we
evaluate the language models on the task of
predictive text entry using gold standard data
and measure the average number of clicks per
character and keystroke savings rate. We find
that the models trained on morphologically seg-
mented data show better scores, although with
substantial room for improvement. At last, we
propose the usage of morphological segmenta-
tion in order to improve the end-user experience
while using predictive text and we plan on test-
ing this assumption by doing end-user evalua-
tion.

1 Introduction
Nowadays text prediction is widely used in differ-
ent applications such as autocomplete tools, smart
keyboards, etc. The used language models are lim-
ited by resources, so they can store only the top-N
highest frequency words, which may work well with
analytic languages, but when it comes to the syn-
thetic languages the out-of-vocabulary (OOV) prob-
lem becomes more and more noticeable. In order to
deal with this problem, words are usually segmented
in constituent parts, so that more of them can be

saved in the model vocabulary. Segmentation is al-
most always done using statistical methods, such as
BPE (Gage, 1994). In this paper, we test whether
morphological segmentation can improve language
modelling and whether it can compete against statis-
tical segmentation methods in predictive text entry
task.

The reason to suggest morphological segmenta-
tion is that we want text prediction to be both ef-
fective and ergonomic. By ergonomic we mean that
predictions should be linguistically sound and intel-
ligible for the end user. For example, imagine an
English word antidisestablishmentarianism. An er-
gonomic segmentation will split the word into its
constituent morphs [anti, dis, establish, ment, arian,
ism], or an alternative [anti, dis, establishment, ar-
ianism]. An unergonomic segmentation might be
[antid, isestab, lishme, ntarianism] or [an, tidises,
tablishm, entarianism]. One of the issues with many
current methods is that while they can produce seg-
ments that are meaningful units, in many cases the
segments are not linguistically meaningful. We ar-
gue that for the task of predictive text entry produc-
ing non-linguistic units creates more cognitive load
and so will result in slower text entry than predicting
the same amount (or a greater number of) linguistic
units.

The remainder of the paper is laid out as follows:
in Section 2 we overview the languages we exper-
iment on, in Section 3 we discuss the works that
were an inspiration for this paper, in Section 4 we
describe the experiments we are doing, in Section 5
we review the used segmentation methods, in Sec-
tion 6 we provide results of language modelling, in
Section 7 we speak about language modelling eval-
uation task, in Section 8 we discuss our thoughts on
the results, in Section 9 we announce the planned
future experiments. Examples in this paper will be
mostly given in K’iche’, Chukchi and English. En-
glish examples, while English being neither an ag-
glutinative or polysynthetic language, are given in
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order for the reader to better understand the exam-
ples.

2 Languages
We perform the experiments using two languages:
K’iche’ (ISO-639: quc), a Mayan language of
Guatemala that is of the agglutinating type, and
Chukchi (ISO-639: ckt), a Chukotko-Kamchatkan
language of Siberia of the polysynthetic type. Both
of these types are characterised by words consisting
of a large number of individual morphs, surface rep-
resentations of morphemes.

The following examples in K’iche’ (1) and
Chukchi (2) demonstrate this tendency.1

(1) X-in-e’-ki-k’am-a’
CP-B1SG-MOV-A3PL-receive-DEP
‘They went to take me’

Both languages exhibit polypersonal agreement
(both the subject and object arguments of transitive
verbs are encoded on the verb), and Chukchi, in ad-
dition, exhibits noun incorporation. As it can be
seen in example 2, the object манэ /mane/ ‘money’
is incorporated, rendering intransitive the transitive
root ванԓя /wanɬa/ ‘ask’.

(2) Нэмыӄэй
neməqej
also

ны-манэ-ванԓя-сӄэв-ӄэна-т.
nə-mane-wanɬa-sqew-qena-t
ST-money-ask-MCP-ST.3SG-PL

‘They also came to ask for money’

Languages of these types are widespread across
the Americas but infrequent in Europe and, as a re-
sult, were less researched in terms of predictive text
input.

2.1 Data
As K’iche’ and Chukchi are low-resource languages,
the availability of large corpora is limited. We
use data annotated for morphological segments and
unannotated text as well. For Chukchi, the anno-
tated data comes from the ChukLang2 corpus, we
use a version that was extracted and converted to
Cyrillic orthography to make it compatible with the
unannotated corpus. The unannotated data comes

1Glossing symbols are from the original sources: CP ‘com-
pletive’, B1SG ‘absolutive 1st person singular’, MOV ‘movement
prefix’, A3PL ‘ergative 3rd person plural’, DEP ‘dependent status
suffix, ST ‘stative’, MCP ‘goal-oriented movement’, ST.3SG ‘3rd
person singular stative’, PL ‘plural’.

2https://chuklang.ru/

Unannotated Annotated
Sents Words Sents Words

K’iche’ 24,254 275,265 1,299 8,789
Chukchi 33,322 151,585 1,006 4,417

Table 1: Dataset sizes for the two languages measured
in sentences and words. Unannotated and annotated
datasets do not intersect. Annotation was donemanually.

from a collection of folklore and texts from the in-
ternet.

For K’iche’ we also use annotated and unan-
notated texts. The annotated texts are a hand-
segmented set of sentences used in constructing a
morphologically and syntactically annotated corpus
of K’iche’, these sentences come from a range of
sources including grammar-book and dictionary ex-
amples, stories and legal texts. This corpus is well
described in Tyers and Henderson (2021).

The second, unannotated, portion of the data is
obtained from the An Crúbadán project done by
Scannell (2007), that collected corpora from the
web for indigenous and marginalised languages.

Table 1 shows the amount of data available for
both languages.

2.2 Preprocessing
In order to segment the raw data using a morpholog-
ical segmentation model the annotated data is split
into two disjoint subsets: train (50 percent) and test
(50 percent). This ratio is chosen due to low an-
notated data volume – we suppose that a choice of
a disbalanced ratio like 80 percent/20 percent can
lead to unreliable results. The automatically seg-
mented corpus is then used for language modelling,
while the test split of annotated data is used for pre-
dictive text.

3 Related work
Being one of the latest works on language modelling
of indigenous languages, Schwartz et al. (2020)
proposed the usage of morphological segmenta-
tion in order to improve metrics of language mod-
elling. The authors compared different segmenta-
tion methods, such as single words, dividing into
characters, BPE, Morfessor, Finite-state transduc-
ers (FST). Unfortunately, the authors could not do
the end-task evaluation of the trained models but
suggested doing predictive text as evaluation.

Boudreau et al. (2020), devoted to Mi’kmaq
language modelling evaluation, gave us ideas on
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how to approach the language modelling task.
Mi’kmaq (ISO-639: mic), an Eastern Algonquian
low-resourse polysynthetic language, is spoken pri-
marily in Eastern Canada and has around 8700
speakers. Not only did the authors work with indige-
nous language, but they also did the keystroke sav-
ings evaluation, which is pretty similar to the predic-
tive text evaluation described in the previous work.

There are other works – Suhartono. et al. (2014);
Yu et al. (2017) – that described keystroke sav-
ings evaluation. What is more important, the au-
thors worked with agglutinative languages, Bahasa
(ISO-639, ind), the official language of Indonesia,
and Korean (ISO-639, kor), official and national
language of both North Korea and South Korea
(originally Korea). Though we do not want to use
the same language modelling technics as were de-
scribed in the papers, we still find it inspiring there
are works dedicated to this task.

As we mentioned before, we assume that the
usage of morphs while doing text prediction will
make it both effective and ergonomic; in the same
time, morphological segmentation brings new chal-
lenges. Lane and Bird (2020), devoted to Kun-
winjku, a polysynthetic language of northern Aus-
tralia, and Turkish, showed that morph-based auto-
complete for polysynthetic languages can be trouble-
some due to long words and sparse vocabularies of
such languages. Moreover, dialectal variations and
dealing with input errors using edit distance makes
the next-morpheme predictioning even harder, so,
as it is shown in the paper, Turkish may be a more
attractive language for morph-based predictioning
than Kunwinjku.

4 Tasks
As mentioned previously, our experiments are split
into four distinct tasks, from the more fundamen-
tal to the more application-specific. In the follow-
ing sections we describe the methodology for these
tasks and the results obtained.

Segmentation We use several segmentation
methods in order to compare morphological
segmentation and statistical one.

Language modelling We do 10-fold cross-
validation in order to train models for end-task
evaluation. The evaluation metric is word and
character level perplexity. Although the model we
use allows both character and word level training, in
this paper we do word level training with subwords

serving as words.

Predictive text entry We take the trained mod-
els from the former task and compare their perfor-
mance in the predictive text task. The task is to
predict the next linguistic unit of output for a given
input looking at the top-3 predictions. The evalua-
tion measure is average number of clicks per char-
acter and keystroke savings rate. The fewer clicks
per character the less the end-user has to type. It is
important to mention that the first segment of each
word is always typed character by character; this is
caused by the model not having token <bos> (be-
ginning of the sentence) in its design and the fact
that we are doing word level training. As mentioned
above, we use the cross-validation models for this
task.

Significance testing As the main tasks – lan-
guage modelling and predictive text – are done us-
ing cross-validation, we have sets of results for each
model. These results are tested in order to say if
some models are significantly better than the oth-
ers. To do this, first, we do the one-way ANOVA3

with the null hypothesis being “all the means are
the same”. In case the null hypothesis is rejected,
we then do pairwise Least Significant Difference
test (LSD-test)4 to group the models so that we can
find the best performing ones which are not signif-
icantly different from each other. The LSD values
are given in the appendix.

5 Segmentation
The idea to compare statistical and morphologi-
cal segmentation was already tested by other re-
searchers; for example, Pan et al. (2020) showed
that the usage of morphological segmentation sig-
nificantly improves the BLEU and ChrF3 metrics
in neural machine translation (NMT).

In this paper we want to compare statistical seg-
mentation, presented by Unigram (Kudo, 2018) and
WordPiece (Schuster and Nakajima, 2012), and
morphological segmentation5. We choose Neu-
ralMorphemeSegmentation (NMS; Sorokin and
Kravtsova, 2018) for morphological segmentation

3(2008) One-Way Analysis of Variance. In: The Concise
Encyclopedia of Statistics. Springer, New York, NY. https:
//doi.org/10.1007/978-0-387-32833-1_297

4(2008) Least Significant Difference Test. In: The Concise
Encyclopedia of Statistics. Springer, New York, NY. https:
//doi.org/10.1007/978-0-387-32833-1_226

5We also tried BPE but as the results did not surpass the
other systems we exclude them for matters of space and clarity
of presentation.
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Variant Example
Input text Xke’x ri nukinaq’

Canonical x# ke’x$ ri nu# kinaq’$
NMS x# ke’x$ ri nu# kinaq’$
Unigram xke# ’# x$ ri nuki# na# q’$
WordPiece xk# e’x$ ri nuk# inaq’$

Table 2: Segmentation variants for the K’iche’ sen-
tence Xke’x ri nukinaq’ “My beans were ground”. The
canonical segmentation corresponds to /CP-grind.PASS
the POSS.1SG-bean/. The hash symbol, #, indicates that
there is a segment after the current one and the dollar
symbol, $, indicates the last segment in a multi-segment
word.

as we have already used it before and it showed good
results.

As an output format, as a base we use the stem
with singular suffix strategy mentioned in Pan et al.
(2020). We modify the strategy, so that all of
the subwords are treated the same way: single-
morpheme words remain unchanged, in composite
words everymorpheme except the last one ends with
#, the last morpheme ends with $. Table 2 demon-
strates the format.

6 Language modelling
Merity et al. (2017) proposed the usage of an AWD-
LSTM model for language modelling, showing that
it achieves state-of-the-art word level perplexities
on Penn treebank and WikiText-2. This model
was applied in Schwartz et al. (2020) to several in-
digenous languages, including Chukchi, and showed
good performance. The model trains fast, allows to
be trained both on character level and word level,
and also is good dealing with overfitting, which is es-
sential while working with low-resource languages.

Although BERT (Devlin et al., 2019) has
been successfully used for low-resource languages,
Ngoc Le and Sadat (2020) and Wang et al. (2020)
showed that models based on BERT models usually
have hundreds of millions of parameters and as such
are not efficient enough in terms of space for exist-
ing mobile phones. This is not suitable for us as our
main goal is to use the model for a phone keyboard
in order to do predictive text. For all the mentioned
reasons we use the described above AWD-LSTM as
our model.

The data for language modelling is at first split
into modelling (80 percent) and test (20 percent)
subsets. Then for the 10-fold cross-validation the

modelling subset is split into train (75 percent) and
validation (25 percent) subsets. The folds are made
using ShuffleSplit6 with the same seed as the one
used while language modelling. The dictionaries
for the embeddings consist of all the subwords of
train dataset plus the <unk> token; the validation
subset is used to calculate perplexity in the end of
each epoch. The models are trained until 5 epochs
without perplexity improvement on a validation sub-
set.

The training hyperparameters are included in the
appendix.

6.1 Modelling type
All the models we train can be divided into three
types: single-way segmented, two-way segmented
and finetuned models.

In order to distinguish a language model from a
segmentationmethod themodel names will be given
in bold e.g. Unigram is a segmentation model while
Unigram is a model trained on data processed by
the corresponding segmentation model.

6.1.1 Single-way segmented
Models of this type – NMS, Unigram,Wordpiece
– are trained using datasets from Section 5.

6.1.2 Two-way segmented
Models of this type – NMS+Unigram,
NMS+Wordpiece – are trained using two
datasets from Section 5 concatenated together.
The idea behind this modelling type is that we
want to see if having data processed by different
segmentation methods can help us solve both tasks
on a high level.

6.1.3 Finetuning
As it was proposed in one of the related works
(Boudreau et al., 2020), pretrained embeddings can
be used in order to improve the performance of the
language models. We check if finetuning will allow
us to get better scores both for language modelling
and predictive text.

Models of this type – Unigram2NMS, Word-
piece2NMS – are at first trained using the Uni-
gram/Wordpiece data and then we use morphologi-
cally segmented data to finetune the model. Look-
ing ahead we should also mention that it turned out
there is no need to lower the learning rate of the

6https://scikit-learn.org/0.24/modules/
generated/sklearn.model_selection.ShuffleSplit.
html
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model while finetuning it as it only lengthens the
training.

It is worth mentioning that not only embeddings,
but also RNN layers are being pretrained.

6.2 Results
All the results are tested as described in Section 4,
Significance testing and as we can see in Table 3,
the best models for K’iche’ and Chukchi according
to perplexity are NMS and finetuning models.

K’iche’ Chukchi
Wd Ch Wd Ch

NMS 32.59 7.57 176.56 27.04
Uni 35.29 8.20 464.43 71.13
WP 148.24 34.45 2745.33 420.48
Uni2NMS 34.32 7.97 163.58 25.05
WP2NMS 32.06 7.45 165.90 25.41
NMS+Uni 34.10 7.92 265.67 40.71
NMS+WP 54.27 12.61 524.28 80.34

Table 3: Word (Wd) level and character (Ch) level per-
plexities for the models (mean scores of 10-fold cross-
validation). NMS stands for NeuralMorphemeSeg-
mentation, Uni stands for Unigram, WP stands for
Wordpiece. We do not give subword level perplexities
as they are not comparable. The best scores are in bold
being significantly better according to ANOVA than the
others but not outperforming each other.

The two-way segmented models show lower
scores than NMS ones, though they are better than
the models trained on data of their statistical origin
(Unigram, Wordpiece segmenters). It does seem
like the usage of morphologically segmentated data
allows us to improve the performance of the models.

It is worth saying that perplexity scores for dif-
ferent segmentations can not be compared to each
other as is due to the dictionary sizes of all the mod-
els being different. In order to do so we need to
use not subword, but word and character perplex-
ity. Mielke (2019) describes a method of comput-
ing them from subword perplexity, so we decide to
use the given formulae.

The normalization of scores is done in a follow-
ing way: at first, the negative log-likelihood of the
strings is computed:

nll = log pplsw ∗ (Csw + k) (1)
where nll is negative log-likehood, pplsw is the

computed subword level perplexity, Csw is the total
count of subwords in the set and k is the total count

of lines in the set that stands for the count of <eos>
tokens, which are also predicted by the model.

Then word level and character level perplexities
are calculated using the negative log-likehoodwe get
on a previous step:

pplw = exp nll
Cw + k

(2)

pplc = exp nll
Cc + k

(3)

where pplw is word level perplexity, pplc is char-
acter level perplexity, nll is negative log-likehood,
Cw is the total count of words in the set, Cc is the
total count of characters in the set and k is the total
count of lines in the set.

7 Predictive text input
In order to evaluate the models we do predictive
text input. The idea is that we automatically emu-
late a person using a smart keyboard while it is of-
fering some predictions, which have to be meaning-
ful. The meaningfulness is important because we
assume that the typing person would like to choose
from real words/morphs and not some artificial sub-
words that make at best no sense and in a worst case
scenario they may mean something totally wrong
(3). The example is given in Turkish because it il-
lustrates the problem well.

(3) a. araba-m-a
car-POSS.1SG-DAT
‘into my car’

b. arab-am-a
arab-*vulgar.word*-DAT
‘arab into *vulgar word*’

While evaluating, we look through top 3 model
predictions and compare them to the subword we
are currently predicting. If they are equal, that pre-
diction is chosen, otherwise we look at the next one.
If none of the predictions were correct, we consider
that the user will have to finish the word character
by character. Thus, a total number of clicks for a
word is computed to measure clicks per character
metric:

CpC =
keysprediction
keysnormal

(4)
,

where CpC is clicks per character, keysprediction is
the count of predicted clicks (spaces are included),
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keysnormal is the count of clicks needed to input the
word character by character.

We also include the keystroke savings rate used
in Boudreau et al. (2020) so that we can compare
our results with theirs:

KSR =
keysnormal − keysprediction

keysnormal
∗ 100 (5)

,
where KSR stands for keystroke savings rate.

7.1 Results
All the results are tested as described in Section 4,
Significance testing and as we can see in Table 4, for
K’iche’ the best model isNMS+Wordpiece and for
Chuckhi the best ones areNMS,Wordpiece2NMS
and NMS+Unigram – the same group is second
best for K’iche’.

Predictive text metrics do correlate with
language-modelling metrics; even though
NMS+Wordpiece performs the best for K’iche’,
the group of NMS andWordpiece2NMS has both
best perplexity and clicks per character scores. We
suppose that the models that use morphologically
segmented data perform better in this task because
the used evaluation data, while not being used in
language modelling, resembles the training data, as
both these sets are morph-based.

The results for Chukchi are worse than the results
for K’iche’. The reason may be that gold standard
for Chukchi is in Telqep Chukchi, while the cor-
pus used for training is in standard Chukchi. An-
other reason may be that words in K’iche’ evalua-
tion data are shorter both segmentwise and charac-
terwise than the Chukchi words, as shown in Ta-
ble 5. In case a model can not predict a correct
morph, we penalise it by making the whole word
be typed character-by-character, so the longer the
word is, the more significant mistakes become.

8 Discussion
As we can see, the evaluation shows that there is
no single model that outperforms the others in both
languages, but models that use morphologically seg-
mented data generally show higher scores. Thus we
recommend to try morphological segmentation as it
can be used with a statistical one. It is important to
mention is that there is no need in training models
using morphologically segmented data from scratch,
the existing models can be finetuned and the results
will not differ significantly from the ones of NMS.

K’iche’ Chukchi
CpC KSR CpC KSR

No prediction 1.00 0.00 1.00 0.00
NMS 0.96 3.03 0.99 0.78
Unigram 0.98 1.46 0.99 0.26
Wordpiece 0.97 2.35 0.99 0.20
Unigram2NMS 0.96 3.49 0.99 0.69
Wordpiece2NMS 0.96 3.53 0.99 0.79
NMS+Unigram 0.96 3.53 0.99 0.73
NMS+Wordpiece 0.95 4.26 0.99 0.68

Table 4: Predictive keyboard metrics, the number of
clicks per character (CpC) and keystroke savings rate
(KSR) for each of the methods. ‘No prediction’ means
that the user has to input all the words character by char-
acter including spaces, serving as baseline. The best
scores are in bold being significantly better according
to ANOVA than the others but not than each other.

SpW CpW
Chukchi 2.54 8.83
K’iche’ 1.56 5.20

Table 5: Segments per word (SpW) and characters per
word (CpW) metrics of the evaluation datasets.

K’iche’ models in all the tasks have better per-
formance than Chukchi models. While we do not
know the particular reason for this, we assume that
the polysynthetic language complexity may be hin-
dering the model from training. In the mentioned
above Lane and Bird (2020) the authors also re-
ported that polysynthetic languages have their spe-
cial challenges such as high word length, complex-
ity, etc.

As we reference Boudreau et al. (2020), it seems
reasonable to compare the results of their experi-
ments with the results of ours. As our task was to
predict linguistic units, not any kind of units, while
in the Mi’kmaq paper words and BPE segments
were being predicted, comparison of the results may
seem not really correct; though if we do compare
the results, we can see that the best KSR score for
Mi’kmaq is 3.81, while the best score for K’iche’
is 4.26. At the same time, the best Chukchi KSR
(0.79) is much worse that the Mi’kmaq score.

Alongside the metrics we compute there is also
a metric which requires end-user testing – the san-
ity check. As mentioned before, the issue with sta-
tistical segmentation is that subwords predicted and
offered to the user may have no sense for the user
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or, what is much worse, may carry the wrong mean-
ing. We do suppose that this alone can be a reason
to choose morphological segmentation over the reg-
ular one because segmentation task is not done just
for itself – it serves a purpose in a larger scheme
of things. We think that in case the language model
will be used in predictive text setting, where the user
experience and user reaction is highly relevant, mor-
phological segmentation should be chosen as a sub-
word tokenisation method, while statistical segmen-
tation may be chosen for machine translation, for
example.

9 Future work

We plan to test several other language models and
language modelling metrics in order to find out what
correlates best with text prediction scores.

We find it reasonable to experiment on other lan-
guages, for example, Nahuatl and Yupik, in order to
get a better understanding when the use of morpho-
logical segmentation is reasonable.

Another task to do is to run an end-user evalua-
tion of multiple segmentations and determine which
units are preferred. In order to do this, we also need
to solve the problem of predictive text evaluation
that the user has to input the first word character by
character – to do this, we will possibly have to com-
bine word level and character level based models.

Acknowledgements

We thank Robert Pugh for his comments and sug-
gestions on an earlier version of this manuscript.

References
Jeremie Boudreau, Akankshya Patra, Ashima Suvarna,

and Paul Cook. 2020. Evaluating the impact of sub-
word information and cross-lingual word embeddings
on mi’kmaq language modelling. In Proceedings of
the 12th Language Resources and Evaluation Confer-
ence, pages 2736–2745, Marseille, France. European
Language Resources Association.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Philip Gage. 1994. A new algorithm for data compres-
sion. C Users J., 12(2):23–38.

Taku Kudo. 2018. Subword regularization: Improving
neural network translation models with multiple sub-
word candidates.

William Lane and Steven Bird. 2020. Interactive
word completion for morphologically complex lan-
guages. In Proceedings of the 28th International Con-
ference on Computational Linguistics, pages 4600–
4611, Barcelona, Spain (Online). International Com-
mittee on Computational Linguistics.

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2017. Regularizing and Optimizing LSTM
Language Models. arXiv preprint arXiv:1708.02182.

Sabrina J. Mielke. 2019. Can you compare perplexity
across different segmentations?

Tan Ngoc Le and Fatiha Sadat. 2020. Revitalization of
indigenous languages through pre-processing and neu-
ral machine translation: The case of Inuktitut. In Pro-
ceedings of the 28th International Conference on Com-
putational Linguistics, pages 4661–4666, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Yirong Pan, Xiao Li, Yating Yang, and Rui Dong. 2020.
Morphological word segmentation on agglutinative
languages for neural machine translation.

Kevin Scannell. 2007. The Crúbadán Project: Corpus
building for under-resourced languages. In Proceed-
ings of the 3rd Web as Corpus Workshop, pages 5–15.

Mike Schuster and Kaisuke Nakajima. 2012. Japanese
and korean voice search. In International Confer-
ence on Acoustics, Speech and Signal Processing, pages
5149–5152.

Lane Schwartz, Francis Tyers, Lori Levin, Christo Kirov,
Patrick Littell, Chi kiu Lo, Emily Prud’hommeaux,
Hyunji Hayley Park, Kenneth Steimel, Rebecca
Knowles, Jeffrey Micher, Lonny Strunk, Han Liu,
Coleman Haley, Katherine J. Zhang, Robbie Jimmer-
son, Vasilisa Andriyanets, Aldrian ObajaMuis, Naoki
Otani, Jong Hyuk Park, and Zhisong Zhang. 2020.
Neural polysynthetic language modelling.

Alexey Sorokin and Anastasia Kravtsova. 2018. Deep
convolutional networks for supervised morpheme seg-
mentation of russian language. In Artificial Intel-
ligence and Natural Language, pages 3–10, Cham.
Springer International Publishing.

Derwin Suhartono., Garry Wong., Polim Kusuma., and
Silviana Saputra. 2014. Predictive text system for
bahasa with frequency, n-gram, probability table and
syntactic using grammar. In Proceedings of the 6th
International Conference on Agents and Artificial In-
telligence - Volume 1: ICAART,, pages 305–311. IN-
STICC, SciTePress.

Francis Tyers and Robert Henderson. 2021. A cor-
pus of K’iche’ annotated for morphosyntactic struc-
ture. In Proceedings of the First Workshop on Natural
Language Processing for Indigenous Languages of the
Americas, pages 10–20, Online. Association for Com-
putational Linguistics.

83



Zihan Wang, Karthikeyan K, Stephen Mayhew, and Dan
Roth. 2020. Extending multilingual bert to low-
resource languages.

Seunghak Yu, Nilesh Kulkarni, Haejun Lee, and Jihie
Kim. 2017. Syllable-level neural language model for
agglutinative language.

A Hyperparameters
Here we provide hyperparameter values for the var-
ious models to aid in reproduction of the results.

A.1 Morphological segmentation
In this section we describe the best hyperparameter
settings that we found for the various tasks.

A.1.1 NeuralMorphemeSegmentation
The best results for morphological segmentation are
achieved with this hyperparameters:

Parameter K’iche’ Chuckhi
convolutional layers 3 3
window size 3 – 4 4–6
filters 96 96
dense output users 64 20
context dropout 0.3 0.3
memorize morphemes no no
memorize ngram counts. no no

Table 6: NMS hyperparameters.

A.2 Least Significant Deviation values
The LSD-test results for language modelling and
predictive text tasks (this value is used to arrange the
tasks results into groups where all the values have no
significant difference):

Task K’iche’ Chukchi
language modelling 1.494 17.806
predictive text 14.22e-4 6.779e-4

Table 7: LSD values

A.3 Language modelling
All the models based on Merity et al. (2017) are
trained with the hyperparameters in Table 8.

Parameter Value
LSTM layers 3
embedding dim 256
hidden units per layer 3000
use regularization no
layers dropout 0.4
RNN layers dropout 0.1
embeddings dropout 0.1
remove words from embeddings dropout 0.0
sequence length 100
optimizer Adam
learning rate 1e-3
weight decay 1.2e-6
seed 1111

Table 8: AWD-LSTM hyperparameters.

84



B Evaluation

System Sentence
Raw ri tapaʼl kubʼan kʼax we man chʼajom taj
Gloss ‘When the nance1 is not washed, it can cause a lot of damage.’
NMS r i _ t a p a ʼ l _ k u bʼan _ kʼax _ w e _ m a n _ c h ʼ a j o m _ taj _
Unigram r i _ t a p a ʼ l _ k u b ʼ a n _ k ʼ a x _ w e _ m a n _ c h ʼ a j o m _ taj _
Wordpiece r i _ t a p a ʼ l _ k u b ʼ a n _ k ʼ a x _ w e _ man _ c h ʼ a j o m _ taj _
Raw jawi xkibʼij wi chi keʼe wi
Gloss ‘Where did they say that they would go?’
NMS j a w i _ x ki bʼij _ wi _ chi _ k e ʼ e _ w i _
Unigram j a w i _ x k i b ʼ i j _ w i _ c h i _ k e ʼ e _ w i _
Wordpiece j a w i _ x k i b ʼ i j _ w i _ c h i _ k e ʼ e _ w i _
Raw kamik kewaʼ pa taq ri bʼe
Gloss ‘Today they will eat on the way.’
NMS k a m i k _ k e w a ʼ _ pa _ taq _ ri _ b ʼ e _
Unigram k a m i k _ k e w a ʼ _ p a _ t a q _ ri _ b ʼ e _
Wordpiece k a m i k _ k e w a ʼ _ p a _ taq _ r i _ bʼe _

Table 9: Examples of text prediction by single-way segmented models for K’iche’ (see Section 6). Underscores
indicate word boundaries. Segments in bold were correct morph or word guesses. 1 Byrsonima crassifolia, a species
of flowering plant.

85





Author Index

Bird, Steven, 1
Boleda, Gemma, 42
Brochhagen, Thomas, 42

Dale, David, 45

Ebrahimi, Abteen, 26

Green, Lisa, 11

Haley, Coleman, 64

Kann, Katharina, 26
Kosyak, Sergey, 77
Kratochvil, Frantisek, 54

Lane, William, 1

Masis, Tessa, 11
Minchenko, Anzhelika, 34
Morgado da Costa, Luís, 54

Neal, Anissa, 11

O’Connor, Brendan, 11

Palmer, Alexis, 26

Schwartz, Lane, 64
Stenzel, Kristine, 26

Tyers, Francis, 64, 77

Zaitsev, Konstantin, 34

87


	A Finite State Aproach to Interactive Transcription
	Corpus-Guided Contrast Sets for Morphosyntactic Feature Detection in Low-Resource English Varieties
	Machine Translation Between High-resource Languages in a Language Documentation Setting
	Automatic Detection of Borrowings in Low-Resource Languages of the Caucasus: Andic branch
	The interaction between cognitive ease and informativeness shapes the lexicons of natural languages
	The first neural machine translation system for the Erzya language
	Abui Wordnet: Using a Toolbox Dictionary to develop a wordnet for a low-resource language
	How to encode arbitrarily complex morphology in word embeddings, no corpus needed
	Predictive Text for Agglutinative and Polysynthetic Languages

