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Introduction

With billions of individual pages on the web providing information on almost every conceivable topic,
we should have the ability to collect facts that answer almost every conceivable question. However, only
a small fraction of this information is contained in structured sources such as Wikidata; we are therefore
limited by our ability to transform free-form text to structured knowledge. There is, however, another
problem that has become the focus of a lot of recent research and media coverage: false information
coming from unreliable sources.

To ensure accuracy, any content must be verified. However, the volume of information precludes human
moderators from doing so. Hence, it is paramount to research automated means to verify accuracy and
consistency of information published online and the downstream systems (such as Question Answering,
Search and Digital Personal Assistants) which rely on it.

The fifth edition of the FEVER workshop collocated with ACL 2022 aims to continue promoting ongoing
research in above area, following on from the first four collocated with EMNLP 2018, EMNLP 2019,
ACL 2020, and EMNLP 2021 and three shared tasks in 2018, 2019, and 2021. This year’s workshop
consists of 3 oral and 7 poster presentations of accepted papers (66% overall acceptance rate), as well as
presentations from 5 invited speakers. The workshop is held in hybrid mode with in-person and virtual
poster sessions, live-streamed oral presentations and invited talks.

The organisers would like to thank the authors of all submitted papers, the reviewers, and the invited
speakers for their efforts, and we are looking forward to next year’s edition.

Best wishes,
The FEVER organisers
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Abstract

Training retrieval models to fetch contexts for
Question Answering (QA) over large corpora
requires labeling relevant passages in those cor-
pora. Since obtaining exhaustive manual an-
notations of all relevant passages is not fea-
sible, prior work uses text overlap heuristics
to find passages that are likely to contain the
answer, but this is not feasible when the task
requires deeper reasoning and answers are not
extractable spans (e.g.: multi-hop, discrete rea-
soning). We address this issue by identifying
relevant passages based on whether they are
useful for a trained QA model to arrive at the
correct answers, and develop a search process
guided by the QA model’s loss. Our experi-
ments show that this approach enables identi-
fying relevant context for unseen data greater
than 90% of the time on the IIRC dataset and
generalizes better to the end QA task than those
trained on just the gold retrieval data on IIRC
and QASC datasets.

1 Introduction

Answering questions over a large text corpus typ-
ically requires retrieving information relevant to
the question from the corpus, which is then used
by a Question Answering (QA) model to arrive at
the answer. Recent work (Guu et al., 2020; Lewis
et al., 2020; Ni et al., 2020) relies on retrieval mod-
els that learn dense representations of questions
and retrieval candidates (Karpukhin et al., 2020;
Khattab and Zaharia, 2020) trained separately or
jointly with the QA model. These learned retrieval
models are more effective than those that use sim-
ple word overlap signals (Robertson and Zaragoza,
2009; Chen et al., 2017), but they require the posi-
tive retrieval targets for each question labeled. It is
often difficult, if not impossible, to exhaustively la-
bel all the facts relevant to answering a question in
a large corpus of text. Consequently, even when the
datasets provide retrieval labels, it is often the case
that there exist alternative paths to the answer that

Gold
The digestive system breaks 
food into nutrients.

Q: The digestive system breaks food down into what?
a) meals         b) fats         c) fuel d) strength    …

Nutrients are fuel for 
your body.

Alternate Fact 1
Carbohydrate breaks down 
into glucose in the digestive 
system.

Alternate Fact 2
All carbohydrate foods 
become glucose, fuel 
for the body.

After a meal the digestive 
system breaks some food 
down into glucose.

Glucose, a simple 
sugar, is the body’s 
main fuel.

Properly digested food is 
our body’s fuel.

Food supplies fuel in 
the form of nutrients.

Figure 1: Retrieval annotations (gold) are often incomplete,
only providing one of many relevant contexts. Alternative
contexts can provide different views of the same information,
providing more robust training data.

are not labeled (Jhamtani and Clark, 2020), an ex-
ample of which is shown in Figure 1. The common
heuristic of considering all contexts that contain
mentions of the answer span (Clark and Gardner,
2018; Lee et al., 2019a) does not work when the
QA task is not extractive (e.g.: when the answers
are binary or require some numerical computation).

We propose to address this issue by augmenting
the set of labeled retrieval targets with additional
candidates that are not labeled as positive, but still
provide sufficient information to answer the corre-
sponding questions. Given question-answer pairs,
and a QA model trained to maximize the likelihood
of the correct answers conditioned on the labeled
retrieval targets and the questions, we search for
alternative contexts that also make the correct an-
swers likely. Concretely, our search process finds
those contexts not labeled as gold, that minimize
the loss of the QA model. We consider these con-
texts as alternative retrieval targets, and train the
retrieval model with the combination of these al-
ternative contexts and the gold labeled contexts as
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positives. Our method is particularly effective for
non-extractive QA tasks since it does not rely on
answer-span overlaps.

We evaluate our approach on two multi-hop
QA tasks, IIRC (Ferguson et al., 2020) and
QASC (Khot et al., 2019), and show that our search
for relevant contexts guided by the performance of
the QA model correctly identifies a relevant context
91% of the time on IIRC and 84% of the time on
QASC (Table 2a). Augmenting the retrieval train-
ing data with the results from our search process
increases recall on unseen questions, leading to an
improvement in the downstream QA performance
by 0.5 F1 points on IIRC and 2.1 accuracy points
on QASC (Section 3.2).

2 Method

Overview and Problem Our approach uses the
standard two-step pipeline for open-domain QA
seen in prior work. We first run a retrieval model
that takes as input a question, q, and a large corpus
of passages, C, and outputs a small subset of those
passages, c ⊂ C, that contains sufficient informa-
tion to answer the question. This subset is then
passed to the second step: the QA model. This
model takes as input the same question, q, and sub-
set of passages, c, from the first step, and outputs an
answer, a. Depending on the data, this answer can
take many forms, such as a span from the context,
a number, yes/no, or none of these if the question
is unanswerable.

For each question, there may be many valid sets
of context passages, where each set1 contains all
the information necessary to answer the question.
We refer to individual sets as c∗i , and the superset
of all such sets as c∗ = {c∗1 . . . c∗n}. As seen in
Figure 1, these different context sets may express
different reasoning paths reaching the answer, or
they may contain different ways of expressing the
same reasoning path. However, most datasets just
contain annotations of one such set per question,
c∗i . Our goal is to use these annotations to identify
alternate, unannotated, relevant context, c̄ ∈ c∗ \
{c∗i }, for each question. These additional contexts
is used to augment the retrieval training data.
Approach The goal of the retrieval model is
to identify context that maximizes the probabil-
ity of the correct answer when given to the QA
model. When supervised data, c∗i , is available,

1We apply our approach to datasets containing questions
that require multiple facts to answer, so we label sets of facts.

this is achieved by training the retrieval model
to predict the input that the QA model is trained
on i.e., θr = argmaxθ P (c∗i |q, θ), and θq =
argmaxθ P (a|q, c∗i , θ), where the retriever and the
QA models are parameterized by θr and θq. We
refer to this initial QA model as the base QA model.
When supervised data is not available, we can iden-
tify the retrieved contexts ĉ, by searching over the
corpus for the contexts that maximize the probabil-
ity of the correct answer under the base QA model:

ĉ = argmax
c⊂C

P (a|q, c, θq) (1)

Based on this, for each question, we search over
the corpus for the top k contexts, ĉ1 . . . ĉk, and add
them as additional data augmentation when training
a new retrieval model:

θ̂r = argmax
θ

P (c∗i |q, θ) +
k∑

j=1

P (ĉj |q, θ) (2)

Lastly, we train a final QA model using the gold
context, including the results of this new retrieval
model to incorporate the updated training and make
it more robust to noise:

cr =argmax
c∈C

P (c|q, θ̂r)

θ̂q =argmax
θ

P (a|q, {c∗i , cr}, θ)
(3)

Labeling sets of facts Because we apply our ap-
proach to datasets containing questions that require
multiple facts to answer, we need to label sets of
facts, not individual ones. For this reason, we train
our base QA models conditioned on sets of facts,
and while both labeling new contexts with the base
QA model, and retrieving contexts, we use beam
search to output sets of facts. In order to prevent the
base QA model from memorizing the gold contexts,
we use a 10-fold cross-labeling approach.2

3 Experiments

We show the effect of our approach on two multi-
hop QA datasets: IIRC (Ferguson et al., 2020) and
QASC (Khot et al., 2019).

3.1 Datasets and Setup
IIRC is a multi-hop QA open QA dataset, con-
sisting of a mix of yes/no questions, span selection
questions, unanswerable questions, and questions

2We train ten models, each on 90% of the data, and use
them to label the remaining 10%.
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requiring discrete reasoning such as arithmetic or
counting. Each question is associated with a para-
graph, and requires both information from that para-
graph, as well as information from one or more
pages linked to from within that paragraph.
QASC is a multiple-choice, multi-hop QA dataset
constructed from a corpus of 17M facts. Each ques-
tion is written by composing two facts from the
corpus, and includes eight answer choices.
eQASC (Jhamtani and Clark, 2020) includes a
more exhaustive annotation of relevant contexts
for QASC questions and enables a more accurate
evaluation of retrieval performance on QASC.
Evaluation We report recall@10 and the final
QA performance results that provide a more reli-
able evaluation of the retrieval performance. For
eQASC, we use mean-average precision (MAP) of
the positive examples.
Implementation Details Following prior work
on IIRC (Ni et al., 2020), we adopt a pipeline ap-
proach consisting of three steps: link selection us-
ing RoBERTa-base, retrieval, and answer selection
using NumNet++ (Ran et al., 2019). For QASC, we
initially filter the corpus using the two-step BM25
described in (Khot et al., 2019), selecting the top
1000 pairs of facts per answer choice. Similar
to IIRC, we then select the top 10 pairs using a
RoBERTa-base bi-encoder. Final QA model sep-
arately scores each answer choice using another
RoBERTa-base model, and computes a softmax to
get the final distribution over the choices.

3.2 Comparisons and Results

We compare our approach of identifying additional
relevant context using QA loss with other retrieval
baselines and alternate augmentation methods.

BM25: We use the top results from BM25 in lieu
of training a supervised model with the annotated
data. This is a commonly used heuristic when no
retrieval annotations are available.

SupA Models are trained using just the annotated
training data with no additional data provided.

SupA+BM25 We augment the annotated training
data with the top results from querying the corpus
using BM25 with the question and answer.

SupA+R We augment the annotated training data
with the top retrieval results conditioned on the
question and correct answer. As in the QA-loss
labeling approach, we use a 10-fold labeling proce-
dure to prevent memorizing the annotated context.

Approach QASC IIRC eQASC
R@10 Acc R@10 F1 MAP

BM25 45.1 71.9 18.0 42.0 36.0
SupA 46.1 71.8 39.5 51.1 41.9
SupA + BM25 41.7 69.3 38.0 49.2 40.3
SupA + R 46.2 71.5 39.3 51.0 35.4
SupA + QA 47.8 73.9 40.3 51.6 43.7

Prior Work - 71.9 - 50.6 -

Table 1: Comparison of different retrieval models. R@10 and
MAP are direct evaluations of retrieval performance, Acc is
the performance of the final QA model trained given retrieval
results. For IIRC, prior work is the state-of-the-art model (Ni
et al., 2020) that uses the same QA model as our work. For
QASC, prior work is RoBERTa-base model that uses the same
model size as ours and is trained and evaluated on the same
data used by (Khashabi et al., 2020).

Main Results Table 1 compares our approach,
SupA+QA, with the baselines and prior work.3 Our
approach results in improved performance on both
datasets with a larger improvement on QASC over
the baseline compared to IIRC. This is likely due
to the fact that QASC has a much larger number of
alternate contexts per question compared to IIRC
(discussed below in oracle analysis). We generally
see a correlation between retrieval recall of the gold
annotations, performance on eQASC, and down-
stream accuracy, indicating that providing more
accurate context to the downstream model does
help with QA performance.

We manually labeled the accuracy of the top re-
sult for 100 questions for each approach (results
in table 2a). We can see that using the QA model
to label data significantly outperforms the other
two approaches. In table 2b we also further break
down the accuracy based on the different types
of questions in IIRC. Our approach works well
on Binary and Numeric questions, where the span
heuristic cannot be applied. Our approach also out-
performs the it on Span Selection questions, where
the answer is a span from the context. Although
the heuristic can be applied on these questions, it
often returns false positives. Our approach strug-
gles with Span Compare questions, as discussed in
more detail in Error Analysis below.
Oracle Analysis Figure 2c shows an oracle study
of the same 100 questions from the previous section
to determine how many alternate contexts were
available in each dataset. For IIRC, we considered

3The state-of-the-art model (Khashabi et al., 2020) for
QASC uses roughly 100x more parameters than us (with the
results 89.6), but the same model with a comparable size
as ours is significantly worse, 50.8. Therefore, we use the
best-performing model that has the same size as ours.
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Approach IIRC QASC

BM25 38 41
Retrieval 39 45
QA Loss 91 84

(a)

Question type QA Span

Binary 100 -
Numeric 78 -
Span Selection 97 77
Span Compare 50 -

(b) (c)

Table 2: (a) Manual analysis Accuracy of different approaches based on manual analysis on 100 examples for different context
labeling approaches, (b) comparing span-selection retrieval baseline with our approach for different question types, and (c)
Comparison of the number of relevant contexts in each dataset.

Q: Which play was published first?     A: A Midsummer Night’s Dream

Main context
… started his career in 1988 replacing 
Audi Vice Champion Frank Biela …

Q: How many championships had Biela won?     A: 10
Gold
His greatest achievements include 
winning: 1991 … 1993 … 

QA-loss
Biela comfortably won the title … being 
classified in the top ten …

BM25
After winning the ALMS 
series…

Main context
… performed in productions 
of Hamlet and A Midsummer 
Night’s Dream …

BM25
Shakespeare in the Arb has published…

To die, to sleep, is that all?

Main context
… and was expanded during 
the Seven Years’ War …

Q: What year did the war begin?     A: 1756
Gold
The Seven Years’ War … fought 
between 1756 and 1763

QA-loss
It is called the Seven Years’ War 
(1756 – 1763).

BM25
Pitt was the head of the government 
from 1756 to 1761, and…

Gold
written between 1599/1602.

written in 1595/1596.

QA-loss
Set in Denmark, the play depicts Prince Hamlet…

Usually dated 1595 or early 1596.

Figure 2: Example errors of our approach in IIRC. Relevant context is highlighted in green, and irrelevant context is in red.

all sentences from the gold articles, and for QASC
we considered the top twenty sentences according
to BM25. QASC has a much higher ceiling for this
form of data augmentation, as can be seen by the
fact that 70% of questions have multiple relevant
contexts, compared to IIRC where many questions
have only a single context. Additionally, many of
the questions in IIRC with exactly 2 contexts share
a similar structure, seen in the third example in
Figure 2. Although our approach is often able to
identify this alternate context, using it to augment
the data does not add much new information.
Error Analysis Figure 2 shows examples of
problems our approach encounters in IIRC. The
first question requires the model to count occur-
rences of an event, but the QA model instead se-
lects context containing a textual expression of the
answer. The second question is a span compare
example. The model has to identify context con-
taining attributes of two entities mentioned in the
original paragraph, but takes a shortcut and and
only selects context for the correct answer.

4 Related Work

Most similar to our work are recent approaches
using weak supervision for learning to retrieve for
QA, using only questions and answers. Lee et al.
(2019b) pretrain a retrieval model using an inverse
cloze task. Zhao et al. (2021) more recently pro-

posed to iteratively improve a retrieval model using
hard-EM. Both approaches filter the data using the
answer span heuristic. This heuristic breaks down
on multi-hop questions, as well as questions that
are not answerable by spans, such as true/false or
discrete reasoning questions. Izacard and Grave
(2021) and Yang and Seo (2021) propose using
knowledge distillation to incorporate QA informa-
tion into a supervised retriever, and while assum-
ing access to retrieval annotations, Ni et al. (2020)
jointly learn retrieval and QA by marginalizing over
potential contexts. All three of these approaches re-
quire encoding all potential contexts together with
the question, whereas ours does not have that re-
quirement, making ours more memory-efficient.

5 Conclusion

This work shows that using the loss of a QA model
trained on a partial set of labeled contexts to search
for alternative contexts for retrieval is an effective
method for augmenting the retriever’s training data.
Our results present a more label-efficient training
scheme for building supervised retrievers for QA.
They also suggest that creators of datasets for open
QA tasks that require supervised retrievers can bet-
ter allocate their annotation budgets by obtaining
retrieval labels for a small set of questions while
maximizing the number of question-answer anno-
tations.
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Abstract
Fact checking is a challenging task that requires
corresponding evidences to verify the property
of a claim based on reasoning. Previous stud-
ies generally i) construct the graph by treat-
ing each evidence-claim pair as node which is
a simple way that ignores to exploit their im-
plicit interaction, or building a fully-connected
graph among claim and evidences where the
entailment relationship between claim and ev-
idence would be considered equal to the se-
mantic relationship among evidences; ii) ag-
gregate evidences equally without considering
their different stances towards the verification
of fact. Towards the above issues, we propose a
novel heterogeneous-graph reasoning and fine-
grained aggregation model, with two following
modules: 1) a heterogeneous graph attention
network module to distinguish different types
of relationships within the constructed graph; 2)
fine-grained aggregation module which learns
the implicit stance of evidences towards the
prediction result in details. Extensive experi-
ments on the benchmark dataset demonstrate
that our proposed model achieves much better
performance than state-of-the-art methods.

1 Introduction

Today, social media is considered as the biggest
platform to share news and seek information. How-
ever, misinformation is spreading at increasing
rates and may cause great impact to society. The
reach of fake news was best highlighted during the
critical months of the 2016 U.S. presidential elec-
tion generated millions of shares and comments on
Facebook (Zafarani et al., 2019). Therefore, auto-
matic detection of fake news on social media has
become a significant and beneficial problem. We
pay more attention on fact checking task, which
utilizes external knowledge to determine the claim
veracity when given a claim.

Verifying the truthfulness of a claim with respect
to evidence can be regarded as a special case of rec-
ognizing textual entailment (RTE) (Dagan et al.,

2005) or natural language inference (NLI) (Bow-
man et al., 2015). Typically, existing approaches
contain the representation learning process and ev-
idence aggregation process. Representation pro-
cess tries to enhance the semantic expression of
claim and evidence via sequence structure meth-
ods (Hanselowski et al., 2018a; Soleimani et al.,
2020) or graph based neural networks (Zhou et al.,
2019; Liu et al., 2019) where they utilize simple
combination methods such as just dealing with
claim-evidence pair as graph nodes. The evidence
aggregation process aims to find out the most im-
portant evidence which contributes more to claim
verification with different methods like mean pool-
ing, attention-based aggregation, etc.

However, existing approaches such as Liu et al.
(2019) establish a semantic-based graph, which ig-
nore the difference between relationships among
nodes in reasoning graph. For example in Fig-
ure 1, given the claim “Al Jardine is an American
rhythm guitarist.” and the retrieved evidence sen-
tences (i.e., E1-E5), making the correct prediction
requires model to reason that “Al Jardine” is the
person mentioned in E2 and “rhythm guitarist” is
occurred in E1 based on the entailment interac-
tion of claim with the evidences. Furthermore, we
also expect the semantical coherence of multiple
evidences from E1 to E5 to automatically filter un-
related evidence such as E3-E5. We believe it’s
crucial for verification to mine distinct relation-
ships within the reasoning graph.

Besides, in previous methods (Zhou et al., 2019;
Liu et al., 2019), stance of evidences towards claim
are aggregated equally or some irrelevant evidences
are prevented from predicting the veracity of claim
roughly via simple attention mechanism. However,
each piece of evidence has a different impact on the
claim, which needs to be exploited on fine-grained
perspective.

To alleviate above issues, we propose a
novel Heterogeneous-Graph Reasoning and Fine-
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Figure 1: A motivating example for fact checking and
the FEVER task. The purple solid line denotes the
semantical coherence between each piece of evidence.
The purple dotted line denotes entailment consistence
between claim and evidences. Verifying the fact requires
exploiting these two different implicit relationships dur-
ing reasoning process.

Grained Aggregation Model (HGRGA), which not
only enhances the representation learning for claim
and evidences by capturing different types of re-
lationships within the constucted graph but also
aggregating stances of evidences towards claim
concretely. More specifically, we construct a het-
erogeneous evidence-evidence-claim graph based
on graph attention network to enhance the represen-
tation of claim and evidences. Besides, we utilize
an capsule network to further aggregate evidences
with different implicit stances towards the claim,
and learn the weights via dynamic routing which in-
dicate how each of evidence attributes the veracity
of claim.

We conduct experiments on the real-world
benchmark dataset. Extensive experimental re-
sults demonstrate the effectiveness of our model.
HGRGA boosts the performance for fact check-
ing and the main contributions of this work are
summarized as follows:

• To our best knowledge, this is the first study
of representing reasoning structure as a het-
erogeneous graph. The graph attention based
heterogeneous interaction achieves significant

improvements over state-of-the-art methods.

• We incorporate the capsule network struc-
ture into our proposed model to learn implicit
stances of evidences towards the claim on fine-
grained perspective.

• Experimental results show that our model
achieves superior performance on the large-
scale benchmark dataset for fact verification.

2 Background and related work

2.1 Problem fomulation

The input of our task is a claim and a collection
of Wikipedia articles D. The goal is to extract
a set of evidence sentences from D and assign
a veracity relation label y ∈ Y = {S,R,N} to
a claim with respect to the evidence set, where
S = SUPPORTED, R = REFUTED, and N =
NOTENOUGHINFO(NEI).

2.2 Fact checking

The process of evidence-based fact checking in-
volves the following three subtasks: document
retrieval, evidence sentence selection and claim
verification. In the document retrieval phrase, re-
searchers use a hybrid approach that combines
search results from the MediaWiki API1 and the re-
sults on the basic of the term frequency-inverse doc-
ument frequency (TF-IDF) model (Hanselowski
et al., 2018b). In the evidence sentence se-
lection phrase, Nie et al. (2019); Hanselowski
et al. (2018b) use the enhanced sequential infer-
ence model (ESIM) to encode and align a claim-
evidence pair. Chen et al. (2016) train a rank-
ing model to rank evidence sentences via different
kinds of loss, such as pointwise and pairwise loss.
Many fact checking approaches aims to improve
the performance of claim verification phrase. Pre-
vious work modified existing RTE/NLI models to
deal with multiple sentences (Thorne et al., 2018a;
Nie et al., 2019; Hanselowski et al., 2018b), con-
catenated all sentence (Stammbach and Neumann,
2019).

Recently, there are some approaches related to
graph-based neural networks (Kipf and Welling,
2016). For example, Zhou et al. (2019) build a
fully-connected evidence graph where each node
indicates a piece of evidence while Liu et al. (2019)
conduct fine-grained evidence propagation in the

1https://www.mediawiki.org/wiki/API

7



graph. Zhong et al. (2019) use semantic role label-
ing (SRL) to build a graph structure, where a node
can be a word or a phrase depending on the SRL’s
outputs.

2.3 Pre-trained language models

Pre-trained language representation models such
as GPT (Radford et al., 2018), BERT (Devlin et al.,
2018) are proven to be effective on many NLP
tasks. These models employ well-designed pre-
training tasks to fuse context information and train
on rich data. Each BERT layer transforms an input
token sequence (one or two sentences) by using
self-attention mechanism. Hence, we use BERT as
the sentence encoder in our framework to encode
better semantic representation.

2.4 Capsule network

A recent method called capsule network explored
by Sabour et al. (2017) introduces an iterative rout-
ing process to learn a hierarchy of feature detectors
which send low-level features to high-level cap-
sules only when there is a strong agreement of their
predictions to high-level capsules. Researchers re-
cently apply capsule network into NLP task such
as text classification (Zhao et al., 2018), slot fill-
ing (Zhang et al., 2018), etc.

3 Proposed method

In this section, we present an overview of the ar-
chitecture of the proposed framework HGRGA for
fact verification. As shown in Figure 2, given a
claim and the retrieved evidence, we first utilize a
sentence encoder to obtain representations for the
claim and the evidences. Then we build a heteroge-
neous evidence-evidence-claim graph to propagate
information among claim and evidence. Finally,
we use the capsule network to model the implicit
stances of evidences towards claim on fine-grained
perspective.

3.1 Sentence Encoder

Given an input sentence, we employ BERT (Devlin
et al., 2018) as our sentence encoder by extracting
the final hidden state of the [CLS] token as the
representation, where [CLS] is the special classifi-
cation embedding in BERT.

Specifically, given a claim c and N pieces of
retrieved evidence {e1, e2, . . . , eN}, we feed each
sentence into BERT to obtain the claim represen-
tation c and the evidence representation ei, where

i ∈ {1, ..., N}. That is,

c = BERT(c),
ei = BERT(ei).

(1)

We thus denote the utterance as a matrix, i.e.,
X = [c, e1, e2, ..., eN]T, where c, ei ∈ Rd respec-
tively denotes the d-dimensional embedding of the
claim and each relative evidence.

3.2 Graph Reasoning Network

This section describes how to incorporate the het-
erogeneous graph attention network into our model.
Based on the observation as illustrated in Fig-
ure 1, we assume that given a claim, the evidence
should be semantically coherent with each other
while the claim should be entailment consistent
with the relevant evidence. Therefore, we de-
compose the evidence-evidence-claim graph into
claim-evidence subgraph and evidence-evidence
subgraph.

Claim-Evidence Subgraph Considering that the
neighbors of each node in subgraphs have differ-
ent importance to learn node embedding for fact
checking task, we use graph attention network
(GAT) (Veličković et al., 2017) to generate the
sentence representation of claim and the retrieved
evidence.

We use H l
ce = [hl0, h

l
1, h

l
2, ..., h

l
N ]T to represent

the hidden states of nodes at layer l and initially,
H0

ce = X . In order to encode structural contexts to
improve the sentence-level representation by adap-
tively learning different contributions of neighbors
to each node, we perform self-attention mechanism
on the nodes to model the interactions between
each node and its neighbors. The attention coeffi-
cient can be computed as follows:

αl
i,j = Atten(hli, h

l
j)

=
exp(ϕ(aT [W lhli||W lhlj ]))∑

j∈Ni
exp(ϕ(aT [W lhli||W lhlj ]))

,
(2)

where αl
i,j indicates the importance of node i to

j at layer l, a is a weight vector, W l is a layer-
specific trainable transformation matrix, || means
“concatenate” operation, Ni contains node i’s one-
hop neighbors and node i itself, ϕ denotes the ac-
tivation function, such as LeakyReLU (Girshick
et al., 2014). Here, we use the adjacency matrix
Ace to denotes the relationship between each node,
which is defined as:
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Figure 2: The pipeline of our method. The HGRGA framework is illustrated in the proposed method section.

Ace
i,j =





1 i/j ∈ {claim},
j/i ∈ {claim, e1, ..., eN}

0 otherwise
, (3)

then the layer-wise propagation rule is defined as:

hl+1
i = ReLU(

∑

j∈Ni

αl
i,jW

lhlj). (4)

After that, multi-head attention (Vaswani et al.,
2017) is utilized to stabilize the learning process
of self-attention and extend attention mechanism.
Thus Eq. 4 would be extended to the multi-head at-
tention process of concatenating M attention heads:

hl+1
i =

M

||
m=1

ReLU(
∑

j∈Ni

αl,m
i,j W

l
mhlj), (5)

where || represents concatenation, αl,m
i,j is a nor-

malized attention coefficient computed by the m-th
head at the l-th layer, and W l

m is the corresponding
input linear transformation’s weight matrix. By
stacking L layers of GAT, the output embedding in
the final layer is calculated using averaging, instead
of the concatenation operation:

hLi = ReLU(
1

M

M∑

m=1

∑

j∈Ni

αL−1,m
i,j WL−1

m hL−1
j ).

(6)
Through aforementioned operations, we get

the final layer of claim-evidence subgraph result
HL

ce = [hL0 , h
L
1 , h

L
2 , ..., h

L
N ]T.

Evidence-Evidence Subgraph Similarly to the
claim-evidence subgraph in Section 3.2, we en-
hance the semantical coherence of each evidence
via GAT method. More concretely, we use H l

ee =
[h̃l0, h̃

l
1, h̃

l
2, ..., h̃

l
N ]T to represent the hidden states

of nodes at layer l and initially, H0
ee = X . Besides,

the relationship between nodes within subgraph is
different and we utilize the adjacency matrix Aee to
denotes the relationship between each node, which
is defined as:

Aee
i,j =





1 i ∈ {e1, ..., eN},
j ∈ {e1, ..., eN}

0 otherwise
. (7)

Finally, the output of evidence-evidence
subgraph can be updated via HL

ee =
[h̃L0 , h̃

L
1 , h̃

L
2 , ..., h̃

L
N ]T.

Fusion of Subgraphs To fuse the information
contained in two subgraphs, we concatenate HL

ce

and HL
ee to form implicit representation of claim

and evidences, denoted as HL . Then, we propose
a slice operation to extract claim and evidence fea-
ture separately from HL, denoted as sc ∈ R2d×1

and se ∈ R2d×N . Consequently, we tile sc N times
and concatenate them with se to construct a new
feature matrix as

s = concat(sc, se),
p = tanh(Wss + bs),

(8)

where Ws ∈ Rd×4d and bs ∈ Rd×1 are the weight
and bias matrix for dimensionality reduction op-
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eration. p ∈ Rd×N denotes the implicit stance of
evidences towards final class prediction. The rea-
son we use the concatenation operation is that we
think the evidence nodes in the following aggrega-
tion process need the information from the claim to
guide the routing agreement process among them.

3.3 Stance Aggregator
To model the fine-grained stances of evidences to-
wards class prediction, we incorporate the capsule
network (Sabour et al., 2017) into our model. We
regard p as the primary capsule pi|Ni=1 ∈ Rd , Let
vk|Kk=1 ∈ Rdc denote the high-level class capsules,
where K denotes the number of classes and dc
means the dimension of class capsules’ represen-
tation. The capsule model learns a hierarchy of
feature detectors via a routing-by-agreement mech-
anism, which define the different contributions of
stances of evidences towards prediction result.

Dynamic Routing-by-agreement We denote
pk|i as the resulting prediction vector of the i-th
stance capsule when being recognized as the k-th
class:

pk|i = σ(Wkp
T
i + bk), (9)

where k ∈ {1, 2, ...,K} denotes the class type and
i ∈ {1, 2, ..., N}. σ is the activation function such
as tanh. Wk ∈ Rdc×d and bk ∈ Rdc×1 are the
weight and bias matrix for the k-th capsule.

The dynamic routing-by-agreement learns an
agreement value ck,i that determines how likely
the i-th stance capsule agrees to be routed to the
k-th class capsule. ck,i is calculated by the dy-
namic routing-by-agreement algorithm (Sabour
et al., 2017), which is briefly recalled in Algorithm
1.

The algorithm determines the agreement value
ck,i between stance capsules and class capsules
while learning the class representations vk in an
unsupervised, iterative fashion. ci is a vector that
consists of all ck,i where k ∈ K. bk,i is the logit
(initialized as zero) representing the log prior prob-
ability that the i-th stance capsule agrees to be
routed to the k-th class capsule. During each it-
eration (Line 4), each class representation vk is
calculated by aggregating all the prediction vectors,
weighted by the agreement values ck,i obtained
from bk,i (Line 6-7):

sk =
N∑

i

ck,ipk|i,

vk = g(sk),

(10)

Algorithm 1 Dynamic routing-by-aggrement
1: procedure DYNAMIC ROUTING(pk|i, iter)
2: for each stance capsule i and class capsule k: bk,i ←

0.
3:
4: for iter iterations do
5: for all stance capsule i: ci ← softmax(bi)
6: for all class capsule k: sk ←

∑
r ck,ipk|i

7: for all class capsule k: vk = squash(sk)
8: for all stance capsule i and class capsule k: bk,i ←

bk,i + pk|i · vk
9: end for

10: Return vk
11: end procedure

In the above algorithm, g is a non-linear squash-
ing function which limits the length of vk to [0, 1].
Once we updated the class representation vk during
iteration, the logit bk,i becomes larger when the dot
product pk|i · vk is large, which means representa-
tion of stance capsule pk|i is more similar to class
representation vk. In our scenario, that is, stance
of evidences contributes more to a certain cate-
gory. Meanwhile, we can observe the fine-grained
distributions towards prediction result of different
stances.

Max-margin Loss for Class Detection Based
on the capsule theory (Sabour et al., 2017), the
orientation of the activation vector vk represents
class properties while its length indicates the acti-
vation probability. The loss function considers a
max-margin loss on each labeled utterance:

L =
K∑

k=1

{[[y = vk]] ·max(0,m+ − ||vk||)2

+ λ[[y ̸= vk]] ·max(0, ||vk|| −m−)2},
(11)

where ||vk|| is the norm of vk and [[]] is an indica-
tor function, y is the ground truth label. λ is the
weighting coefficient, and m+ and m− are mar-
gins.

The prediction of the utterance can be easily
determined by choosing the activation vector with
the largest norm ŷ = argmax

k∈{1,2,...,K}
||vk||.

4 Experimental Setting

4.1 Dataset and Evaluation Metrics
We conduct experiments on the dataset
FEVER (Thorne et al., 2018a). The dataset
consists of 185,455 annotated claims with a set
of 5,416,537 Wikipedia documents from the June
2017 Wikipedia dump. We follow the dataset
partition from the FEVER Shared Task (Thorne
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Split SUPPORTED REFUTED NEI
Train 80,035 29,775 35,639
Dev 6,666 6,666 6,666
Test 6,666 6,666 6,666

Table 1: Statistics of FEVER dataset.

et al., 2018b). Table 1 shows the statistics of the
dataset.

We evaluated performance by using the label
accuracy (LA) and FEVER score (F-score). LA
measures the 3-way classification accuracy of class
prediction without considering the retrieved evi-
dence. The F-score reflects the performance of both
evidence sentence selection and veracity relation
prediction, where a complete set of true evidence
sentences is present in the selected sentences, and
the claim is correctly labeled.

4.2 Baseline

The baselines include sota models on FEVER1.0
task, BERT based models and graph-based models.

Three top models (Athene (Hanselowski et al.,
2018b), UNC NLP (Nie et al., 2019), UCL
MRG (Yoneda et al., 2018)) in FEVER1.0 shared
task are compared in our experiment.

As BERT (Devlin et al., 2018) has achieved
promising performance on several NLP tasks,
we use BERT-pair, BERT-concat from previous
work (Zhou et al., 2019) as our baselines.

Other baselines are following like GEAR (Zhou
et al., 2019), KGAT (Liu et al., 2019) and
DREAM (Zhong et al., 2019).

4.3 Implementation Details

We employ a three-step pipeline with components
for document retrieval, sentence selection and
claim verification to solve the task. More details
can be found in Appendix A.

We utilize BERTBASE (Devlin et al., 2018) in
our proposed model. Besides, some experiments
of hyper-parameters such as the size of pre-trained
model, the number of graph attention layer, can be
found in Appendix B.

5 Experimental Results

In this section, we first present the overall perfor-
mance of our model HGRGA compared with other
approaches. Then we conduct an ablation study
to explore the effectiveness of the heterogeneous
graph structure and the fine-grained capsule net-

Models

FEVER

Dev Test

LA F-score LA F-score

UKP Athene 68.49 64.74 65.46 61.58
UCL MRG 69.66 65.41 67.62 62.52
UNC NLP 69.72 66.49 68.21 64.21

BERT(base) 73.51 71.38 70.67 68.50
BERT(large) 74.59 72.42 71.86 69.66
BERT-Pair 73.30 68.90 69.75 65.18
BERT-Concat 73.67 68.89 71.01 65.64

GEAR 74.84 70.69 71.60 67.10
KGAT(BERT base) 78.02 75.88 72.81 69.40
KGAT(BERT large) 77.91 75.86 73.61 70.24
DREAM 79.23 - 76.85 70.60
Our Model 80.67 77.54 74.26 70.72

Table 2: Overall performance on the FEVER dataset
(%).

work. Finally, we present a case study to demon-
strate the effectiveness of our framework.

5.1 Overall Performance

Table 2 shows the performance of our proposed
method versus all the compared methods on
FEVER dataset, where the best result of each col-
umn is bolded to indicate the significant improve-
ment over all baselines.

As shown in Table 2, in terms of LA, our model
significantly outperforms BERT-based models with
80.67% and 74.26% on both development and test
sets respectively. It is worth noting that, our ap-
proach, which exploits distinct types of relation-
ships between nodes within reasoning graph, out-
performs GEAR and KGAT, both of which regard
claim-evidence pair as node and ignore different
implicit interactions among them. However, in
terms of LA, DREAM outperforms our approach
with 76.85% on the test set. One possible reason
is that DREAM incorporates graph-level semantic
structure of evidence obtained by Semantic Role
Labeling (SRL) which may contain more exter-
nal information. Despite this, in terms of FEVER
score, which is a kind of more comprehensive met-
rics, our method outperforms it.

5.2 Ablation Study

Effect of Heterogeneous Graph We observe
how the model performs when some critical compo-
nents are removed. The specific results are shown
in Table 3, where Hce represents the node’ rep-
resentation updated via claim-evidence subgraph
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Models LA F-score

Our Model 80.67 77.54
-w/o Hce 75.64 70.32
-w/o Hee 77.68 73.52
Homo 78.89 75.93

Aggregation
max 77.33 75.23
mean 77.54 74.97
attention 77.92 75.10

Table 3: Ablation analysis in the development set of
FEVER.

and Hee denotes the node’ representation learned
via evidence-evidence subgraph. Besides, Homo
denotes the reasoning graph is regarded as the ho-
mogenous graph which ignores different types of
relationships between claim and evidence, evidence
and evidence. As expected, with the removal of
important components, the performance of model
gradually decrease, especially when the reasoning
graph is trained as the homogeneous structure, the
LA score drops by nearly 2%, which also shows
the strong effectiveness of heterogeneous graph.
We will attempts to explore the effective result of
heterogeneous structure in Section 5.2. Besides,
it’s worth noting that, when Hce is removed, model
still has a proper result, where it’s investigated in
previous study (Hansen et al., 2021) and an impor-
tant problem is highlighted that whether models
for automatic fact verification have the ability of
reasoning.

Effect of Capsule Layer We explore the effec-
tiveness of the capsule network aggregation by
comparing it with other different aggregation meth-
ods, such as mean-aggregator, max-aggregator and
attention-aggregator. The mean aggregator per-
forms the element-wise Mean operation among
stances’ representation while the max aggregator
performs the element-wise Max operation. The
attention aggregator is followed from Zhou et al.
(2019), where the dot-product attention operation
is used among evidence representation. As shown
in Table 3, we can find that our approach using
capsule network performs better than other aggre-
gation methods.

Furthermore, when capsule network is trained,
we can easily observe the distribution of stance of
evidences towards predicted class during iterations.
We will show an example in Section 5.2.

Claim: One host of Weekly Idol is a comedian.

Evidence:
E1: The show is hosted by comedian Jeong
Hyeong-don and rapper Defconn.
E2: Defconn, one host of Weekly Idol, is a rap-
per used to perform several songs on the show.
E3: Weekly Idol is a South Korean variety show,
which airs Wednesdays, 6PM KST, on MBC
Every1, MBC’s cable and satellite network for
comedy and variety shows.
E4: Many comics achieve a cult following while
touring famous comedy hubs such as the Just
for Laughs festival in Montreal, the Edinburgh
Fringe, and Melbourne Comedy Festival in Aus-
tralia.
E5: However, a comic’s stand-up success does
not guarantee a film’s critical or box office suc-
cess.

Label: SUPPORTED

Table 4: A case of the claim that requires integrating
multiple evidence to verify. Facts shared across the
claim and the evidences are highlighted with different
colors.

Case Study Table 4 shows an example in our
experiments which needs multiple pieces of evi-
dence to make the right inference. There are some
noisy evidences such as E4-E5, which are not se-
mantically coherent with E1-E3, and a confusing
evidence E2 which may introduce spurious infor-
mation and mislead the model to predict the label
incorrectly. In order to observe the difference be-
tween homogenous graph structure and heteroge-
neous graph structure, we plot the claim-evidence
attention map from the model learned under these
two settings.

As shown in Figure 3a, when the reasoning
graph is constructed as homogenous structure, the
model would consider the entailment relationship
between claim and evidence equally to another re-
lationship, semantic coherence among each evi-
dence. With high similarity between claim and
E2 on semantic perspective, the proposed method
tends to attend E2, which leads to a prediction er-
ror. In contrast, when the inference relationship
between claim and evidence is explicitly exploited,
the ability of reasoning would be further enhanced.
Making the correct prediction requires model to
reason based on the understanding that “comedian”
is occurred in E1 and “Weekly Idol” is a show
mentioned in E3. Based on the observation as
illustrated in Figure 3b, our approach pays more
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(a) Homogenous graph structure. Predicted label: REFUTED.

(b) Heterogeneous graph structure. Predicted label: SUP-
PORTED.

Figure 3: Attention map of claim-evidence subgraph
with different kinds of graph structure for the case in
Table 4.

attention on E1 and E3, which provide the most
useful information in this case, and the label is
correctly detected as SUPPORTED.

Figure 4: The learned agreement values between class
capsules (y-axis) and stance capsules (x-axis) for the
case in Table 4. Left: after the first iteration. Right:
after the second iteration.

The dynamically learned agreement values
within capsule aggregation layer naturally reflect
how stance of evidences are collectively aggregated
into class capsules for each input utterance. We vi-
sualize the agreement values between each stance
capsule and each class capsule. The left part of
Figure 4 shows that after the first iteration, since

the model improperly recognize E2 as a whole, the
REFUTED capsule contribute significantly to the fi-
nal result. From the right part of Figure 4, we found
that with the entailment relationship between claim
and evidence being captured in claim-evidence sub-
graph, evidence E1 and E3 contribute more to the
correct class capsule SUPPORTED, which leads to
a reasonable result.

6 Error Analysis

We randomly select 200 incorrectly predicted in-
stances and summarize the primary types of errors.

The first type of errors is caused by failing
to match the semantic meaning of some phrases
on some complex cases. For example, the claim
“Philomena is a film nominated for seven awards.”
is supported by the evidence “It was also nomi-
nated for four BAFTA Awards and three Golden
Globe Awards.” The model needs to understand
that four plus three equals seven in this case. An-
other case is that the claim states “Winter’s Tale is
a book”, while the evidence states “Winter’s Tale
is a 1983 novel by Mark Helprin”. The model fails
to understand the relationship between novel and
book. Solving this type of problem requires the in-
corporation of additional knowledge, such as math
logic and common sense.

The second type of errors is due to the failure
of retrieving relevant evidences. For example, the
claim states “Lyon is a city in Southwest France.”,
and the ground-truth evidence states “Lyon had
a population of 506,615 in 2014 and is France’s
third-largest city after Paris and Marseille.”, which
gives not enough information to help model make
a true judgement.

7 Consultion

In this work, we present a novel heterogeneous-
graph reasoning and fine-grained aggregation
framework on the claim verification subtask of
FEVER. We propose heterogeneous graph attention
network to better exploit different types of relation-
ships between nodes within reasoning graph. Fur-
thermore, the capsule network is used to observe
fine-grained distributions of stances towards claim
from multiple pieces of evidence. The framework
is proven to be effective and achieve significant and
explainable performance. In the future, we would
like to explore a fine-grained reasoning mechanism
within graph and jointly learn evidence selection
and claim verification.
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A Implementation Details

In the document retrieval and sentence selec-
tion stages, we simply follow the method from
Hanselowski et al. (2018b) since their method has
the highest score on evidence recall in the former
FEVER shared task and we focus on the claim
verification task. We describe our implementation
details in this section.

Document Retrieval and Sentence Selection
We adopt the entity linking approach from
Hanselowski et al. (2018b), which uses entities as
search queries and find relevant Wikipedia pages
through the online MediaWiki API2. Then related
sentences are selected from retrieval document. We
follow the previous method from Zhao et al. (2020)
and use BERT as sentence retrieval model. We
use the [CLS] hidden state to represent claim and
evidence sentence pair. Then a rank layer is trained
to rank score via pairwise loss. Sentences with
top-5 relevance scores are selected to form the final
evidence set in our experiments.

Claim Verification In our HGRGA, we set the
batch size to 256, the number of evidences N to
5 and the dimension of features d to 768. The
number of class capsules K is 3, the dimension of
class capsules dc is 10. We set the number L of
the graph attention layer as 2, and the head number
M as 4. The model is trained to minimize the
capsule loss (Sabour et al., 2017) using the Adam
optimizer (Kingma and Ba, 2014) with an initial
learning rate of 3e-5. In the loss function, the down-
weighting coefficient λ is 0.5, margins m+ and m−

are set to 0.8 and 0.2. We use an early stopping
strategy on the label accuracy of the validation set,
with a patience of 10 epochs.

B Additional results on different
hyper-parameters

Effect of Pre-trained Models Table 5 shows the
results of different pre-trained models on the test
set in detail. When the size of pre-trained model be-
comes larger, the performance of proposed method
could be improved. We can also discover from the

2https://www.mediawiki.org/wiki/API

Pre-trained Model Learning Rate Time LA FEVER
BERT-base 3e-5 35m 74.26 70.72
BERT-large 2e-5 2h20m 75.10 71.86

RoBERTa-base 3e-5 37m 76.54 73.81
RoBERTa-large 2e-5 2h15m 77.38 74.21

Table 5: Additional results of HGRGA on the test set
using different pre-trained models (%).

GAT Layers L
Head Number M

2 3 4 5

2 72.83 73.94 74.26 74.10
3 73.41 74.15 74.11 74.05
4 70.87 72.56 72.87 73.60

Table 6: Label accuracy on the test set with different
GAT layers and head numbers (%).

table that models with RoBERTa-large achieve the
best results.

Effect of GAT Layers and Attention Head We
conduct additional experiments to check the ef-
fect of the number of GAT layers and attention
head, which could be important and sensitive to
our proposed method. Table 6 shows the result of
parameter-tuning experiment and we choose L = 2
and M = 4 as hyper-parameters settings.
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Abstract

Many people read online reviews to learn about
real-world entities of their interest. However,
majority of reviews only describes general ex-
periences and opinions of the customers, and
may not reveal facts that are specific to the en-
tity being reviewed. In this work, we focus on a
novel task of mining from a review corpus sen-
tences that are unique for each entity. We refer
to this task as Salient Fact Extraction. Salient
facts are extremely scarce due to their very na-
ture. Consequently, collecting labeled exam-
ples for training supervised models is tedious
and cost-prohibitive. To alleviate this scarcity
problem, we develop an unsupervised method
ZL-Distiller, which leverages contextual lan-
guage representations of the reviews and their
distributional patterns to identify salient sen-
tences about entities. Our experiments on mul-
tiple domains (hotels, products, and restaurants)
show that ZL-Distiller achieves state-of-the-
art performance and further boosts the perfor-
mance of other supervised/unsupervised algo-
rithms for the task. Furthermore, we show that
salient sentences mined by ZL-Distiller provide
unique and detailed information about entities,
which benefit downstream NLP applications in-
cluding question answering and summarization.

1 Introduction

Online reviews have become a rich source of infor-
mation for people to know more about real-world
entities for making purchasing decisions (Bright-
Local, 2019). Reviews contain diverse information
ranging from general sentiments and customer ex-
periences to features and attributes about an entity.
Table 1 shows examples of different types of in-
formation found in reviews. Since consuming a

∗Work done during internship at Megagon Labs.
†Work done while at Megagon Labs.

The Fifth Workshop on Fact Extraction and VERification
(FEVER). Co-located with Association for Computational
Linguistics 2022.

large number of reviews can be cumbersome, text
mining tools and algorithms are popularly used
to uncover and aggregate customer sentiments ex-
pressed in opinions and experiences to provide a
summary of how the entities are perceived by cus-
tomers. However, existing mining tools largely
ignore information about unique features and at-
tributes of the reviewed entity. Such information
tends to be sparse compared to expressions about
usage, experience and opinions. We observe that
in domains such as hotel reviews, sentences with
unique features can be as few as 5% of all sentences
in the reviews. In a public dataset (Reviews, 2021),
for example, “rooftop bar” of Table 1 appears in
only 3,026 of 8,211,545 sentences and the attribute
is rare that exists in only 197 of 3945 TripAdvisor
hotels. Nevertheless, such information is of great
interest to users and can be further useful for many
downstream applications such as ranking reviews,
creating concise entity summaries and answering
questions about the entities.

In this work, we focus on mining sentences that
describe unique information about entities from its
reviews. We call these unique sentences salient
facts and denote this task as Salient Fact Extrac-
tion. Although scarce, salient facts exhibit at least
one of the two characteristics: (a) they mention
attributes rarely used to describe other entities (ex-
ample 1 in Table 1), or (b) they convey unique,
detailed information (e.g. numeric or categorical)
about a common attribute (example 2 in Table 1).
Due to the scarcity of salient facts in the reviews,
collecting a labeled dataset to train a supervised
model is extremely inefficient and cost-prohibitive.

Although there is a rich body of research on
extracting tips, informative and helpful sentences
from reviews (Li et al., 2020; Novgorodov et al.,
2019; Negi and Buitelaar, 2015; Guy et al., 2017a;
Wang et al., 2019; Chen et al., 2014; Hua et al.,
2019; Zhang et al., 2019; Gao et al., 2018), these
approaches have several limitations for extracting
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Sentence Type

1 There is a rooftop bar. Salient Fact
2 The hotel gives 90% discount for

seniors.
Salient Fact

3 The price is cheap. Sentiment
4 We stayed 3 nights here. Usage Experience
5 Choose other hotels instead. Suggestion

Table 1: Different types of information in hotel reviews.
A salient fact mentions attributes (marked in blue) dis-
tinctive to the hotel or provides uncommon descriptions
(marked in red) for common attributes.

salient facts. Firstly, informativeness and saliency
are related but have subtle differences. Not all in-
formative sentences describe unique information
about an entity. Secondly, due to scarcity of salient
facts, collecting labeled training data to train super-
vised techniques (which is the common technique
used for finding informative reviews) can be expen-
sive and time-consuming.

To address the scarcity problem, we propose a
novel unsupervised extractor for identifying salient
sentences in a zero-label setting where abundant
unlabeled reviews are available. A naive approach
is to refer to the distributional patterns of salient
sentences in a review corpus. We projected all the
sentences in a corpus to a t-SNE plot (Hinton and
Roweis, 2002) and found that salient sentences tend
to appear as border points on the graph. However,
we observed that not all border points are salient
facts. Many sentences mentioning named entities
names or unique personal stories also appear as bor-
der points. Such non-informative sentences thus
make distributional patterns noisy and the extrac-
tion challenging.

Based on these distributional patterns, we
propose a novel system, ZL (Zero Label) -
Distiller, which uses two Transformer-based
models for capturing unique and informative
distributional patterns to extract salient facts.
It uses a Transformer-based entity prediction
model to identify most unique sentences for
an entity, and another Transformer-based model
to filter out non-informative sentences, such
that informative sentences can be kept. The
former one measures how distinctive a review
sentence is to the corresponding entity but not to
others. The latter one masks entity names in all
sentences and drops those sentences that are likely
personal stories. To our best knowledge, this is
the first work to capture distributional patterns

of all sentences for mining useful review sentences.

Contributions. In summary, our contributions
are four folds. (1) We formulate a novel task
that extracts entity-specific information (denoted
as salient facts) from online reviews (2) To deal
with scarcity of salient facts, we present an un-
supervised method ZL-Distiller, which relies on
distributional patterns instead of human annota-
tions. (3) We show that ZL-Distiller leads to new
state-of-the-art performance when used indepen-
dently, or combined with supervised models on 3
domains (Hotel, Product and Restaurant). (4) We
demonstrate that ZL-Distiller benefits downstream
applications including question answering, and en-
tity summarization by removing non-informative
sentences from the pipeline.

2 Related Work

Helpful review definitions. Research community
has continuously devoted to understanding which
reviews are the most helpful (Li et al., 2020). The
gold standard is to collect labels (e.g. helpful or
not helpful votes) from various readers passively.
Recently, researchers begin to realize that helpful
reviews are broad, so they proactively propose
sub-concepts, including tip(Hirsch et al., 2021;
Guy et al., 2017a; Challenge, 2020), sugges-
tion (Negi and Buitelaar, 2015; Negi et al., 2019;
Moghaddam, 2015), and sentiment (Liu, 2012),
as complements. To further address this issue,
we introduce salient facts as a novel sub-concept,
that aims at extracting the most entity-specific
information from raw reviews. We demonstrate
the real value of salient facts through three natural
language processing applications, including
saliency estimation, question answering, and entity
summarization. Similar to existing sub-concepts,
we anticipate the widespread adoption of salient
facts in various domains, including but not limited
to hotel (Negi and Buitelaar, 2015), product (Nov-
gorodov et al., 2019), restaurant (Challenge, 2020),
and travel (Guy et al., 2017a), in the near future.

Label-reliant solutions. Most of existing extrac-
tion models (Novgorodov et al., 2019; Negi and
Buitelaar, 2015; Guy et al., 2017a; Wang et al.,
2019; Chen et al., 2014; Hua et al., 2019; Zhang
et al., 2019; Gao et al., 2018; Li et al., 2019;
Evensen et al., 2019) are supervised. Although
their extraction qualities approximate human per-
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formance, the deployment of these models requires
a great amount of human labels. Collecting labels
for these models can be time-consuming and costly
since the process deals with worker education,
salary negotiation, and mistake label filtering.
Therefore, we propose ZL-Distiller that adopts a
label-free design choice while is also compatible
to label-reliant solutions.

Label-free solutions. Some label-free solutions
attempted to remove the reliance on labels by lever-
aging data characteristics. For example, Zero-shot
learning (Lewis et al., 2020) predicts a sentence
as true if its embedding is close to the class name
(e.g. salient fact or helpful). Unsupervised entity
extraction (Akbik et al., 2018, 2019a,b; Schweter
and Akbik, 2020) predicts the sentence as true if
its tokens contain named entities, such as person or
location. Though these methods have sufficiently
leveraged lexical characteristics of a single sen-
tence, they are incapable of leveraging common
characteristics of a group of sentences (e.g. salient
facts), with which helpful review mining can be
substantially boosted. Our label-free solution, i.e.
ZL-Distiller, identifies two distributional patterns
of salient facts, i.e. unique and informative,
to extract the comments containing salient facts. By
utilizing these characteristics, ZL-Distiller shows
superior performance in the salient fact extraction
task.

3 Method

A summary of ZL-Distiller and its performance
comparison with existing systems is depicted in
Figure 1. Overall, ZL-Distiller is an unsupervised
extractor that leverages distributional patterns (Fig-
ure 1A) to identify salient facts. ZL-Distiller in-
troduces two components, Unique model and
Informativemodel (Figure 1B and upper panel
of 1C), to predict the uniqueness of a sentence
and to exclude non-informative sentences, respec-
tively. ZL-Distiller achieves better performance
when compared with unsupervised baselines (e.g.
zero-shot learning) under unsupervised setting (Fig-
ure 1B). Though ZL-Distiller shows worse perfor-
mance compared with supervised baselines (up-
per panel of Figure 1C), it boosts the performance
when used jointly with supervised solutions (e.g.
BERT) under supervised setting (lower panel of
Figure 1C).

3.1 Salient Fact Extraction

We formulate Salient Fact Extraction as a sen-
tence classification task. We choose a sen-
tence to be an instance instead of a review
because a review could contain both relevant
and irrelevant content. Giving a set of enti-
ties E = {e1, e2, · · · , ei, · · · , en} with n dif-
ferent entities in a specific domain, each entity
would have its own set of review sentences Si =
{si,1, si,2, · · · , si,j , · · · , si,m}, where si,j means a
review j sentence from ei. Within Si, our goal is to
find out review sentences that are representative for
ei compared with all other entities. As a sentence
classification task, each review sentence si,j will
be given a label of {0, 1}, where 1 means salient
fact. The set of n entities can be defined by their
real-world affinity (e.g. hotels on the same street
or companies of the same field).

3.2 Unique Model

We notice that a salient fact review sentence means
that the sentence should be (i) representative for the
corresponding entity, (ii) unique for the correspond-
ing entity, and (iii) not applicable for other entities.
Figure 2 shows the idea. For Entity 1 in Figure 2,
we can separate all the review sentences into two
groups, (A) sentences that are representative and
unique for Entity 1 and (D) sentences that are also
applicable to Entity 2 and 3. Given the idea, our
goal is to extract review sentences in (A). And such
extraction strategy can be applied to any number
of entities. In order to find out salient review sen-
tences, we will need to model the distribution of
the review sentences for each entity. By comparing
the distribution, we can design a scoring function
to rank the level of saliency.

3.2.1 Distribution Modeling

We fine-tune BERT (Devlin et al., 2019) to model
the distribution of the review sentences. The model
is designed as a multi-class classifier where each
class stands for an entity ei. We first feed the whole
review sentence into BERT. On top of the repre-
sentation of [CLS], we apply a dense layer and
a softmax function to get the probability over the
entities. The probability P (ei|si,j) outputted by
the model is then the estimated probability of a
sentencesi,j belonging to entity ei. Notice that
higher probability also means that the review sen-
tence is more representative for entity ei.
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Figure 1: Summary of this paper. Fine-tuned BERT with ZL-Distiller achieves the best F1 improvement. Here when
we compare all systems against the same baseline, random guess, that predicts a review as salient at the probability
of %positive (the ratio of salient facts shown in Table 3).

Figure 2: The idea of ZL-Distiller. The reviews of
every entity can be separated into two parts, unique
and representative sentences that are only applicable
for a specific entity and sentences describing facts that
share with other entities. ZL-Distiller will extract review
sentences that are unique to every entity. For example,
review comments given to Entity 1: “(A) The hotel
provides free shuttle from/to the airport. (D) I like this
hotel”. Review comments given to Entity 2: “(B) the
hotel is the tallest building with awesome views. (D) I
really like this one”. Review comments given to Entity
3: “(C) This is the only hotel that offers free parking.
(D) A perfect place to live in.” For Entity 1, ZL-Distiller
will automatically extract the sentence (A) containing
salient facts from comments.

3.2.2 Scoring Design

Given the estimation of probability, we design the
following scoring function to find out review sen-
tences that are representative for entity ei but not
applicable for other entities E− ei:

Score(si,j) = P (ei|si,j)− 1

|E− ei|
∑

ek∈E−ei

P (ek|si,j)

(1)

The higher value of the first term P (ei|si,j) mea-
sure if si,j is representative for its own entity ei.
The second term 1

|E−ei|
∑

ek∈E−ei P (ek|si,j) mea-
sures whether the si,j is also applicable to other
entities. Overall, the range of the score is between
−1 to 1 with 1 stands for the perfect case of salient
facts.

3.3 Informative Model
We next design Informative Model to further
improve extraction performance. We explore a
set of techniques that can be summarized as two
heuristics i.e. irrelevance removal and target name
removal. The informative model output is fed as
the input of the unique model.

3.3.1 Irrelevance Removal
As shown in Table 2, column “Review Sentence”,
some people would describe their own experience
which is not necessarily relevant to the entity when
writing reviews. Such irrelevant review sentences
could be noises when training the model to esti-
mate the entity distribution. Therefore, we train
irrelevance classifiers as a binary classifier using
BERT (Devlin et al., 2019) that can be used in dif-
ferent domains. The BERT was trained with 600
manually annotated sentences. These sentences
were sampled from the same source as the salient
facts datasets (Reference in Section 4.1). The re-
view sentences that convey relevant information are
labeled as 0, whereas those conveying irrelevant in-
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Review Sentence Label

Many are still buying the KXTG76xx. 0

I purchased this nice phone for my husband 1

The smaller handsets are the same size as the
ATT sets I’m replacing from 8 years ago.

0

They have the same amount of volume too. 0

Could be louder but same volume as my iPhone. 0

Table 2: Example review sentences of relevance and
irrelevance. Some people would describe something
that is not necessarily relevant to the target entity. These
irrelevant review sentences will be labeled as 1. Oth-
erwise, relevant review sentences will be labeled as 0.
Sentences are extracted from Amazon office product
review dataset.

formation are labeled as 1. Given that we only have
a few annotations, we split data into ten folds and
train ten models where each model is trained on the
selection of nine folds. Notice that even though the
goal is to remove the irrelevant review sentences,
accidentally removing a relevant review sentence
is undesired. Therefore, we take a strict way to
aggregate the models’ output by averaging all the
predicted probabilities. When applying irrelevance
removal rule, review sentences that are predicted
as irrelevant will be removed for both training and
testing.

3.3.2 Target Name Removal
When writing reviews, it is highly possible to men-
tion the name of the target entity, such as “I stayed
at the Library Hotel over Christmas and it was a
true delight.” and “There are so many things about
The Library that make it my new favorite hotel in
NYC.” It is obvious that when mentioning the target
name of the entity, such review sentences will have
high score as they are totally unique to the target
entity and not applicable to other entities at all. We
thus believe that target name removal is necessary.
To do so, we turn the target name into a dummy
symbol [TARGET_NAME]. However, as we can
see in the above mentioned examples, people could
refer to the target entity using different aliases such
as “Library Hotel” or “The Library”. Automati-
cally extracting alias itself is a hard problem in
natural language processing field.

To solve this problem, we gather all potential
aliases of the targeted entity to augment the list
of entity names before training. Notice that in
some domains, it is infeasible to gather aliases as
the target entity name is too general such as Prod-

Domain #Sample #Positive #Negative %Positive

Hotel 1008 164 844 16.3%
Product 1015 69 946 6.8%

Restaurant 766 45 721 5.9%

Table 3: Dataset statistics.

uct domain from Amazon review. During training
stage, we feed the augmented list to ZL-Distiller so
that it can maximally recognize the entity names.
We cannot rule out the possibility that some rare
entity aliases will be retained in the comments af-
ter target name removal, but most of aliases of the
target entity will be removed. In our experiments,
target name removal can bring up to 4.3% F1 per-
formance improvement.

4 Experiment

4.1 Datasets

We obtain Hotel, Product, and Restaurant datasets
from public reviews of TripAdvisor (Reviews,
2021) 1, Amazon (He and McAuley, 2016), and
Yelp 2, respectively. Since a review contains multi-
ple sentences, we split every review into individual
sentences using NLTK tokenizer.

We randomly sample 1008, 1015, and 766
sentences for Hotel, Product, and Restaurant,
respectively. We invite human editors to label
sentences, with label 1 representing the sentence
containing a salient fact and label 0 otherwise.
The cohen’s kappa of two annotators is 0.80. The
value indicates a high degree of agreement when
compared with the results of existing helpful
review annotation (e.g., 0.81 from suggestion
annotation (Negi and Buitelaar, 2015) and 0.59
from travel tip annotation (Guy et al., 2017b)).
The datasets statistics regarding three domains
are shown in Table 3, and the full data annotation
process is in Appendix, section Data Annotation.

Evaluation metric. We use F1 score, i.e. the
harmonic mean of precision and recall 3, to evaluate
the extraction performance. Since salient facts are
sparse and dominant label is label 0, we use F1
scores of label 1 for accurate assessment (Li et al.,
2020).

1https://www.cs.cmu.edu/~jiweil/html/hotel-review.html
2https://www.yelp.com/dataset/documentation/main
3https://en.wikipedia.org/wiki/F-score
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(a) Hotel (b) Product (c) Restaurant

Figure 3: t-SNE plot of BERT [CLS] sentence embeddings (see Section 3.2.1). Semantically similar sentences
appear close in the graph. Salient fact sentences tend to appear at borders, indicating they are dissimilar to normal
sentences that appear at the center. Some normal sentences would also appear at borders, indicating unique sentences
are not necessarily salient facts. The results suggest that we need both Unique and Informative models for
the best extraction quality.

4.2 Distributional Patterns

To obtain distributional patterns of salient facts
among all sentences, we use a t-SNE plot to visual-
ize semantic similarity between different sentences.
After being projected to the two-dimensional t-SNE
plot, more similar sentences will appear closer in
the graph. In our t-SNE analysis, we first input
every sentence to BERT and use [CLS] vector as
its vector representation. We next visualize all the
vectors to the t-SNE plot, with salient facts marked
in red and normal sentences marked in blue. The t-
SNE plots for Hotel, Product, and Restaurant show
clear patterns of salient facts distribution as shown
in Figure 3.

On all the three t-SNE plots, salient facts tend
to appear at borders but not centers. The pattern
suggests that salient facts tend to provide unique
information that is specific to the corresponding
entity. This “unique” pattern motivates the de-
sign of unique model of ZL-Distiller. Besides,
though border points are the most unique sentences,
we notice that a large number of them are not
salient facts. They appear at border not because
they are salient, but because they contain uncom-
mon words such as entity name or personal stories.
Such uncommon words do not convey “informa-
tive” messages about the entity. Therefore, in ad-
dition to the unique model, ZL-Distiller adopts
an informative model to mask entity names
and drops personal stories sentences. Further anal-
ysis on the differences of salient facts and normal
sentences regarding key phrases are in Appendix,
section Explanation of Saliency with Key Phrases.

Hotel Product Restaurant

Random guess 0.163 0.068 0.059
TextRank 0.309 0.146 0.100
LexRank 0.304 0.150 0.096
Zero-Shot 0.133 0.129 0.071

PacSum (bert) 0.273 0.127 0.070
PacSum (finetune) 0.240 0.200 0.079

PacSum (tfidf) 0.342 0.317 0.077

ZL-Distiller 0.407 0.201 0.144
ZL-Distiller + PacSum 0.424 0.414 0.300

Table 4: F1 score comparison with the state-of-the-art
unsupervised baselines. Best scores are marked in bold.
ZL-Distiller outperforms all baselines except PacSum
(tfidf) on Product. ZL-Distiller further boosts the per-
formance when combined with PacSum (tfidf). More
performance results of ZL-Distiller + PacSum (tfidf)
are in the Appendix, Section “Performance of Jointly
Unsupervised Prediction”.

The effects of unique and informative mod-
els on the extraction performance are in Appendix,
section Effect of Unique Model and section Ef-
fect of Informative Model.

4.3 Comparison with Label-free Solutions

Zero-shot learning (HuggingFace, 2020; Lewis
et al., 2020) is one of the state-of-the-art solutions
that require zero training labels for text extraction.
Zero-shot learning can predict the probability of
the review belonging to the class, if it is fed with
a review and a class name. Therefore, we apply
zero-shot learning to the salient fact extraction task.
Specifically, we iterate the class name in a set of
“salient”, “interesting”, “informative”, “unique”,
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Model Top-n
10 30 50 100

Hotel
ZL-Distiller 0.222 0.338 0.400 0.415
BERT 0.356 0.585 0.588 0.459
ZL-Distiller +BERT 0.356 0.615 0.565 0.459

Product
ZL-Distiller 0.276 0.245 0.348 0.269
BERT 0.345 0.367 0.319 0.269
ZL-Distiller +BERT 0.345 0.408 0.377 0.286

Restaurant
ZL-Distiller 0.200 0.400 0.267 0.182
BERT 0.200 0.200 0.167 0.091
ZL-Distiller +BERT 0.200 0.300 0.267 0.182

Table 5: Performance of supervised learning (i.e. BERT
and ZL-Distiller + BERT) using domain-specific labels.
Best F1 scores are marked in bold.

and “concrete”, and pick the class name that offers
the best extraction performance. When evaluat-
ing a class name, we vary the prediction threshold
from 1 to 0, and report the highest F1 score. We
use HuggingFace implementation (HuggingFace,
2020) of zero-shot learning (Lewis et al., 2020) for
experiments.

In addition to zero-shot learning, we also
deploy popular text summarization algorithms,
which are TextRank (Mihalcea and Tarau, 2004),
LexRank (Erkan and Radev, 2004), and three vari-
ants of PacSum (bert/finetune/tfidf) (Zheng and
Lapata, 2019) for comparison. These algorithms
select informative sentences to represent long text
so their outputs naturally form a set of candidate
salient facts.

We present F1 scores of all methods in Table 4.
According to the results, ZL-Distiller shows com-
parable or better performance compared with exist-
ing methods, consistently on Hotel, Product, and
Restaurant. Furthermore, we combine the predic-
tion scores of ZL-Distiller and PacSum (tfidf) by
taking dot product for every sentence. We observe
that such combination leads to the highest F1 scores
on all three datasets. The results suggests that ZL-
Distiller serves as a new strong baseline for salient
fact extraction. Meanwhile, ZL-Distiller can work
with existing baselines to achieve the best perfor-
mance.

4.4 Performance of Jointly Supervised
prediction

ZL-Distiller can extract salient facts in unsuper-
vised manner where data labels are absent. Since
ZL-Distiller captures distributional patterns, we
then investigate whether ZL-Distiller is still use-
ful in supervised manner where data labels are

present. Briefly, we use BERT with data labels
as the representative supervised solution. Next, we
combine BERT prediction scores with ZL-Distiller
prediction scores, by taking products of BERT and
ZL-Distiller scores and, then, rank sentences by
product scores. We denote this combination as ZL-
Distiller + BERT. Finally, we take the top-n as the
predicted salient facts and then return F1 scores
when setting top-n with various number, i.e. 10, 30,
50, and 100.

We present the F1 scores of ZL-Distiller, BERT,
and ZL-Distiller + BERT in Table 5. As expected,
ZL-Distiller F1 scores are lower than BERT on Ho-
tel and Product as ZL-Distiller does not use domain-
specific labels. However, ZL-Distiller shows better
performance than BERT on Restaurant. The reason
is that Restaurant has extremely low ratio of salient
facts (i.e. 5.9%, as shown in Table 3), for which the
number of salient facts for training is insufficient.
The results suggest that ZL-Distiller is effective
when there are no or insufficient data labels.

When there are sufficient labels (e.g. on Hotel
and Product), ZL-Distiller performs worse than
supervised solution (i.e. BERT). However, ZL-
Distiller is still helpful, indicated by the results
that ZL-Distiller + BERT achieves better F1 scores
than BERT on all three datasets. The highest F1
improvement is 10%, 18%, and 100%, on Hotel,
Product, and Restaurant, respectively, as shown in
Table 5. Such improvement is general to various
domains and this is because that ZL-Distiller can
always capture distributional patterns as discussed
in Section 4.2.

5 Application

In this section, we demonstrate the effect of salient
facts in downstream NLP applications. We apply
salient fact extraction in company reviews, and
select three downstream applications, including re-
view saliency estimation, question answering, and
company summarization. We used ZL-Distiller +
BERT (denoted as saliency prediction model) to
obtain salient facts as inputs for downstream appli-
cations.

5.1 Saliency Estimation

An important application of salient fact extraction
is saliency estimation, which returns the probabili-
ties of a text being salient and non-salient. To per-
form saliency estimation, we deploy our saliency
prediction model to evaluate two reviews of Google
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Google review Pos. Neg.

When a Google employee passes away, sur-
viving spouse receives 50% of their salary for
the next 10 years.

0.65 0.39

awesome place to work, great salary, smart
people.

0.02 0.99

Table 6: Saliency estimation of a raw review in terms of
saliency (i.e. Pos.) and non-saliency (i.e. Neg.) scores.

Question Salient Raw

How long is parental leave? 12
weeks

nice amount of
leave

How much would company
pay for health insurance?

90% 401k

Table 7: Question answering based on Google reviews
using DistilBERT (Sanh et al., 2019).

and show the probabilities in Table 6. The first re-
view reveals a rare company policy (i.e. death ben-
efit) and numeric descriptions (i.e. 50% salary and
10 years), which are considered unique information.
The model gives a higher probability of salient (i.e.
0.65) than non-salient (i.e. 0.39), suggesting that
saliency prediction model can appropriately rank
unique sentences. The second review discusses
common attributes such as work, salary, and people
and uses sentimental descriptions like awesome and
great, which are considered as non-unique infor-
mation. The model predicts a lower probability of
salient (i.e. 0.02) than non-saliency (i.e. 0.99), sug-
gesting that saliency prediction model can rank non-
unique sentences. Taken together, these saliency
estimation probabilities serve as good references
for readers to select or rank raw reviews.

5.2 Question Answering

Question answering (QA) tasks (such as SQuAD
1.0 and 2.0), take a knowledge-seeking question
and a text context as inputs and then retrieves an-
swer for the question in the context. Though the
process is straightforward, application of QA to
reviews meets a challenge, which is widespread
general comments (e.g. sentiments) that lead to
wrong answers. To overcome this challenge, we
use saliency prediction model to prioritize informa-
tive reviews. In brief, we prepare two contexts
using different sentences (i.e. salient facts and
raw reviews) and input two questions (i.e. “How
long is parental leave” and “How much would com-
pany pay for health insurance”) for both contexts.

Googlers can relax after a long day by braving
the rock climbing wall, playing billiards, or just
relaxing in a self-controlled massage chair. Google
is paying out my unvested options and RSUs and
gave me a grant of GSUs to boot.

Awesome place to work, great salary, smart people,
lots of happy hours and the free food is as great as
everyone says it is. Too much emphasis on work
life balance. Can really make a difference in the
world.

Table 8: Summary of Google using salient facts (up) and
raw reviews (down). Salient facts enable finer-grained
summarization that presents specific attributes (e.g. rock
climbing wall) of Google rather than general attributes
(e.g. work life balance) of Company class.

We then use HuggingFace question answering en-
gine (Face, 2020; Sanh et al., 2019) to look for
answers in contexts to obtain company knowledge.
Our results show that salient facts context returns
higher-quality answers than raw reviews context.
For example, for the question “How long is parental
leave”, salient facts return an objective and un-
biased answer (i.e. 12 weeks), whereas raw re-
views return a subjective and biased answer (i.e.
nice amount of leave). More comparative results
are shown in Table 7. These results suggest that
salient facts enable accurate question answering
over reviews, where objective and subjective texts
are mixed.

5.3 Entity Summarization

According to our results, salient facts represent a
collection of unique sentences in the reviews. In ad-
dition to their uniqueness, we also find that salient
facts can serve as ingredients for high-quality en-
tity summarization. We compare two summaries
of Google reviews (shown in Table 8) based on
salient facts and raw reviews, respectively. We
use BART (Lewis et al., 2020) as summarizer and
set the expected number of words to 50. The re-
sults show that salient facts based summary is more
specific to the entity as it reveals finer-grained
attributes (e.g. rock climbing wall). Moreover,
salient facts based summary is unbiased as it sel-
dom contains sentimental words (e.g. awesome
and great). Contrastively, raw reviews based sum-
mary mentions commonsense attributes (e.g. work
and salary) and sentimental words (e.g. awesome
and great) more frequently. Therefore, these re-
sults suggest that salient facts based summary will
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be more favorable for readers who are looking for
informative and unbiased entity summarization.

6 Conclusion

In this paper, we propose to extract salient facts
from online reviews. To achieve this goal, we de-
velop ZL-Distiller, which is the first-of-its-kind
system for salient fact extraction. ZL-Distiller
does not require human labels, but labels can fur-
ther boosts its performance. To prove that salient
facts can be applied to popular real-world applica-
tions, we conduct a study on raw company reviews,
which demonstrates that salient facts can improve
the quality of downstream applications, including
saliency estimation, question answering and com-
pany summarization. These results implicate the
feasibility of salient fact extraction in real-world
text corpus including company reviews, which con-
sist of both salient and non-salient contents. Our
practice suggests that the general-purpose salient
fact extraction has a substantial effect on existing
text-based applications for diverse domains.
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Appendix

Non-informative Sentences Filtering

Recently large-scale pre-trained models (e.g. GPT-
2 or BERT) have been used to select informative
words. During pre-training, these models learned
the informativeness of individual words in human
vocabulary by reading massive natural texts such as
Wikipedia articles. In GPT-2 (Radford et al., 2019),
for example, the informative score of individual
word in “There is a rooftop bar” is 0.00007, 0.26,
0.23, 0.00001, and 0.00037, respectively4. A lower
score indicates more informativeness and adjec-
tives (e.g. rooftop) or nouns (e.g. bar) usually show
lower scores than stop words (e.g. is). With this
favorable feature, pre-trained models can be used
to rank sentences by their token informativeness.

Given pre-trained models can perceive the infor-
mativeness of individual words in a sentence, they
can be used to filter out non-informative sentences.
We use GPT-2, a representative pre-trained model,
for the filtering. Specifically, for every sentence,
we use GPT-2 to obtain informativeness scores of
its tokens, then take product of scores. We sort all
the sentences by the product scores and select top
20% sentences that have the highest scores. Since
higher score means less informativeness, the top
20% sentences represent the most non-informative
sentences and will be excluded from datasets.

To evaluate the effect of non-informative sen-
tences filtering, we report the ratio of salient facts
before and after filtering. Before filtering, the ratio
is 16.3%, 6.8%, and 5.9% in Hotel, Product, and
Restaurant dataset, respectively. After filtering, the
ratio is 19.1%, 8.1%, and 6.1%, respectively. The
ratio of salient facts increases in all of the three
datasets. The results indicate that pre-trained mod-
els can effectively exclude non-informative sen-
tences from datasets to boost the ratios of salient
facts.

Implementation Details

In this section, we describe the training detail of
the proposed model.

Unique Model. HuggingFace’s implementa-
tion5 of BERT is used for our Unique model
to estimator the probability over review sen-
tences. When fine-tuning the model, we use

4We obtain the scores using lm-scorer library (LMScorer,
2018) from Github

5https://github.com/huggingface/transformers

Adam (Kingma and Ba, 2014) as the optimizer
with batch size of 64 and learning rate of 1e-5.
The model is trained with the early stop mecha-
nism where the training will end when there is no
improvement on accuracy for three epochs. The
model with the best accuracy is kept for testing.
For each domain, we randomly sample ten entities
for training, resulting in a total of training instances
used for Hotel, Product, and Restaurant are 95,454,
44,560, and 356,505, respectively.

Irrelevance Classifier. Same as the Unique
model, the HuggingFace’s implementation of
BERT is used for irrelevance classifier. As an en-
semble model, a total of ten models is trained where
each model is trained on nine-fold of data. The
Adam (Kingma and Ba, 2014) is used as the opti-
mizer with a batch size of 64 and a learning rate of
1e-6. The model is trained with the early stop mech-
anism where after 100 epochs, the training will end
when there is no improvement on accuracy for five
epochs. The model with the best accuracy is then
kept. The overall ensemble model will take the
average of the probabilities over all the ten models’
predictions. Instances with averaged probability
higher than 0.5 are classified as irrelevance and
vice versa.

Data Annotation

We invite human editors to label sentences. In-
structions for labeling are shown as follows. First,
a salient fact sentence should be relevant to the
targeted entity, i.e. mentioning at least one at-
tribute/aspect of the entity. The purpose is to ex-
clude irrelevant contents. Second, this attribute or
aspect should be novel to readers. The purpose
is to reveal unknown information of the entity to
readers. Third, the salient fact sentence should use
measurable descriptions. The purpose is to avoid
subjective opinions that lead to biased understand-
ing of the entity. We leave the understanding of
the three conditions to annotators. We select the
sentences that satisfy the first condition and meet
either the second or third condition as salient facts.

To measure whether the labels are consistent,
we randomly sample 100 sentences (i.e. 50 salient
facts and 50 normal sentences) from the three do-
mains. We invite two annotators to relabel these
sentences and calculate cohen’s kappa score as
inter-annotator agreement. The score is 0.80 that
is comparable to the results of existing helpful re-
views annotation, e.g., 0.81 from a SEMEVAL-
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Domain salient normal

Hotel
complementary wine an experience

the rooftop deck my stay
Rooftop bar a few small requests

Product
a thick liner note Books

very computer savvy this phone system
Win XP well!2weeks

Restaurant
Ample parking bone marrow toast

$33.50 Excellent hashbrowns
The 5 oz Customer service

Table 9: Key phrases extracted from salient facts and
normal sentences, respectively. The comparison ex-
plains that salient facts reveal finer-grained attributes
or quantitative descriptions of an entity that make them
specific.

2019 Competition task 9 (Negi and Buitelaar, 2015)
and 0.59 from TipRank (Guy et al., 2017b)). The
result suggests that annotators have a high degree
of agreement on salient facts.

Explanation of Saliency with Key Phrases
To understand what elements in a sentence make it
salient, we extract key phrases of salient facts and
normal sentences. We search span in a sentence
that has the highest weights of BERT attention
mechanism as key phrase. We present key phrase
samples of salient spans and non-salient spans for
Hotel, Product, and Restaurant domains in Table 9.

Salient facts show three patterns. First, the de-
scription targeted at attributes of an entity. In Prod-
uct domain, for example, “thick liner note” or “Win
XP” mention a specific product attribute, while
“Books” and “well!2weeks” do not link to any at-
tribute. Second, the attributes are novel that go be-
yond common knowledge. In Hotel domain, for ex-
ample, “rooftop bar” or “wine” is unusual in hotel
entities, compared with “an experience” and “small
requests”. Third, the description of an attribute re-
veals its quantity. In Restaurant domain, for exam-
ple, “Ample parking” or “$33.50” relate to quantita-
tive descriptions while “excellent hashbrowns” and
“Customer service” do not reveal quantitative in-
formation of corresponding attributes. The results
suggest that the most salient facts are those sen-
tences that quantitatively describe novel attribute(s)
of an entity.

Effect of Unique Model
We first evaluate the performance of Unique
model that formulates salient fact extraction prob-
lem as entity prediction. Specifically, we randomly

Hotel Product Restaurant

Random guess 0.169 0.076 0.045

Unique model 0.395 0.205 0.114
w. Entity name removal 0.412 - 0.109
w. Irrelevance removal 0.401 0.201 0.128

ZL-Distiller 0.407 0.201 0.144

Table 10: Ablation study over Hotel, Product, and
Restaurant datasets using ZL-Distiller. F1 of ZL-
Distiller increases when turning on individual optimiza-
tions. Product has no entity name removal optimization
because the dataset has no associated product names in
the reviews.

sample 10 entities and train a BERT model using
reviews from the 10 entities. The total of training
instances used for Hotel, Product, and Restaurant
is 95,454, 44,560, and 356,505, respectively. The
training takes a review to predict its targeted en-
tity. After training, we compute the score for each
review sentence using Equation 1. To evaluate
the approach, we split data using 5-fold approach
where one fold is used for finding the best threshold
and the other four folds for testing. A total of five
rounds are tested and F1 scores are averaged as the
final score.

We report F1 scores of Unique model on Ho-
tel, Product, and Restaurant in Table 10. The F1
scores are 0.395, 0.205, and 0.114, respectively. To
understand whether the F1 scores are significant,
we evaluate the performance of random guess, a
baseline that predicts a sentence as salient fact at
the probability of %Positive, with %Positives
representing the ratio of positive labels of a dataset
(see Table 3). The F1 score of random guess for
Hotel, Product, and Restaurant is 0.153, 0.065, and
0.095, respectively and are lower than those of
Unique model. The results suggest that Unique
model can effectively improve extraction qualities
of random guess, in various domains. Therefore,
Unique is a strong signal of saliency that can be
applied to different domains.

Effect of Informative Model

Effect of entity name removal. We evaluate the
effect of entity name removal on Unique model
and report F1 scores in Table 10, with exception
for Product. Since the dataset has no associated
product names in the reviews, we cannot enable the
optimization. On Hotel, the F1 score of Unique
model increases from 0.395 to 0.412, and the
increment is 0.017. However, the F1 score on
Restaurant decreases from 0.114 to 0.109. The
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Model Top-n
10 30 50 100

Hotel
PacSum (tfidf) 0.178 0.308 0.376 0.370
ZL-Distiller +PacSum (tfidf) 0.133 0.338 0.424 0.415

Product
PacSum (tfidf) 0.414 0.286 0.290 0.218
ZL-Distiller +PacSum (tfidf) 0.414 0.367 0.319 0.252

Restaurant
PacSum (tfidf) 0.200 0.150 0.133 0.109
ZL-Distiller +PacSum (tfidf) 0.200 0.300 0.200 0.145

Table 11: Performance of zero-shot learning (i.e. Pac-
Sum and ZL-Distiller + PacSum) with zero labels. Best
F1 scores are marked in bold.

decrement is 0.005. Overall, removing entity name
does more good than harm. The results indicate
that entity names overall mislead the Unique
model and should be removed.

Effect of irrelevance removal. We evaluate the
effect of irrelevant sentence removal on Unique
model and report F1 scores in Table 10. After
applying irrelevant sentences removal, the F1 score
of Unique model on Hotel/Restaurant increases
from 0.395/0.114 to 0.401/0.128. The increment
is 0.006/0.014. However, the F1 score on Product
decreases from 0.205 to 0.201, and the decrement
is 0.004. Overall, the gain is higher than loss, so
removing irrelevant sentences does more good
than harm. The results indicate that irrelevant
sentences overall mislead the Unique model and
should be removed.

Overall effect. We evaluate the overall per-
formance of ZL-Distiller when leveraging both
Unique model and Informative model (i.e.
turning on entity name removal and irrelevance
removal simultaneously). We show F1 scores in
Table 10. Compared with Uniquemodel only, ZL-
Distiller achieves 0.012 and 0.03 F1 gains on Hotel
and Restaurant. Meanwhile, ZL-Distiller shows
similar F1 on Product with a difference as small
as 0.004. We anticipate ZL-Distiller can perform
better on Product when entity names are present in
the dataset.

Performance of Jointly Unsupervised
Prediction

Since ZL-Distiller captures distributional patterns
including “unique” and “informative”, we would
like to understand whether ZL-Distiller is still help-
ful to the state-of-the-art unsupervised extractor.
For this purpose, we use PacSum (Zheng and Lap-

ata, 2019), a recent extractive summarizer, as the
representative unsupervised solution. We first ob-
tain PacSum extraction performance using tfidf
as sentence embedder. We next combine Pac-
Sum (tfidf) prediction scores with ZL-Distiller
prediction scores and denote the combination as
ZL-Distiller + PacSum (tfidf). Specifically, ZL-
Distiller + PacsuM (tfidf) takes products of PacSum
(tfidf) scores and ZL-Distiller scores then ranks sen-
tences by product scores. We take the top-n as the
predicted salient facts and vary n with 10, 30, 50,
and 100. For each n, the F1 score is reported.

We present the F1 scores of PackSum (tfidf) and
ZL-Distiller + PacSum (tfidf) in Table 11. ZL-
Distiller + PacSum (tfidf) improves the F1 score of
PacSum (tfidf) on 11 out of the 12 settings. Specif-
ically, ZL-Distiller + PacSum (tfidf) outperforms
PacSum (tfidf) on Product and Restaurant on all
of the top 10, 30, 50, and 100 settings, and on Ho-
tel on top 30, 50, and 100 settings. The results
suggest that ZL-Distiller overall is helpful to the
state-of-the-art unsupervised solution towards bet-
ter extraction performance.

Technical Novelty
Herein, we proposed to exploit distributional pat-
terns for review mining tasks. Our results demon-
strate that distributional patterns are auxiliary
patches to salient fact extraction as they lead to bet-
ter performance when combined together. There-
fore, we expect that the deployment of distribu-
tional patterns in relevant studies, such as helpful
review prediction or suggestion mining, can also
generate better results, which will extensively ex-
pand the applications of our proposed pattern in
the field of review mining. We also proposed a
scoring mechanism that works well on a variety
of domains (i.e., hotel, product, restaurant) in both
supervised and unsupervised settings. The scoring
mechanism together with target_name and irrele-
vant_sentence_removal models lead to unbiased
and unique results in Question Answering and En-
tity Summarization, compared to the results with-
out their processing. Finding useful reviews is of
high practical importance and can be applied to
many NLP problems. We chose the most appropri-
ate mechanisms instead of developing new methods
to have the best results. In the future, we will apply
this task to mining more informative reviews for a
variety of NLP domains and applications.
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Abstract
Automatic fake news detection models are os-
tensibly based on logic, where the truth of a
claim made in a headline can be determined
by supporting or refuting evidence found in a
resulting web query. These models are believed
to be reasoning in some way; however, it has
been shown that these same results, or better,
can be achieved without considering the claim
at all – only the evidence. This implies that
other signals are contained within the exam-
ined evidence, and could be based on manip-
ulable factors such as emotion, sentiment, or
part-of-speech (POS) frequencies, which are
vulnerable to adversarial inputs. We neutralize
some of these signals through multiple forms
of both neural and non-neural pre-processing
and style transfer, and find that this flattening
of extraneous indicators can induce the models
to actually require both claims and evidence to
perform well. We conclude with the construc-
tion of a model using emotion vectors built off
a lexicon and passed through an “emotional
attention” mechanism to appropriately weight
certain emotions. We provide quantifiable re-
sults that prove our hypothesis that manipulable
features are being used for fact-checking.

1 Introduction

Recent events such as the last two U.S. presidential
elections have been greatly affected by fake news,
defined as “fabricated information that dissemi-
nates deceptive content, or grossly distort actual
news reports, shared on social media platforms”
(Allcott and Gentzkow, 2017). In fact, the World
Economic Forum 2013 report designates massive
digital misinformation as a major technological and
geopolitical risk (Bovet and Makse, 2019). As daily
social media usage increases (Statista Research De-
partment, 2021), manual fact-checking cannot keep
up with this deluge of information.

Automatic fact-checking models are therefore a
necessity, and most of them function using a sys-
tem of claims and evidence (Hassan et al., 2017).

Given a specific claim, the models use external
knowledge as evidence. Typically, a web search
query is treated as the claim, and a subset of the top
search results is treated as the evidence. There is
an implicit assumption that the fact-checking mod-
els are reasoning in some way, using the evidence
to confirm or refute the claim. Recent research
(Hansen et al., 2021) found this conclusion may
be premature; current models can show improved
performance when considering evidence alone, es-
sentially fact-checking an unasked question. While
this might seem reasonable given that the evidence
is conditioned on the claims by the search engine,
this can be exploited as illustrated in Figure 1,
which shows that evidence returned using a ridicu-
lous claim can still appear reasonable if we view
the evidence alone without the claim. Furthermore,
textual entailment requires both a text and a hypoth-
esis; if we have a result without a hypothesis, we
are performing a different, unknown task.

This finding indicates a problem with current
automatic fake news detection, signaling that the
models rely on features in the evidence typical to
fake news, rather than using entailment. Since most
automated fact-checking research is primarily con-
cerned with the accuracy of the results, rather than
addressing how the results are achieved, we pro-
pose a novel investigation into these models and
their evidence. We use a variety of pre-processing
steps, including neural and non-neural ones, to at-
tempt to reduce the affectations common in evi-
dence:

• Stemming, stopword removal, negation, and
POS-filtering (Babanejad et al., 2020).

• Style transfer neural models using the Style-
former model to perform informal-to-formal
and formal-to-informal paraphrasing meth-
ods (Li et al., 2018; Schmidt, 2020).

We also develop our own BERT-based model as
an extension of the EmoCred system (Giachanou
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Figure 1: An example of why evidence alone does not suffice in identifying fake news, despite the evidence being
conditioned on the claim as a search-engine query. Although the returned evidence appearing reputable, it is clear
that it has little relevance to deciding the veracity of the claim that "all Canadians have eaten at least one bear."

et al., 2019), adding an “emotional attention” layer
to weight the most relevant emotional signals in a
given evidence snippet. We make our code publicly
available. 1

With each of these methods, we focus on scores
where the models perform better using both the
claims and the evidence combined, SC&E , rather
than with the evidence alone, SE . Going forward,
we will refer to the difference between these dataset
combinations as the delta of the pre-processing
step, where delta = SC&E −SE . A positive delta
score indicates that the claim was useful and helped
yield an increase in performance. Since we are
removing indicators that the current models rely on,
some of the models perform worse at the task than
they did previously. However, a surprising result is
that many improved, and the need to consider the
claim and the evidence together is a sign of using
reasoning rather than manipulable indicators.

Under current fact-checking models, adversarial
data can subvert these detectors. Paraphrasing can
be performed by inserting fictitious statements into
otherwise truthful evidence with little effect on the
model’s output. For example, an article titled “Is
the GOP losing Walmart?”, could have “Walmart”
substituted with “Apple,” and the predictions are
nearly identical despite the news now being ficti-
tious (Zhou et al., 2019).

1GitHub repository link

2 Related Work

There has been significant work with automatic
fact-checking models using RNNs and Transform-
ers (Shaar et al., 2020a; Alam et al., 2020; Shaar
et al., 2020b) as well as non-neural machine learn-
ing using TF-IDF vectors (Reddy et al., 2018).

Current fake news detection models that use a
claim’s search engine results as evidence may unin-
tentionally use hidden signals that are not attributed
to the claim (Hansen et al., 2021). Additionally,
models may in fact simply memorize biases within
data (Gururangan et al., 2018). Improvements can
be made when using human-identified justifications
for fact-checking (Alhindi et al., 2018; Vo and Lee,
2020), and making use of textual entailment can
offer improvements (Saikh et al., 2019).

Emotional text can signal low credibility
(Rashkin et al., 2017), characterizing fake news as
a task where pre-processing can be used effectively
to diminish bias (Giachanou et al., 2019; Babane-
jad et al., 2020). A framework to both categorize
fake news and to identify features that differentiate
fake news from real news has been described by
Molina et al. (2021), and debiasing inappropriate
subjectivity in text can be accomplished by replac-
ing a single biased word in each sentence (Pryzant
et al., 2020).

3 Datasets

We use the MultiFC dataset (Augenstein et al.,
2019), which consists of political claims and as-
sociated truth labels from PolitiFact and Snopes.
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Figure 2: Ablation studies where evidence was sequentially removed for training and evaluation of models. On
the far left, we show the most effective non-neural pre-processing compared to the baseline of none. Performance
generally worsens as the ablation increases.

Using the claim as a query, the top ten results from
Google News (“snippets”) constitute the evidence
(Hansen et al., 2021). PolitiFact and Snopes use
five labels (False, Mostly False, Mixture, Mostly
True, True), which we collapse to True, Mixture,
and False.

To construct the emotion vectors for our EmoAt-
tention system, we use the NRC Affect Intensity
Lexicon, which maps approximately 6,000 terms
to values between 0 and 1, representing the term’s
intensity along 8 different emotions (Mohammad,
2017). For example, “interrupt” and “rage” are
both categorized as anger words, but with the re-
spective intensity values of 0.333 and 0.911.

4 Models

The most common automatic fact-checking NLP
models are based on term frequency, word em-
beddings, and contextualized word embeddings,
using Random Forests, LSTMs, and BERT (Has-
san et al., 2017). We limit our experimentation to
the BERT model, as it is the highest performing
state-of-the-art model and was thoroughly tested in
(Hansen et al., 2021). This BERT model with no
pre-processing is our baseline model.

For the style transfer model we use the Style-
former model (Li et al., 2018; Schmidt, 2020), a
Transformer-based seq2seq model.

We also develop our own BERT-based model us-
ing the EmoLexi and EmoInt implementation of the
EmoCred system by adding an emotional attention
layer to emphasize certain emotion representations
for a given claim and its evidence (Giachanou et al.,
2019). There is also a snippet attention layer at-

tending to which evidence itself should be weighted
most heavily for the given claim.

Figure 3: The EmoAttention BERT model architecture
using emotional- and snippet attention

5 Experiments

5.1 Non-neural pre-processing
Our goal is to separate affect-based properties from
factual content of the text. Toward this, we run
a large number of permutations of the following
four simple pre-processing steps (see Figure 4 in
Appendix B for results). These steps were chosen
as they have been shown to facilitate affective tasks
such as sentiment analysis, emotion classification,
and sarcasm detection (Babanejad et al., 2020). In
some cases we used a modified form — such as
removing adverbs for POS pre-processing.
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• Negation (NEG): A mechanism that trans-
forms a negated statement into its inverse (Be-
namara et al., 2012). An example, “I am
not happy” would have “not” removed and
“happy” replaced by its antonym, forming the
sentence “I am sad.”

• Parts-of-Speech (POS): We keep only three
parts of speech: nouns, verbs, and adjectives.
We initially included adverbs but found remov-
ing them improved results. This could be due
to some adverbs being emotionally charged.

• Stopwords (STOP): These are generally the
most common words in a language, such as
function words and prepositions. We use the
NLTK library.

• Stemming (STEM): Reducing a word to its
root form. We use the NLTK Snowball Stem-
mer.

5.2 Neural formality style transfer

We use the adversarial technique of generating para-
phrases for all the claims and evidence through
style transfer. The neural Transformer-based
seq2seq model Styleformer changes the formality
of the text, and it frequently changes the order-
ing of the sentence itself, too. For example, the
formal-to-informal model changes “A photograph
shows William Harley and Arthur Davidson unveil-
ing their first motorcycle in 1914” to “In a 1914
photograph William Harley and Arthur Davidson
unveil their first motorcycle.”

As well, it removes punctuation and alters phras-
ing that might be understood as sarcasm, such as

“Melania Trump said that Native Americans upset
about the Dakota Access Pipeline should ‘go back
to India”’ to “Melania Trump told Native Ameri-
cans that was upset by the Dakota Access Pipeline,
that they should travel to India.” The informal-
to-formal model lowercases everything and also
changes the text significantly.

We chose this paraphrasing model based on the
idea that fake news – especially that which is fre-
quently posted on social media – has a certain po-
larizing style that might be neutralized by altering
the formality of the text. Rather surprisingly, we
received better results transforming the style from
formal-to-informal than we did with informal-to-
formal.

5.3 EmoCred emotion representations with
emotional attention

The EmoCred systems of EmoLexi and EmoInt use
a lexicon to determine emotional word counts and
intensities, respectively (Giachanou et al., 2019).
We use the NRC Affect Intensity Lexicon, a “high-
coverage lexicons that captures word–affect inten-
sities” for eight basic emotions, which were created
using a technique called best–worst scaling (Mo-
hammad, 2017). These eight emotions can be used
to create an emotion vector for a sentence, where
each index corresponds to a score: [anger, antici-
pation, disgust, fear, joy, sadness, surprise, trust].

As an example, a sentence that contains the word
“suffering” conveys sadness with an NRC Affect
Intensity Lexicon intensity of 0.844, whereas the
word “affection” indicates joy with an intensity of
0.647. We create the vector of length eight, and
for each word associated with an emotion, the emo-
tion’s indexed value is either: (1) incremented by
one for EmoLexi; or, (2) incremented by its inten-
sity for EmoInt. Thus, the sentence “He had an af-
fection for suffering” would have an EmoLexi emo-
tion vector of [0, 0, 0, 0, 1, 1, 0, 0] and an EmoInt
emotion vector of [0, 0, 0, 0, 0.647, 0.844, 0, 0]

We build on this EmoCred framework, adding an
attention system for emotion that gives a weight to
each emotion vector, just as the attention layer for
each snippet gives a weight to each snippet. The
end result is that two independent attention layers
attend to the ten snippets and ten emotional repre-
sentations independently, and we call the resulting
system Emotional Attention (see Figure 3).

6 Results

Surprisingly, the four top-performing models with
the Snopes dataset include two non-neural models
and two neural models. All four achieve greater
F1 Macro scores than the baseline BERT model
without pre-processing (see Figure 2). POS and
STOP yield the biggest delta between SC&E vs.
SE , followed by EmoInt and Informal Style Trans-
fer. However, EmoInt yields the highest F1 Macro,
followed by POS, Informal, and STOP.

In PolitiFact, none of the pre-processing steps
achieve a delta greater than zero for SC&E ver-
sus SE . The combination of POS+STOP steps
come closest to parity, followed by EmoInt, then
POS and STOP. For the best F1 Macro scores over-
all, EmoAttention’s two forms (i.e., EmoInt and
EmoLexi) were the two best, followed by STOP
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Snopes PolitiFact

Pre-processing SC&E Δvs SE SC&E Δvs SE

(Claim+Evidence) (Evidence) (Claim+Evidence) (Evidence)
F1 Macro F1 Macro F1 Macro F1 Macro

None 0.295 -0.003 0.282 -0.038
POS 0.340 0.046 0.285 -0.022
STOP 0.304 0.043 0.303 -0.023
EmoAttention (EmoInt) 0.344 0.038 0.318 -0.015
EmoAttention (EmoLexi) 0.324 -0.003 0.310 -0.033
POS+STOP 0.312 0.012 0.290 -0.003
Formal to Informal 0.332 0.028 –– ––

Table 1: Top results from various pre-processing steps. The top three steps are highlighted in blue. The lowest F1
Macro scores and deltas are in red. With the exception of EmoLexi tying for the lowest delta, the best pre-processing
steps outperform the baseline BERT model from Hansen et al. (2021).

and POS. All of these pre-processing steps achieve
higher F1 Macro scores than the baseline BERT
model. Further, they yield better deltas for SC&E

versus SE , implying that the model now requires
the claims to reason.

7 Conclusion

Many pre-processing steps increase both the
model’s F1 scores and its need for claims and
evidence, validating our hypothesis that signals
in style and tone have become a crutch for fact-
checking models. Rather than doing entailment,
they are leveraging other signals – perhaps similar
to sentiment analysis – and relying on a “gut feel-
ing”. EmoAttention generates our best predictions
and deltas, confirming our suspicion that the mod-
els rely on emotionally charged style as a predictive
feature. This is further narrowed to emotional in-
tensity: the EmoInt intensity score-based model
performs much better than its count-based counter-
part EmoLexi. Thus, evidence containing emotions
associated with fake news will be considered more
when scoring the claim.

One surprising result is the effectiveness of the
simple POS and STOP pre-processing steps. POS
only included nouns, verbs, and adjectives (i.e., a
superset of STOP). This could explain why it has
the best delta between SC&E vs. SE . Future re-
search could investigate if stopwords, which are
often discarded, actually contain signals such as
anaphora: a repetitive rhetoric style which can af-
fect NLP analyses (Liddy, 1990).

As an example, Donald Trump makes heavy use
of anaphora in his 2017 inauguration speech:

“Together, we will make America strong again.
We will make America wealthy again. We will
make America proud again. We will make Amer-
ica safe again. And, yes, together, we will make
america great again.” (Trump Inauguration Ad-
dress, 2017)

By removing stopwords “we”, “will” and
“again”, the model relies less on the text’s rhetoric
style and more on the entailment we are seeking.
We propose further study on the effects of STOP
and POS, as well as experimenting with different
emotional vectors and EmoAttention to make fact-
checking models more robust. Automatic Fake
News detection remains a challenging problem,
and unfortunately, current fact-checking models
can be subverted by adversarial techniques that
exploit emotionally charged writing.

A Impact Statement

Disinformation is much more than just a mild in-
convenience for society; it has resulted in needless
deaths in the COVID-19 pandemic, and has fo-
mented violence and political instability all over
the globe (van der Linden et al., 2020). Our goal
in this paper is to discover exploitable weaknesses
in current fact-checking models and recommend
that such models not be relied upon in their current
form. We point out how the models are depen-
dent on emotional signals in the texts instead of
exclusively performing textual entailment, and that
additional research needs to be done to ensure they
are performing the proper task.

Harm Minimization Our quantifying of the ef-
fects of pre-processing on fact-checking models
does not cause any harm to real-world users or
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companies. Research has demonstrated that adver-
sarial attacks could result in disinformation being
labeled as factual news. Disinformation has be-
come increasingly present in global politics, as
some nation-states with significant resources have
disseminated propaganda to create political dissent
in other countries (Zhou et al., 2019). Our research
here has demonstrated potential risks: emotional
writing could be used as an exploit to circumvent
fact-checking models. Thus, we urge others to fur-
ther illuminate such vulnerabilities, to minimize
potential harms, and to encourage improvements
with new models.

Deployment Social media companies often deal
with fake news by placing highly visible labels.
However, simply tagging stories as false can make
readers more willing to believe and share other
false, untagged stories. This unintended conse-
quence – in which the selective labeling of false
news makes other news stories seem more legiti-
mate – has been called the “implied-truth effect”
(Pennycook et al., 2019). Thus, unless these mod-
els become so accurate that they catch all fake news
presented to them, the entire basis of their use is
called into question.

Despite the significant progress in developing
models to correctly identify fake news, the real
elephant in the room is that many people simply
ignore the labels (Molina et al., 2021). There is,
however, prior work supporting the idea that if
people are warned that a headline is false, they
will be less likely to believe it (Ecker et al., 2010;
Lewandowsky et al., 2012). Because of this, we
believe this research represents a net benefit for
humanity.

Warning labels are just one way of dealing with
properly identified fake news, and publishers can
choose to simply not allow it on their platforms. Of
course, this issue leads to questions of censorship.

B Extended Results

In Figure 4, we report all results for each pre-
processing step.
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Abstract

The influence of fake news in the perception of
reality has become a mainstream topic in the
last years due to the fast propagation of mis-
leading information. In order to help in the
fight against misinformation, automated solu-
tions to fact-checking are being actively devel-
oped within the research community. In this
context, the task of Automated Claim Verifica-
tion is defined as assessing the truthfulness of
a claim by finding evidence about its veracity.
In this work we empirically demonstrate that
enriching a BERT model with explicit semantic
information such as Semantic Role Labelling
helps to improve results in claim verification as
proposed by the FEVER benchmark. Further-
more, we perform a number of explainability
tests that suggest that the semantically-enriched
model is better at handling complex cases, such
as those including passive forms or multiple
propositions.

1 Introduction

With the rise of digital channels that disseminate all
kinds of information, misinformation has become a
big challenge for a healthy society (Hermida, 2010).
Fake news has been defined as a news article or
message published through media that carries false
information (Kshetri and Voas, 2017). Although
this is not a new phenomenon, the current absence
of control systems in social media facilitates the
fast spreading of misinformation, arriving to a large
number of users and greatly influencing their per-
ception of real world events (Zubiaga et al., 2018).
Recent work has shown that fake news spread faster
in social media than factual news (Vosoughi et al.,
2018), which is why researchers from different
fields have proposed using automated solutions to
help dealing with this situation (Zhou and Zafarani,
2020; Oshikawa et al., 2020).

Claim verification is the task of assessing the
veracity of a statement by finding evidence about

the claimed facts. This work is usually done manu-
ally by fact-checkers, who use their trusted sources
to label the claims as true, false or other assess-
ments. Automated Claim Verification, as proposed
by Thorne et al. (2018), consists in, given a claim,
finding the evidence regarding the veracity of that
claim to then infer its truth-label. Systems for Auto-
mated Claim Verification have been trained both us-
ing synthetic data (Thorne et al., 2018; Jiang et al.,
2020), and crawling datasets from fact-checking
websites (Augenstein et al., 2019; Wang, 2017).
These datasets have enabled the development of
models for the three tasks involved in the claim-
verification pipeline: document retrieval (Chen
et al., 2017a; Nogueira and Cho, 2020), sentence
retrieval (Danesh et al., 2015; Hanselowski et al.,
2018), and natural language inference (Parikh et al.,
2016; Chen et al., 2017b). In this work, we focus on
the last module: natural language inference (NLI).

Given the right pieces of evidence, a fact-
checking system will have to reason over all the
utterances involved in order to determine if the
claim can be supported, refuted, or whether there is
not enough info to do so. In Figure 1, for instance,
it should recognize that the Rodney King riots is the
same entity in the claim and in evidence 1. Then, it
should identify that the location of this event is Los
Angeles County, and understand that evidence 2
confirms that this happens to be the most populous
county in the USA.

As illustrated in Figure 1, this reasoning process
requires a deep understanding of the semantics of
all the utterances involved. In this work, we pro-
pose to introduce explicit semantic knowledge in
order to improve the systems for Automated Claim
Verification. We hypothesize that this information
might guide the natural language inference model
in claims that have complex semantics.

The linguistic information we use in this work
is Semantic Role Labelling (SRL, Palmer et al.,
2005) and Open Information Extraction (OpenIE,
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Figure 1: Natural language inference reasoning exam-
ple, by Zhong et al. (2020)

Etzioni et al., 2008). In our experiments, these
semantic structures are used as additional input to
the BERT contextualized word embeddings (Devlin
et al., 2019). We integrate this information using
the SemBERT architecture presented in Zhang et al.
(2020a).
The contributions of this work are the following:

• We perform a qualitative analysis to compare
synthetic datasets and naturally-occurring
datasets for claim verification. We find that
synthetic claims are semantically more sim-
ple.

• We improve the widely used BERT language
model to address the inferential component
of the task by adding explicit semantic infor-
mation. We also make publicly available our
model to the community.

• We perform explainability tests to understand
the influence of the additional semantic in-
formation. The performed tests suggest that
the semantically-enriched model is better at
handling complex cases.

In the following sections, we introduce previous
work on datasets, systems and semantic structures
(Section 2), we explain our experiments (Section
3) and expose the primary results (Section 4), we
perform explainability tests to qualitatively assess
the influence of semantic structures (Section 5),
and finally we draw our conclusions and future
work (Section 6).

2 Related Work

Automated Claim Verification is a relatively new
task, and a lot of effort have been put on how to
develop datasets to train automated systems for this
task. In the following subsections we introduce
some of these efforts and the systems that have

been developed on these datasets. We also present
previous work using semantic structures.

2.1 Datasets
Ideally, a claim verification system should be able
to take sentences from naturally-occurring texts
(e.g. news articles, social media posts or political
speeches) and assess their veracity. However, de-
veloping training data for this task has some com-
plexities, such as defining the ground truth and
creating a knowledge database with boundaries,
which allows the annotators to know for sure that
the ground truth is right. For this reason, there
have been several attempts to approximate the task
by creating domain-specific datasets (Scifact, Wad-
den et al., 2020) and synthetic datasets (FEVER
and HoVer, Thorne et al., 2018; Jiang et al., 2020).
These datasets consist of a set of claims annotated
with their ground truth, together with a knowledge
base, in which the truth labels are based (e.g. a set
of scientific abstracts or a set of Wikipedia articles).
The labels are usually Supports, Refutes and NotE-
noughInfo. Due to its size and popularity, FEVER
has become a benchmark for Automated Claim Ver-
ification and has been used in the organization of
several shared tasks.

Other datasets exist containing naturally-
occurring claims (Augenstein et al., 2019; Wang,
2017). These are generally scraped from fact-
checking websites, and sometimes include the jus-
tification of the fact-checker for the given label.
However, these datasets do not contain a fixed
database of evidence. This makes it very difficult to
use them to train inference systems, as the ground
truth at the moment of fact-checking can be differ-
ent from the current one. Additionally, there is a
high heterogeneity in the inventory of labels across
different fact-checking platforms.

2.2 Systems
In the first FEVER shared task (2018), Nie et al.
(2019) obtained the highest label accuracy by
adding the sentence similarity score between claim
and evidence to the embedding representation of ev-
idences. Hanselowski et al. (2018) (UKP-Athene)
won the task by using noun phrases to query the
Wikipedia search API in the retrieval module.

After the shared task, better results were
achieved using transformer-based models
(Soleimani et al., 2019). Further improvements
came from rethinking the interaction between the
pieces of evidences. Zhou et al. (2019) (GEAR)
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developed a graph approach that uses an attention
layer to propagate the information within the evi-
dences. And Zhong et al. (2020) (DREAM) used
semantic information to break the evidences into
arguments, which then interacted with each other
in a graph approach. These two last approaches
both used transformer-based models and helped to
advance the state-of-the-art on this task. Finally,
a recent work (Krishna et al., 2021) developed a
system (ProoFVer) based on sequences of natural
language logic relations, where the proofs are
generated from the claims and corresponding
evidence by a seq2seq model (Lewis et al., 2020)
and represented as triples. The last inferential
step is performed using natural logic proofs only.
ProoFVer is the current state-of-the-art on the
FEVER benchmark.

Finally, Augenstein et al. (2019) developed a
multi-task learning system to deal with a dataset of
naturally-occurring claims. They accounted for
the multiple labels by creating embeddings for
each of these labels, and combining those with
the evidence-claim embedding.

2.3 Semantic Structures

Natural Language Inference can be framed as a re-
lation extraction task: in order to know if a sentence
is entailed by another sentence, it is necessary to
identify the semantic relation between the verb and
the arguments of both the premises and hypothesis.
For this reason, early approaches used semantic
information to approach tasks that required NLI.
He et al. (2015) introduced the possibility of anno-
tating semantic roles as a question-answering task,
showing that predicate-argument structures can be
extracted from natural language questions. In the
same direction, Stanovsky et al. (2015) demon-
strated the contribution of semantic structures, such
as OpenIE, when performing text comprehension
with a simple unsupervised lexical matching algo-
rithm.

The creation of more extensive datasets (Bow-
man et al., 2015; Williams et al., 2018) enabled
the development of systems based on neural net-
works (Wang and Jiang, 2016). Later, the release of
transformer-based language models (Devlin et al.,
2019; Liu et al., 2019; Yang et al., 2019) revolution-
ized the performance of many NLP tasks, which
also was reflected in NLI.

Recently, a new research direction has suggested
using information that had been helpful for NLI

models before the arrival of deep learning, in or-
der to guide the self-attention mechanisms (Zhang
et al., 2020b). Zanzotto et al. (2020) designed a sys-
tem that explicitly embeds syntax parse trees into
sentence embeddings using distributed tree kernels,
and can visualise the decisions made (KERMIT).
Zhang et al. (2020a) introduced a modified BERT
architecture (SemBERT), that maps semantic role
labels (SRL) to embeddings in parallel and inte-
grates the text representation with the contextual
explicit semantic embedding to obtain a joint repre-
sentation. In automated claim verification, Zhong
et al. (2020) used SRL tuples to structure informa-
tion graphs.

A variety of lexical resources have been devel-
oped to structure the semantics of sentences with
different focus (Baker et al., 1998; Kipper et al.,
2000). Semantic roles (SRL), for instance, repre-
sent the different arguments that a predicate might
have. These semantic categories are relations be-
tween noun phrases and verbs. An ideal set of roles
should be able to concisely label the arguments of
any relation. Nonetheless, the exact set of these
relations remains an open discussion inside the lin-
guistic community (Bonial et al., 2011).

SRL in PropBank (Palmer et al., 2005) was de-
signed to be used in automated tasks. The goal
of this framework is to create a shallow but broad
representation that covers every instance of every
verb in a corpus to allow representative statistics to
be calculated. PropBank defines semantic roles on
a verb-by-verb basis: individual verb’s semantic ar-
guments are numbered, beginning with zero. In the
example in Figure 2, the agent of the verb bought
is Arg0, the theme is Arg1, the location Arg2, and
the price Arg3.

[Mr. Bean]Arg0 [bought]V [the sweater]Arg1 [from
the second hand store]Arg2 [for 400 pounds]Arg3.

Figure 2: PropBank semantic roles example

Open Information Extraction (OpenIE) was first
introduced as an extraction paradigm to tackle
an unbounded number of relations (Etzioni et al.,
2008). Systems based on OpenIE extract relational
tuples from text by identifying relation phrases
and the arguments associated to these relations
(Mausam et al., 2012). Stanovsky et al. (2015)
were the first to propose this task as an interme-
diate structure for other semantic tasks, similar to
what was already being done with other linguistic
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Supports Refutes NEI
Training 80,035 29,775 35,639
Development 3,333 3,333 3,333
Test 3,333 3,333 3,333

Table 1: Number of claims in the FEVER dataset

information, such as semantic roles, syntactic de-
pendencies or lexical representations. An example
of the difference between SRL in PropBank and
OpenIE is shown in Figure 3.

PropBank:
[John]Arg0 [refused]V [to visit a Vegas casino]Arg1

[John]Arg0 refused to [visit]V [a Vegas casino]Arg1

OpenIE:
[John]Arg [refused to visit]V [a Vegas casino]Arg

Figure 3: Example of the representations extracted with
OpenIE and SRL in PropBank from Stanovsky et al.
(2015)

3 Experiments

In this work, we use the FEVER dataset (Thorne
et al., 2018). We first develop a baseline using
the BERT model (Devlin et al., 2019), and then
introduce two types of semantic information to the
model (SRL and OpenIE) by using the SemBERT
architecture (Zhang et al., 2020a).

3.1 Data

The FEVER dataset consists of 185,445 generated
claims with its truth label and the evidence for that
label, divided between a train, a development and
a test set. The statistics can be seen in Table 1.

The claims were generated manually by annota-
tors, using the June 2017 Wikipedia dump. They
were given sentences at random and were asked to
generate variations of the claims, altering them in
ways that may or may not change their truth label.
The types of mutations were: paraphrasing, nega-
tion, substitution of entity/relation, and making the
claim more general or specific. In a second phase,
these claims were labelled as Supports, Refutes or
NotEnoughInfo (NEI), and the evidences used for
the labelling were recorded (Thorne et al., 2018).

FEVER has been criticized for missing some
of the complexity that naturally-occurring claims
have, such as claims that contain rich semantics in
long and complex sentences (Thorne and Vlachos,
2019). For this reason, we decided to perform a

Figure 4: Comparison of claim complexity between
FEVER and MultiFC. Axis x indicates the number of
verbs per claim.

comparison between the claims in FEVER and in
a naturally-occurring claims dataset (MultiFC, Au-
genstein et al., 2019), we used a sample of 1000
claims of each dataset. As a proxy to measure
semantic complexity, we counted the number of
verbs per claim1. As can be observed in Figure 4,
while claims in FEVER are almost always simple
(contain 1-2 verbs), MultiFC follows a Benford dis-
tribution, in which the number of claims decreases
when complexity increases.

This complexity difference lead our attention
towards building a system that improves the per-
formance of the semantically complex examples
present in FEVER, in order to be able to use these
systems in naturally-occurring data.

3.2 Experimental setup

As this work focuses on the NLI module of claim
verification, we do not perform evidence retrieval,
and instead, we use the evidences retrieved by the
system that had the highest evidence recall in the
FEVER shared task (Hanselowski et al., 2018). We
take the top 5 evidences for each claim.

Given that transformer-based architectures, such
as BERT (Devlin et al., 2019), have given state-
of-the-art results in the task of NLI (Soleimani
et al., 2019), we use this architecture as our base-
line, and add the semantic information to it. BERT
is designed to be given plain natural text as in-
put. However, recent work suggests that it could
benefit from additional linguistic knowledge (Zan-
zotto et al., 2020; Zhong et al., 2020). Zhang et al.
(2020a) proposed an architecture that is able to en-
code both natural text and semantic information:
SemBERT.

1Measured with the Universal pos-tags of the nltk package.
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At a first step, SemBERT encodes text in the
same way that BERT does: tokenizing the text
into sub-tokens and computing contextualized em-
beddings for each of these sub-tokens. In paral-
lel, SemBERT takes the semantic representation
that it is given, which should have one tag per
word (SRL tags in the original paper), and com-
putes tag embeddings. Given that a single sentence
can have several predicates, and consequently sev-
eral argument-predicate structures (propositions),
Zhang et al. (2020a) allow for up to three different
representation vectors. A linear layer aggregates
the three semantic representation vectors (for the
three propositions per sentence allowed) into one
final semantic embedding. Then, the BERT word
representation and the final semantic representation
are concatenated. According to the authors, Sem-
BERT outperforms BERT in NLI tasks, increas-
ing the final accuracy between 1 and 3 percentage
points (Zhang et al., 2020a).

In this work, we adapt SemBERT to fit the re-
quirements of Automated Claim Verification. Since
we use 5 pieces of evidence per claim, the input
to the model consists of 6 sentences. Given that
we can have many propositions per instance, we
allow up to 12 propositions per instance and imple-
ment different sets of tags. Both the SRL tags and
the OpenIE tags are extracted with the AllenNLP
toolkit (Gardner et al., 2018; Shi and Lin, 2019;
Stanovsky et al., 2018) and mapped to the different
sets.
To summarise, the model has two separate inputs
of the exact same length:

1. The claim plus the 5 concatenated evidences
(given to the model as represented in the left
part of Figure 5).

2. The semantic tags for each word in the claim
and evidences (given to the model as repre-
sented in the right part of Figure 5).

Our experiments include a BERT baseline and
5 other models that interact with different sets of
semantic tags. All the models have a maximum
input length of 250 tokens, and are trained for 4
epochs with a batch size of 20, an AdamW opti-
mizer (Loshchilov and Hutter, 2019) with the learn-
ing rate set to 2e-5, and a linear scheduler.

SemBERT_base On first instance, we train a
model with all the semantic roles (from now on
we will call them tags) retrieved by the AllenNLP

parser. This results in a tags-vocabulary of size 19,
so the encoding layer contains 19 contextualized
embeddings (plus 3 BERT-special tokens) of length
10 (see the tags in Appendix A).

Provided that the set of tags is quite large, the
sparsity of the SRL data could be preventing the
model from learning patterns. We make additional
experiments reducing the set of tags by doing two
different mappings.

SemBERT_tags1 One mapping reduces the
amount of tags by removing the positional part
of the tags, which is given in BIO notation (e.g.
I- B-), and reducing the amount of modifier argu-
ments to just temporal, location or other modifiers,
leaving a total of 10 tags. The correspondence with
the tags of the first model are in Appendix A.

SemBERT_DREAM The second tag set comes
from using the mapping of the DREAM system
(Zhong et al., 2020), which additionally reduces all
the ARG tags to a single argument tag, leaving a
total of 5 tags. The correspondence can be seen in
Appendix A.

SemBERT_Attention The original SemBERT
model uses a linear layer to squeeze all the 12
predicates into one. That is needed to remove the
multiple predicates dimension and be able to con-
catenate the representation coming from the SRL
to the one produced by BERT. We hypothesized
that this linear layer could be replaced by an atten-
tion mechanism that allowed evidences to reason
between them, inspired by the self-attention mech-
anism from Zhou et al. (2019).

This self-attention mechanism concatenates the
vectors of each predicate in pairs, to then compute
self-attention between them and use that informa-
tion to reshape the 12 representations into one, us-
ing a linear layer. To train this model, we used the
mapping of SemBERT_tags1.

SemBERT_OpenIE In order to get the OpenIE
tags we have also used the AllenNLP parser (Gard-
ner et al., 2018). Then, we have kept the tags argu-
ment, verb and O – O meaning that the word is not
part of the predicate. This makes a tag vocabulary
of size 3.

4 Results

Table 2 reports the accuracy of the predictions of
all these models in the development set. We ob-
serve that all the SemBERT experiments have a
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Figure 5: SemBERT architecture by Zhang et al. (2020a)

better performance than the BERT baseline. This
difference is of 1 to 2 percentage points. Our best
model is the SemBERT model with the SRL set
tags1 (SemBERT_tags1).

Going back to our hypothesis that claim com-
plexity will be better understood by using models
that include SRL, we calculate the accuracy sep-
arately for claims with more (and with less) than
5 verbs. The SemBERT_tags1 model improves
6.5 points on complex claims over BERT, while it
just improves 1.5 points on simple claims. How-
ever, since FEVER has few complex claims (only
62), further experiments with more complex claims
should be used to confirm our hypothesis.

Label Accuracy
BERT_base (baseline) 73.82
SemBERT_base 75.06
SemBERT_tags1 75.37
SemBERT_DREAM 75.12
SemBERT_Attention 74.92
SemBERT_OpenIE 74.34

Table 2: Results from all the models in the FEVER
development set

The evaluations on the test set can be seen in

Evidence
F1

Label
Acc.

Fever
Score

UKP-Athene 36.97 65.46 61.58
GEAR 36.87 71.60 67.10
DREAM 39.45 76.85 70.60
ProoFVer 40.03 79.47 76.82
BERT_base 36.87 70.86 65.52
SemBERT_tags1 36.87 72.18 67.16

Table 3: Results on the test set of our models and previ-
ous work

Table 3. In the unseen data, the SemBERT model
also outperforms the BERT baseline by 1.3 per-
centage points in label accuracy. Both models drop
around 3 percentage points with respect to the de-
velopment set. Additionally, we also report the re-
sults on the test set of previous work such as UKP-
Athene (Hanselowski et al., 2018), GEAR (Zhou
et al., 2019), DREAM (Zhong et al., 2020), and
ProoFVer (Krishna et al., 2021). For our model, we
used the evidences extracted by UKP-Athene, and
some pre-processing scripts from GEAR, which ex-
plains why all three models have (almost) the same
F1 for evidence retrieval. Our model outperforms
both of these models in the inference module.
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Our approach is similar to the one in DREAM,
as both integrate semantic information to improve
the reasoning process. However, instead of using a
graph-based approach, we use the SemBERT archi-
tecture to incorporate the semantic information. As
observed, DREAM performs better than our model,
suggesting that graph-based architectures might be
a better representation for semantic information. Fi-
nally, the highest scoring system is ProoFVer2. Fur-
thermore, both DREAM and ProoFVer rely on bet-
ter evidences, as shown by the F1 in Table 3. Still,
while being substantially simpler than a higher-
performing work such as ProoFVer, our approach
provides an effective method to integrate explicit
semantic information with clear benefits in per-
formance. Furthermore, our code and model are
publicly available to facilitate research on claim
verification and reproducibility of results.

5 Explainability tests

While the accuracy results allow for a comparison
between models, they are not enough to understand
the contribution of the semantic information to the
model. For this reason, we decided to perform
qualitative explainability tests based on calculating
saliency scores and performing adversarial attacks.

5.1 Saliency Scores
Extracting the saliency of each of the tokens given
as input is not a trivial task for deep-learning mod-
els. Simonyan et al. (2014) proposed to compute
them as the gradient of the output with respect to
each input. Later improvements to this technique
proposed to then multiply these gradients to the
input (InputX-Gradient), or to overwrite the gra-
dients of the ReLU functions in order to prevent
negative gradients from being propagated (Guided
Backpropagation, Kindermans et al., 2016; Sprin-
genberg et al., 2015).

We will use the saliency scores proposed above
to get a better grasp of where the model focuses
in order to make its inference decisions. For an
interpretable output, we want to have one saliency
value for each token. Given that the last layer that
we can compute the gradients for is the embedding
layer, we will get one gradient for each value in
the embedding of each token. In order to aggregate
these values and get one single value per token we
will use the L2 norm (Atanasova et al., 2020).

2Results are those reported in the official FEVER leader-
board, which differ from the performance reported in the paper
Krishna et al. (2021)

In Figure 6, we can see an example where both
BERT and SemBERT get the output right. The
instance looks like:

• Claim: Telemundo is an English-language
television network.

• Evidence: Telemundo is an American
Spanish-language terrestrial television net-
work owned by Comcast through the NBCU-
niversal division NBCUniversal Telemundo
Enterprises.

Both models output REFUTES and the saliency
scores clearly point towards the words English-
language in the claim, and Spanish-language in the
evidence. As an opposite case we display Figure 7.
In this case, the instance looks like:

• Claim: Easy A is directed by Bert V. Royal.

• Evidence: Easy A, stylized as easy A, is a
2010 American teen comedy film directed
by Will Gluck, written by Bert V. Royal and
starring Emma Stone, Stanley Tucci, Patricia
Clarkson, Thomas Haden Church, Dan Byrd,
Amanda Bynes, Penn Badgley, Cam Gigandet,
Lisa Kudrow and Aly Michalka.

In this instance, BERT gets the inference wrong
and outputs SUPPORTS, while SemBERT gets it
right and outputs REFUTES. Based on the saliency
scores, BERT tries to focus on many different to-
kens, while SemBERT ignores almost all of them.
From this observation, we hypothesize that, with
such a semantically-complicated evidence (it con-
tains 5 predicates), SemBERT is relying on the
semantic information for its decision, which is not
plotted on this figure. We further investigate this
hypothesis by creating manual adversarial attacks
in the next section.

5.2 Adversarial Attacks

Performing adversarial attacks consists on chang-
ing the input in order to assess the influence that
it has over the output. This has been done both
by removing input tokens systematically (Zeiler
and Fergus, 2014), and by altering the input in-
stances to generate adversarial attacks which can
show what the model actually understands (Ribeiro
et al., 2018; Ebrahimi et al., 2018). In this section,
we are going to create some manual adversarial at-
tacks in order to test the capabilities of our models.

43



Figure 6: Saliency Scores of the Telemundo example with BERT and SemBERT. The above plot shows the entire
claim and evidence input, and the plots under it zoom into the relevant parts, delimited with black frames above.

Figure 7: Saliency Scores of the Easy A example with BERT and SemBERT. The above plot shows the entire claim
and evidence input, and the plots under it zoom into the relevant parts, delimited with black frames above.

Taking the example of Easy A, we start by check-
ing that the REFUTES label of SemBERT is not
random by changing the claim to Easy A is written
by Bert V. Royal. SemBERT passes this test and
outputs SUPPORTS. Following the tests for seman-
tic structure in Ribeiro et al. (2020)’s CheckList,
we modify the evidence by changing the order of
the propositions, creating symmetric relations and
swapping them to active form. The new versions
of the evidence are:

1. Order change: Easy A, stylized as easy A,
is a 2010 American teen comedy film written
by Bert V. Royal, directed by Will Gluck, and
starring Emma Stone, [...]. ← Refutes

2. Order change: Easy A, stylized as easy A, is
a 2010 American teen comedy film written by
Bert V. Royal, starring Emma Stone, [...], and
directed by Will Gluck. ← Refutes

3. Symmetric relation: Easy A, stylized as easy
A, is a 2010 American teen comedy film di-
rected by Will Gluck and Bert V. Royal and
starring Emma Stone, [...]. ← Supports

4. Remove the written by proposition: Easy
A, stylized as easy A, is a 2010 American
teen comedy film directed by Will Gluck, and
starring Emma Stone, [..]. ← Refutes

5. Active form: Easy A, stylized as easy A, is a
44



2010 American teen comedy film. Will Gluck
directed the film , and Bert V. Royal wrote it.
← Refutes

With all the variations of the evidence presented
above, SemBERT always outputs the right label,
while BERT just outputs the right label in the last
piece of evidence, which contains the same infor-
mation but in active form. These tests suggest that
SemBERT does have capabilities regarding seman-
tic structure that are missing in BERT. However,
more systematic tests should be performed in this
direction.

6 Conclusion and Future Work

In this work we have investigated if semantic in-
formation could help to improve the reasoning pro-
cess when inferring the truth label of a claim given
some pieces of evidence. To this goal, we have
used two different semantic parsers and the archi-
tecture of the pre-trained model SemBERT (Zhang
et al., 2020a). For our experiments, we have used
the FEVER dataset (Thorne et al., 2018), which re-
quires building a model that, given some pieces of
evidence, can output if a claim is supported, refuted,
or the evidence does not give enough information.

We have performed several experiments on top
of the SemBERT architecture, such as training mod-
els with different kinds of semantic information,
different sets of semantic tags, and with an addi-
tional attention mechanism to represent the seman-
tic information. In terms of label accuracy, all our
experiments have outperformed the baseline, which
was a BERT model with no additional semantic in-
formation. Our best model uses Semantic Role
Labels and a set of 10 different tags, with no addi-
tional attention mechanism. This model achieves a
label accuracy of 75.37 on the development set and
72.18 on the test set, outperforming the baseline by
1.5 and 1.3 percentage points respectively. Future
work could include testing the impact of these se-
mantic structures in models such as RoBERTa (Liu
et al., 2019) or XLNet (Yang et al., 2019).

To better understand the contribution of the se-
mantic information, we have performed some ex-
plainability tests with our best model. These have
shown that the SRL knowledge might be contribut-
ing to guiding the model in semantically complex
sentences that include several propositions or pas-
sive forms.

To keep moving towards systems that can con-
tribute to the work of fact-checkers, future research

on claim verification should take two directions.
On the one hand, there is a need to develop large
datasets that are more similar to naturally-occurring
claims. On the other hand, NLI models for claim
verification should output more explanatory justi-
fications to their conclusions, which would make
these systems more trust-worthy.

In this work, we have not dealt with the task
of evidence retrieval. In FEVER, this task is lim-
ited by the static Wikipedia database that comes
with the dataset. However, in real-world scenarios
defining the boundaries of what is trust-worthy in-
formation is a challenge that goes beyond research
in NLP and reaches the fields of journalism, pol-
itics and even philosophy. The non-static nature
of what is a true fact is an additional challenge to
evidence retrieval.
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A Appendix: Tags mapping

All Tags Tags1 Tags DREAM Tags
O O O

B-V V verb
I-V V verb

B-ARG0 ARG0 argument
I-ARG0 ARG0 argument
B-ARG1 ARG1 argument
I-ARG1 ARG1 argument
B-ARG2 ARG2 argument
I-ARG2 ARG2 argument
B-ARG4 ARG4 argument
I-ARG4 ARG4 argument

B-ARGM-TMP TMP temporal
I-ARGM-TMP TMP temporal
B-ARGM-LOC LOC location
I-ARGM-LOC LOC location
B-ARGM-CAU ARGM argument
I-ARGM-CAU ARGM argument
B-ARGM-PRP ARGM argument
I-ARGM-PRP ARGM argument

Table 4: Mapping between sets of SRL tags
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Abstract
Work on social media rumour verification
utilises signals from posts, their propagation
and users involved. Other lines of work tar-
get identifying and fact-checking claims based
on information from Wikipedia, or trustworthy
news articles without considering social me-
dia context. However works combining the
information from social media with external
evidence from the wider web are lacking. To
facilitate research in this direction, we release
a novel dataset, PHEMEPlus1, an extension of
the PHEME benchmark, which contains social
media conversations as well as relevant external
evidence for each rumour. We demonstrate the
effectiveness of incorporating such evidence in
improving rumour verification models. Addi-
tionally, as part of the evidence collection, we
evaluate various ways of query formulation to
identify the most effective method.

1 Introduction

The harm and prevalence of online misinformation
made research into automated methods of informa-
tion verification an important and active research
area. This includes various tasks like fact-checking,
social media rumour detection, stance classification
and verification. In this work we are concerned
with social media rumour verification, the task of
identifying whether a rumour (i.e check-worthy
claim circulating on social media whose veracity
status is yet to be verified (Zubiaga et al., 2018)),
is True, False or Unverified.

Although a significant amount of work has been
done towards evaluating the veracity of social me-
dia rumours (Zubiaga et al., 2016; Ma et al., 2017;
Song et al., 2018; Dougrez-Lewis et al., 2021),
there is still a dearth of works and datasets combin-
ing the information from social media with external
evidence from the wider web. While recent works
focusing on rumours around the COVID-19 pan-
demic have been collecting data from a wide range

1https://github.com/JohnNLP/PhemePlus

of sources from news and social media to scien-
tific publications (Cui and Lee, 2020; Zhou et al.,
2020; Wang et al., 2020), these are not sufficient for
the creation of generalisable verification models as
they only focus on a single topic. At the same time
works on fact-checking, which do not focus on so-
cial media content, but use claims from debunking
websites (Lim et al., 2019; Ahmadi et al., 2019),
as well as recent work by Li et al. (2021) have
shown the benefits of utilising stance of evidence
for verification.

Here we aim to further enable research in this di-
rection and release an enriched version of a popular
benchmark dataset PHEME (Zubiaga et al., 2016)
with timely evidence for each of the rumours, ob-
tained from a wide range of web sources.

Although a few works use web search for ev-
idence retrieval (Popat et al., 2018; Lim et al.,
2019), to our knowledge, only the work of Lim
et al. (2017) touches upon the topic of the search
query formulation. Here we analyse several query
formulation strategies to find the most effective
one.

In this work we make the following contribu-
tions:

• We collect and release the PHEMEPlus
dataset of Twitter rumour conversations with
the relevant heterogeneous evidence retrieved
from the web to facilitate research on combin-
ing multiple sources of information for social
media rumour verification.

• We investigate approaches towards search
query formulation for evidence retrieval, to-
gether with evaluation metrics for the quality
of evidence retrieved.

• We demonstrate the effectiveness of incorpo-
rating external evidence into rumour veracity
classification models.

49



2 Related work

2.1 Existing Veracity Classification Datasets
Among existing datasets for veracity classification
we can broadly discern two categories: (1) focus-
ing on claims arising from social media in the form
of posts (Zubiaga et al., 2016; Ma et al., 2017) and
(2) focusing on manually formulated claims, either
created specifically for a task (Thorne et al., 2018),
or consisting of titles from news or debunking web-
sites (Wang, 2017; Alhindi et al., 2018; Lim et al.,
2019; Ahmadi et al., 2019). These different types
of claims present different challenges for verifica-
tion models and evidence retrieval systems. In par-
ticular social media posts often use non-standard
grammar, hashtags and have typos (intentional or
otherwise). It can be crucial to process claims
directly from social media to enable early-stage
misinformation detection as rumours often start
spreading on social media, later making it into the
mainstream media. Only a few datasets incorporate
both social media and evidence from the web, how-
ever these often focus on a very limited number
of sources of evidence or a single topic (Dai et al.,
2020; Cui and Lee, 2020). One of such datasets
is FakeNewsNet (Shu et al., 2018) incorporating
fake and true news articles from fact-checking web-
sites PolitiFact2 and GossipCop3. Articles are fur-
ther augmented with users’ posts on Twitter per-
taining to them but not including full conversa-
tion structure. FakeHealth (Dai et al., 2020) is
a similarly constructed dataset based on health-
related news articles labelled by the Health News
Review4, including Twitter users’ replies and pro-
files. Barrón-Cedeno et al. (2020) organised shared
tasks for automatic identification and verification of
claims in social media. Apart from tasks on check-
worthiness estimation for tweets and verified claim
retrieval, they also released tasks for supporting
evidence retrieval and claim verification. However,
the tasks mainly focused on misinformation about
COVID-19 and the latter tasks were only offered
in Arabic.

In light of the wave of misinformation associ-
ated with COVID-19 pandemic researchers have
been collecting relevant datasets of scientific pub-
lications, news articles and their headlines, social
media posts and claims about COVID-19 (Shaar
et al., 2020; Dharawat et al., 2020; Zhou et al.,

2https://www.politifact.com/
3https://www.suggest.com/
4https://www.healthnewsreview.org/

2020; Li et al., 2020; Memon and Carley, 2020;
Hossain et al., 2020; Barrón-Cedeno et al., 2020).
One of the most relevant work to ours is COAID
(Cui and Lee, 2020), a large-scale dataset contain-
ing COVID-19 related news articles as well as so-
cial media posts. While these are rich resources,
which enable further research against misinforma-
tion, they are insufficient for training generalisable
models as they solely focus on one topic.

In this work we have augmented the PHEME
dataset, a popular benchmark dataset for social
media rumour verification, it contains rumours ex-
pressed via Twitter posts with full conversation
threads from several news-breaking events on dif-
ferent topics. This dataset is set up to imitate real-
istic scenarios as (1) it was collected as the events
were unfolding and then rumour stories were iden-
tified and annotated by a professional journalist as
opposed to collecting tweets based on existing fact-
checks as in Ma et al. (2017); and (2) the evaluation
is performed in on events unseen during training.
We augment it with evidence articles from across
the web to give it access to an unlimited set of
resources. To preserve the realistic scenario of ver-
ifying emerging rumours, all of our evidence is
restricted to articles indexed by Google no later
than the day on which the rumour was posted to
Twitter.

2.2 Social Media Rumour Verification Models
Using External Information

Social media rumour verification models use vari-
ous types of information available on social me-
dia platform: text of rumourous posts and re-
sponses (Dougrez-Lewis et al., 2021), user infor-
mation and connections (Khoo et al., 2020), prop-
agation patterns (Ma et al., 2018). However, still
only few works incorporate external evidence.

Lim et al. (2017) proposed the iFACT frame-
work that extracts claims from tweets pertaining
to major events. For each claim, it collects evi-
dence from web search and estimates the likeli-
hood of a claim being credible. To formulate the
search query iFACT uses ClausIE (Del Corro and
Gemulla, 2013) to extract (subject, predicate, ob-
ject) triples from tweets. To determine the credibil-
ity of the claim iFACT uses features extracted from
search results and dependencies between claims.
Here we also experiment with using ClausIE to
formulate the search query.
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Events Threads True False Unverified Relevant Articles

Charlie Hebdo 458 193 116 149 3941
Sydney Siege 522 382 86 54 4436
Ferguson 284 10 8 266 2473
Ottawa Shooting 470 329 72 69 4020
Germanwings Crash 238 94 111 33 2057

Total Threads 1972 1008 393 571 16927

Table 1: Statistics of the PHEMEPlus dataset by extending the PHEME-5 dataset with retrieved relevant articles.
All but 2 rumours have at least 1 associated article.

Figure 1: The PHEMEPlus dataset consists of labelled Twitter rumours, their conversation thread, and corresponding
evidence retrieved from the web. This is an adapted example.

Li et al. (2021) propose to improve rumour de-
tection on PHEME dataset by using evidence from
Wikipedia. They first train the evidence extrac-
tion module on the FEVER dataset and then use
it as part of a rumour detection system to get rele-
vant sentences from a Wikipedia dump along with
Twitter conversation around a rumour. While be-
ing limited by a single source of information, they
demonstrate performance improvements over pre-
vious models not using external information.

In this work we use BERT-based models as
strong baselines to demonstrate the effectiveness
of incorporating the evidence for social media ru-
mour verification. In future work we will be exper-
imenting with various ways of incorporating it to
maximise the benefits.

3 Augmenting PHEME dataset with
External Evidence

3.1 Base dataset

We chose to extend the PHEME-5 dataset (Zubiaga
et al., 2016), which consists of Twitter conversa-
tions discussing rumours around five real-world

events including the Lindt Cafe siege in Sydney
and the 2015 Charlie Hebdo terrorist attack. This
dataset is a popular benchmark for rumour verifi-
cation, it is particularly challenging due to class
imbalance and evaluation using leave-one-event-
out cross-validation, reflecting a real-world eval-
uation scenario. Table 1 shows the statistics of
the PHEMEPlus dataset by extending the original
PHEME-5 dataset with retrieved relevant articles.
The first four columns show the number of con-
versation threads in each of the event and each of
the classes in the orignal PHEME-5 dataset. Fig-
ure 1 shows an example entry in the PHEMEPlus
dataset, comprised of a rumorous tweet, veracity
label, its conversation thread, and relevant evidence
retrieved from the web. It is notable that tweets in
the conversation thread (and the rumour itself) of-
ten contain URLs provided by users which may be
useful as a further source of evidence, and that the
corresponding evidence is not a part of the original
PHEME dataset. Kochkina (2019) has shown that
True rumours in PHEME have a higher percent-
age of URLs attached (55%) than for False (48%)
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and Unverified (48%) rumours. For the portion of
PHEME with comments annotated for stance, these
supplementary URLs were overwhelmingly found
in comments supporting the source tweet’s claim
(33%) as opposed to those, denying (8%), querying
(6%), or commenting (9%) on it.

3.2 Evidence Retrieval through Web search

In order to obtain evidence from the unlimited num-
ber of sources we chose to use Web search for ev-
idence retrieval. We choose Google Search as it
is one of the most established search engines, and,
importantly, allows us to filter results by date. This
is crucial as rumours are often resolved and widely
debunked in some time following their originating
event and the rumourous post, but this information
would not be available to the model in a real time
evaluation scenario.

Furthermore, the evidence we retrieve from
Google appears robustly reputable, with popular
news sources consistently ranking highly in the
search results. This is to be expected, since their
PageRank system weights heavily websites which
are highly cited/referenced by others. Web search
results are also more likely to be up-to-date than
any corresponding Wikipedia pages regarding a
current real world happening, which may not be
updated nor appropriately checked for correctness.

For every search we include the term (before:
date) at the start of the query to restrict results to
articles from before the date the rumourous tweet
was posted. For each query we collect the top 5
non-empty results from the web search.

While Google search is able to process various
types of queries, from keywords to natural language
utterances, we performed a set of experiments to
identify the most suitable method of query formula-
tion for our particular task of evidence retrieval for
rumours conveyed in Twitter posts. We experiment
with queries formulated as (1) natural language
sentence, (2) keywords, and (3) (subject, object,
predicate) triples. For each experiment, we include
around 99% of the PHEME dataset since a few
queries did not yield enough non-empty results. Al-
though we are aware of some more advanced stud-
ies into query expansion and formulation (Taman-
naee et al., 2020; Scells et al., 2020), contributing
to these fields is beyond the scope of this paper.
Here we aim to demonstrate gains from relatively
simple approaches described below towards evi-
dence retrieval.

3.2.1 Search Strategies
We experiment with the following search strategies:

Preprocessed The search query is the source ru-
mour, obtained from the preprocessed tweet. Our
preprocessing entails removing URLs, replacing
user mentions with “user” (so as to retain lexical
structure), removing hashtags from the end but not
the middle (also for lexical structure) and segment-
ing any compound hashtags. URLs are saved aside
since they may have future use as evidence. Hash-
tags at the end of the tweet (but not others) are also
retained, placed in brackets for an "OR" search with
the rest of the query. These hashtags in particular
are expected to be highly telling of the topic/theme
of the tweet, especially when it is otherwise lacking
in contextual words.

Shortening with StanfordNLP We use Stanza
(Qi et al., 2020) to parse preprocessed tweets. Hav-
ing obtained a parse tree, words in the following
constructs are retained in-place: {obl:npmod, com-
pound, advcl, nummod, acl:relcl, nsubj:pass, acl,
amod, aux:pass}. This combination of constructs
was iteratively finetuned until the resultant queries
felt similar to the author’s own search style, the
idea being to replicate the search strategy of an
experienced user. Hashtags at the end of tweets are
handled as before.

Shortening with ClausIE We use ClausIE
(Del Corro and Gemulla, 2013), a popular subject-
relation-object extraction system in the same man-
ner to find (subject, predicate, object) triples.
These are kept in-place whilst the other words are
removed. Hashtags at the end of tweets are retained
as before.

Examples of the search queries formed can be
found in Table 2.

3.2.2 Evaluation metrics
We devise evaluation metrics to compare the quality
of evidence retrieved using different query types,
without the need for a rumour verification model
in advance.

URL Words Metric URLs frequently contain
English words which are representative of the con-
tent on their webpage, which we can treat as gold-
standard keywords as in (Ma et al., 2016). To
get a goodness score in the range [0,1] we com-
pute the cosine similarity between the words in
URLs of retrieved articles and those posted in re-
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Original Rumour: MORE: Massacre suspects believed to have taken hostage and holed up in small
industrial town northeast of Paris: <url> #CharlieHebdo

Query Strategy Query Text

Preprocessed before:2015-01-09 MORE : Massacre suspects believed to have taken hostage
and holed up in small industrial town northeast of Paris :

StanfordNLP before:2015-01-09 (Charlie Hebdo) Massacre suspects small industrial town
northeast

ClausIE before:2015-01-09 (Charlie Hebdo) Massacre suspects believed to have taken
hostage holed up in small industrial town northeast of Paris

Table 2: Examples of search queries generated by the various search strategies, given the original rumour. In this
case, the ClausIE strategy only removes the words "MORE" and "and".

sponse to the rumour. Specifically, for each re-
trieved article, its URL-words are compared with
those of each URL in the Twitter comments. The
final score is the average of all such cosine simi-
larities across all retrieved articles in the dataset,
encoded by Word2Vec (Mikolov et al., 2013).

GloVe Metric If an article is relevant to a rumour,
they will be similar in content. We use GloVe (Pen-
nington et al., 2014) to calculate the similarity be-
tween the first 3 paragraphs of an article and the
source rumour, with the title also counting as a
paragraph. We use only the first few paragraphs
because they seem likely to contain the highest
density of relevant information. Cosine similarity
scores are calculated between each of these para-
graphs and the source rumour, and are averaged to
give the article a similarity score. Unknown words
with zero vectors are ignored for this purpose, al-
though there is a weakness that some of the most
important event-specific words could be unknown.

BERTScore Metric This is calculated similarly
to the GloVe metric, except that BERTScore
(Zhang et al., 2020) is used in its place.

3.2.3 Evaluating Retrieval Results
Table 3 displays the performance of our search
strategies when evaluated via the URL Words,
GloVe, and BERT evaluation metrics. These results
suggest that searching for the preprocessed tweet
may be the best way to get relevant background
information from the web, as opposed to extracting
keywords from the tweet. This narrowly surpasses
the performance of our ClausIE-based search strat-
egy, which outperforms the StanfordNLP approach.
The ClausIE strategy may retain a higher propor-
tion of key grammatical constructs than the lat-

ter, which play an unexpectedly important role in
Google’s search algorithm. This is contrary to the
authors’ searching intuition, perhaps due to their
recent integration of models such as BERT (Devlin
et al., 2018).

Metric Preprocessed StanfordNLP ClausIE
URL Words 0.802 0.777 0.795
GloVe 0.661 0.651 0.660
BERTScore 0.826 0.825 0.825

Table 3: Performance of the search strategies, evaluated
by our evaluation metrics.

Although some of the values in Table 3 appear
close together, it is notable that the results of the
different query formulations land in the same order
irrespective of the scoring metric used. Further-
more, the score differences between different query
formulations become more substantial when taking
into account their weak upper and lower bounds
derived from using artificially generated ‘target ar-
ticle’ and ‘random’ queries (data not shown).

3.3 PHEMEPlus dataset
An example entry of the PHEMEPlus dataset can
be found in Figure 1. The number of articles we
retrieved using the Preprocessed method can be
found in Table 1. All but two of the rumours have
at least one associated evidence article, up to a
maximum of 10.

We explore the overlap between the evidence in
our resultant PHEMEPlus dataset and the URLs in
the Twitter comments responding to the rumours.
Table 4 shows the overlap between the articles re-
trieved from web search (using the Preprocessed
Only strategy) and those from the Twitter com-
ments. We observe little overlap between articles
retrieved from web search and articles retrieved
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Overall pages Unique pages
From web search 13255 (12008 not-empty) 3817 (3425 not-empty)
From rumour responses 2160 (1658 not-empty) 601 (457 not-empty)
Overlap 100 102

Table 4: Overlap of retrieved articles with articles from rumour responses.

from comments responding to rumours. The latter
may thus be a substantially different, potentially
less useful, source of evidence due to a high density
of social media pages and the likelihood that some
of the comments may not be directly responding to
the source rumour.

A relatively large proportion of the articles re-
trieved from responses are deemed "empty", mean-
ing they either have no body-text and/or no title.
From this, and manual inspection, we infer that
response-URLs are more likely to be social media
posts or videos which are prone to missing titles or
first paragraphs.

The overall:unique ratio being similar for both
thread and web suggests that the Google results are
indeed sensitive to the content of each thread, as
opposed to repeatedly giving the same results for a
given rumourous event. There is not much overlap
between the search results and the Twitter thread,
and a large proportion of existing overlap might
be explainable by news websites tweeting their
news URLs. This is not attributable to overly strin-
gent overlap criteria as the discrepancy between
the overall number of articles and the number of
articles without duplicates acts as a positive control
to this end.

Similar links nearly always result from the same
thread, possibly due to the aforementioned news
companies. Investigating further, the vast majority
(if not all) of the overlap was news articles. Spec-
ulatively, it is plausible that most of this overlap
came from news websites tweeting their stories, as
there are some examples of this in the dataset.

4 Evaluating the Effectiveness of
Evidence for Rumour Verification

We conduct experiments to evaluate the effective-
ness of our retrieved evidence for Twitter rumour
veracity classification.

4.1 Evidence Sentence Retrieval

In our PHEMEPlus dataset, each source tweet is
paired with up to 10 most relevant retrieved arti-
cles. We follow the typical pipeline fact check-

ing approach to further select the 5 most relevant
sentences from the articles associated with each
source tweet. In order to do this, we use a sim-
ple novel approach based on ClausIE (Del Corro
and Gemulla, 2013). The idea is to be able to
reliably find relevant sentences whilst not being
clobbered by the inevitably rare rumour-specific
vocabulary which may not be recognised by many
approaches. First, we use ClausIE to extract all
relevant subject-predicate-object triples from the
retrieved information. We assume these to be the
words with the most potential for true relevance
to the tweet. Any stop-words contained within are
filtered out. For each sentence, a score is assigned
based on how many of these important words are
also contained in the tweet, penalising both overly
long (>20 token) and short (<5 token) sentences as
are likely to be either uninformative or unconcise
and work poorly with the BERT models. In par-
ticular, short sentences are ignored, whereas long
sentences lose 2% of their score for each additional
word. Only rumours with enough evidence to ex-
tract 5 sentences as above are used (99% of them)
in our experiments. The top 5 such sentences are
paired with each source tweet and are fed into a ru-
mour classification model for veracity assessment.

4.2 Veracity Classification Models

We compare the performance of several veracity
classification models in three input scenarios: (1)
rumour (i.e., source tweet) alone, (2) evidence (i.e.,
extracted sentences) alone and (3) rumour concate-
nated with the evidence (extracted sentences). The
classification models chosen include pre-trained
language models such as BERT (Devlin et al.,
2018) and RoBERTa (Liu et al., 2019), and a model
making use of natural language inference results
between a source rumour and its related evidence
sentence.

BERT-based approaches We train BERT-based
models including BERT and RoBERTa followed by
a single softmax layer for rumour verification. Each
pair of a rumour and a piece of relevant evidence
sentence is concatenated as input to the model. The
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BERT Ch Fe Ge Ot Sy False True Unv MacroF1
Rumour + Ev. 0.317 0.174 0.213 0.406 0.318 0.221 0.549 0.265 0.345
Rumour 0.306 0.134 0.315 0.345 0.320 0.209 0.562 0.242 0.338
Evidence 0.268 0.045 0.264 0.370 0.307 0.140 0.645 0.099 0.295
RoBERTa
Rumour + Ev. 0.306 0.183 0.383 0.368 0.347 0.384 0.600 0.279 0.421
Rumour 0.290 0.113 0.260 0.420 0.309 0.211 0.549 0.232 0.331
Evidence 0.288 0.028 0.252 0.335 0.327 0.145 0.611 0.144 0.301
NLI-SAN
Rumour + Ev. 0.354 0.256 0.365 0.591 0.458 0.186 0.480 0.250 0.405

Table 5: Per-event and per-fold F1 scores from the BERT, RoBERTa, and NLI-SAN models. The 2-letter column
headings abbreviate the names of individual rumourous events in PHEME (as in Table 1).

final predictions were determined by majority vot-
ing. These particular models are chosen because
flavours of BERT have previously achieved state-of-
the-art results in many natural language processing
tasks.

Self-Attention Network based on Natural Lan-
guage Inference (NLI-SAN) This method uses
not only the representation of rumour and evidence
like the previous methods, but also the Natural Lan-
guage Inference (NLI) relationship between them.

First each rumour is paired with each of the evi-
dence sentences and is fed into the RoBERTa-large-
MNLI5 model to generate the NLI relation triplet
representing the contradiction, neutrality, and en-
tailment probabilities. The rumour-sentence pair
is also fed into the RoBERTa-large5 model to gen-
erate the contextual representation. Both outputs
are then combined using a self-attention network in
which the NLI relation triplet is used as the query,
while the contextual representation is used as the
key and value. Afterwards, all the outputs are con-
catenated into a single output that is passed through
a Multi-Layer Perceptron (MLP) and a Softmax
layer that generates the final veracity classification
value.

Since this approach relies on the inference re-
lationship between rumour and evidence, we will
only compare it with the other models if both el-
ements are available, and thus only one result is
shown in Table 5.

4.3 Experimental Setup

Experiments were performed using 5-fold leave-
one-out-cross-validation with each of PHEME’s
rumourous events being a fold, as is customary for

5https://huggingface.co/

this dataset (see Section 3.1). We will release the
code used to collect the evidence and to perform
experiments on GitHub.

For the training of the aforementioned models,
the inputs are padded and truncated to the longest
sequence. Cross-entropy is used as the loss func-
tion. The optimizer used is AdamW (Loshchilov
and Hutter, 2019) with β1 = 0.9, β2 = 0.999, and
a weight decay of 0.01. For the BERT-based mod-
els, the batch size is 20, the learning rate is 3×10−5,
and the training is performed for 25 epochs. For
NLI-SAN, the size of the hidden layer is 50, the
batch size is 30, the learning rate is 10−4, and the
training is performed for 200 epochs.

4.4 Results and Discussion

Table 5 presents the results of our experiments in
terms of macro-averaged F1-score. Macro F1 score
is a suitable metric to evaluate performance on this
dataset due to class and fold size imbalance.

In these experiments it is not our goal to outper-
form state-of-the-art results on the PHEME dataset,
but to demonstrate the effectiveness of incorpo-
rating the evidence for social media rumour ver-
ification. State-of-the-art results are obtained by
more complex architectures, in which incorporat-
ing the evidence and evaluating its effects is a more
challenging task. For instance, the VRoC model
(Cheng et al., 2020) currently yields state-of-the-art
F1 score of 0.484 on this task, it uses Variational
Autoencoder for representation of the rumour as
well as multitask learning set up incorporating four
tasks.

The results in Table 5 suggest that there is in-
deed a benefit to using the evidence which we have
retrieved for rumour veracity classification. This
joint approach outperforms the other two, and the
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use of the rumour alone generally outperforms the
use of evidence alone, fitting with the idea that
veracity can be classified to some extent by the
writing style of the rumour alone.

In addition to the improvement in the results ob-
tained by having evidence relevant to each rumour,
our work opens the door to the use of more complex
veracity classification models that consider addi-
tional attributes between both elements. The results
obtained in the case of the NLI-SAN model show
how this approach can be useful, obtaining better
results than using the BERT model, although in this
case inferior to the more simple use of RoBERTa.

A more detailed, per-class and per-fold, results
breakdown for all of the models can be found in
Table 5. For both BERT and RoBERTa, the com-
bination of rumour together with evidence seems
particularly useful for correct classification of the
False class, with a mild gain also noted for Unver-
ified. This could be the result of models inferring
that there is disagreement between False rumours
and their evidence, which would not be possible
without the presence of both sources. It is note-
worthy that existing rumour veracity classification
models using the PHEME dataset have often found
the False and Unverified classes to be problem-
atic (Dougrez-Lewis et al., 2021). True class also
benefits from incorporating evidence in RoBERTa
model comparing to using rumour only. The re-
sults breakdown for the NLI-SAN model can also
be found in Table 5, for which a similar pattern of
per-class results can be observed. Most of the per-
fold results for both BERT and RoBERTa also show
the best performance when using a combination of
rumour and evidence, only with exception of Ger-
manwings Crash event (dominated by False class)
for BERT and Ottawa shooting event (dominated
by True class) for RoBERTa.

5 Conclusions and Future Work

After experimentation with various searching strate-
gies for retrieving evidence from the web, we have
constructed the PHEMEPlus dataset, which will
facilitate further work on using evidence from wide
range of sources for rumour veracity classification.
The best such strategies, according to our evalua-
tion metrics, are those which leave the grammatical
structure of the claim relatively intact. There is
much potential to improve existing rumour veracity
classification systems by augmenting them with,
or with a broader range, or better quality of evi-

dence. We plan to build upon these findings in the
future, working on identifying ways of incorporat-
ing the evidence from heterogeneous sources into
more complex rumour verification models to max-
imise the gains from this information and achieve
state-of-the-art results.
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Abstract

The ability to reason about tabular or semi-
structured knowledge is a fundamental problem
for today’s Natural Language Processing (NLP)
systems. While significant progress has
been achieved in the direction of tabular
reasoning, these advances are limited to
English due to the absence of multilingual
benchmark datasets for semi-structured data.
In this paper, we use machine translation
methods to construct a multilingual tabular
natural language inference (TNLI) dataset,
namely XINFOTABS, which expands the
English TNLI dataset of INFOTABS to ten
diverse languages. We also present several
baselines for multilingual tabular reasoning,
e.g., machine translation-based methods and
cross-lingual TNLI. We discover that the
XINFOTABS evaluation suite is both practical
and challenging. As a result, this dataset will
contribute to increased linguistic inclusion in
tabular reasoning research and applications.

1 Introduction

Natural Language Inference (NLI) on semi-
structured knowledge like tables is a crucial
challenge for existing (NLP) models. Recently,
two datasets, TabFact (Chen et al., 2019) on
Wikipedia relational tables and INFOTABS (Gupta
et al., 2020) on Wikipedia Infoboxes, have been
proposed to investigate this problem. Among the
solutions, contextual models such as BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019),
when adapted for tabular data, surprisingly achieve
remarkable performance.

The recent development of multi-lingual
extensions of contextualizing models such as
mBERT (Devlin et al., 2019) from BERT and
XLM-RoBERTa (Conneau et al., 2020) from
RoBERTa, has led to substantial interest in the
problem of multi-lingual NLI and the creation of
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multi-lingual XNLI (Conneau et al., 2018) and
TaxiXNLI (K et al., 2021) dataset from English
MNLI (Williams et al., 2018) dataset. However,
there is still no equivalent multi-lingual NLI dataset
for semi-structured tabular data. To fill this
gap, we propose XINFOTABS, a multi-lingual
extension of INFOTABS dataset. The XINFOTABS
dataset consists of ten languages, namely English
(‘en’), German (‘de’), French (‘fr’), Spanish (‘es’),
Afrikaans (‘af’), Russian (‘ru’), Chinese (‘zh’),
Korean (‘ko’), Hindi (‘hi’) and Arabic (‘ar’), which
belong to seven distinct language families and
six unique writing scripts. Furthermore, these
languages are the majority spoken in all seven
continents covering 2.76 billion native speakers
in comparison to 360 million English language
(INFOTABS) speakers1.

The intuitive method of constructing
XINFOTABS, i.e., human-driven manual
translation, is too expensive in terms of
money and time. Alternatively, various state-
of-the-art machine translation models, such as
mBART50 (Tang et al., 2020), MarianMT (Junczys-
Dowmunt et al., 2018), M2M100 (Fan et al.,
2020a), have greatly enhanced translation quality
across a broad variety of languages. Furthermore,
NLI requires simply that the translation models
retain the semantics of the premises and hypotheses,
which machine translation can deliver (K et al.,
2021). Therefore, we use automatic machine
translation models to construct XINFOTABS from
INFOTABS.

Tabular data is far more challenging to translate
than semantically complete and grammatical
sentences with existing state-of-the-art translation
systems. To mitigate this challenge, we propose
an efficient, high-quality translation pipeline that
utilizes Name Entity Recognition (NER) and table
context in the form of category information to
convert table cells into structured sentences before
1 Refer to Appendix Table 5 for more information.
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Boxing (en)
Focus Punching, striking
Olympic sport 688 BC (Ancient Greece),

1904 (modern)
Parenthood Bare-knuckle boxing
Country of origin Prehistoric
Also known as Western Boxing, Pugilism

See note.

Boxe (fr)
Focus Punching, frappe
Sport olympique 688 av. J.-C. (Grèce ancienne),

1904 (moderne)
Parentalité Bare-knuckle boxe
Pays d’origine Préhistorique
Aussi connu sous le nom Western Boxing,

Pugilism Voir note.
Language Hypothesis Label
English The modern form of boxing started in the late 1900’s. CONTRADICTION

German Boxen hat seinen Ursprung als olympischer Sport, der vor Jahrtausenden begann. CONTRADICTION

French La boxe occidentale implique des punches et des frappes ENTAILMENT

Spanish El boxeo ha sido un evento olímpico moderno durante más de 100 años. ENTAILMENT

Afrikaans Bare-knuckle boks is ’n prehistoriese vorm van boks. NEUTRAL

Table 1: An example of the XInfoTabS dataset containing English (top-left) and French (top-right) tables in parallel
with the hypothesis associated with the table in five languages (below).

translation. We assess the translations via several
automatic and human verification methods to
ensure quality. Our translations were found to
be accurate for the majority of languages, with
German and Arabic having the most and least
exact translations, respectively. Table 1 shows an
example from the XINFOTABS dataset.

We conduct tabular NLI experiments using
XINFOTABS in monolingual and multilingual
settings. By doing so, we aim to assess the capacity
and cross-lingual transferability of state-of-the-
art multilingual models such as mBERT (Devlin
et al., 2019), and XLM-Roberta (Conneau
et al., 2020). Our investigations reveal that
these multilingual models, when assessed for
additional languages, perform comparably to
English. Second, the translation-based technique
outperforms all other approaches on the adversarial
evaluation sets for multilingual tabular NLI in
terms of performance. Thirdly, the method of
intermediate-task finetuning, also known as pre-
finetuning, significantly improves performance by
finetuning on additional languages prior to the
target language. Finally, these models perform
admirably on cross-lingual tabular NLI (tables and
hypotheses given in different languages), although
the additional effort is required to improve them.
Our contributions are as follows:

• We introduce XINFOTABS, a multi-lingual
extension of INFOTABS, a semi-structured
tabular inference English dataset over ten
diverse languages.

• We propose an efficient pipeline for high-
quality translations of semi-structured tabular
data using state-of-the-art translation models.

• We conduct intensive inference experiments
on XINFOTABS and evaluate the performance
of state-of-the-art multilingual models with
various strategies.

The dataset and associated scripts, is available at
https://xinfotabs.github.io/.

2 Why the INFOTABS dataset?

There are only two public datasets, both in
English, available for semi-structured tabular
reasoning, namely TabFact (Chen et al., 2019)
and INFOTABS (Gupta et al., 2020). We choose
INFOTABS because it includes multiple adversarial
test sets for model evaluation. Additionally, the
INFOTABS dataset also includes the NEUTRAL

label, which is absent in TabFact. The
INFOTABS dataset contains 2,540 tables serving as
premise and 23,738 hypothesis sentences along
with associated inference labels. The table-
sentence pairs are divided into development,
and three evaluation sets α1, α2, and α3,
each containing 200 unique tables along with
nine hypothesis sentences equally distributed
among three inference labels (ENTAILMENT,
CONTRADICTION, and NEUTRAL). α1 is a
conventional evaluation set that is lexically similar
to the training data. α2 has lexically adversarial
hypotheses. And α3 contains domain topics that are
not present in the training set. The remaining 1,740
tables with corresponding 16,538 hypotheses serve
as a training set. Table 2 describes the inference
performance of RoBERTaL model on INFOTABS
dataset. As we can see, the Human Scores are
superior to that of RoBERTaL model trained with
TabFact representation. Since the XINFOTABS is
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translated directly from the INFOTABS, we expect
a similar human baseline for XINFOTABS.

Model dev α1 α2 α3

Human 79.78 84.04 83.88 79.33
Hypo Only 60.51 60.48 48.26 48.89
RoBERTaLARGE 77.61 75.06 69.02 64.61

Table 2: Accuracy scores of the Table as Struct strategy on
XINFOTABS subsets with RoBERTaLARGE model, hypothesis
only baseline and majority human agreement results. The first
three rows are reproduced from Gupta et al. (2020).

3 Table Representation

Machine translation of tabular data is a challenging
task. Tabular data is semi-structured, non-
sentential (ungrammatical), and succinct. The tight
form of tabular cells provides inadequate context
for today’s machine translation models, which are
primarily designed to handle sentences. Thus,
table translation requires additional context and
conversion. Furthermore, frequently occurring
named entities in tables must be transliterated
rather than translated. Figure 1 shows the table
translation pipeline. We describe our approach to
context addition and handling of named entities in
detail in the following subsections §3.1.

3.1 Table Translation Context
There are several ways to represent tables, each
with its own set of pros and cons, as detailed below:

Without Context. The most straightforward way
to represent a table would be to treat every key
(header) and value (cell) as separate entities and
then translate them independently. This approach
results in poor translations as the models have no
context regarding the keys. The key “Length” in
English in context of Movies would correspond to

“durée”, meaning duration in French but in Object
context, would correspond to “longueur”, meaning
size or span. Thus, context is essential for accurate
table translation.

Full Table. Before transferring data from the
header and table cells to translation models, one
may concentrate and seam each table row using
a delimiter such as a colon (":") to separate key
from value and a semi-colon (";") to separate rows
(Wenhu Chen and Wang, 2020). This method
provides full context and completely translates all
table cells. However, in practice, this strategy has
two major problems:

a. Length Constraint: All transformer-based
models have a maximum input string length of 512

tokens.2 Larger tables with tens of rows may not be
translated using this approach.3 In practice, strings
longer than 256 tokens have been shown to have
inferior translation quality.4

b. Structural Issue: When a linearized table is
directly translated, the delimiter tokens (":" and
";") get randomly shifted. 5 The delimiter counts
are also altered. Hence, the translation appears to
merge characters from adjacent rows, resulting in
inseparable translations. Ideally, the key and value
delimiter token locations should be invariant in a
successful translation.

Category Context. Given the shortcomings of
the previous two methods, we devise a new strategy:
we add a general context that describes table
rows at a high level to each linearized row cell.
We leverage the table category here, as it offers
enough context to grasp the key’s meaning. For the
key “Focus" in Table 1, the category information
Sports offers enough context to understand its
significance in relation to boxing. The context
added representation for this key-value pair will
be "Sports | Focus | Punching , Striking". We
use “|" delimiter for separating the context, key,
and value. Furthermore, multiple values are
seperated by “,". Unlike full table translation, row
structure is preserved since each row is translated
independently and no row surpasses the maximum
token limit. We observe an average increase of
5.5% in translation performance (cf. §4).

3.2 Handling Named Entities
Commercial translation methods, like Google
Translate, correctly transliterate specified entities
(such as proper nouns and dates). However, modern
open-source models like mBART50 and M2M100
translate name entity labels, lowering overall
translation quality. For example, Alice Sheets is
translated to Alice draps in French. We propose
a simple preprocessing technique to address the
transliterate/translate ambiguity. First, we use the
Named Entity Recognition (NER) model6(Jiang
et al., 2016) to identify entity information that
must be transliterated, such as proper nouns and
dates. Then, we add a unique identifier in the form
2 Recently, models bigger than 512 tokens have been
developed, e.g. (Asaadi et al., 2019; Beltagy et al.,
2020), but no publicly accessible long-sequence (> 512
tokens) multilingual machine translation model exists at the
moment. 3 Average # of rows in InfoTabS is: 8.8 for Train,
Development, α1 and α2, and 13.1 for α3. 4 Neeraja et al.
(2021) raises a similar issue for NLI. 5 Using "|" instead of
":" helps key-value separation. 6 spaCy NER tagger
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Figure 1: Table translation pipeline (§3) with premise table “Boxing" (from INFOTABS) translated into French.

of double quotations (" "), e.g., “Alice Sheets”,
and apply the translation model. Finally, we
delete the quotation mark (" ") from the translated
sentence after it has been translated. This helps the
models identify these entities easily due to their
pre-training.

4 Translation and Verification

As mentioned previously, we now grasp how to
represent a table. Consequently, these reformatted
tables can now be fed into reliable translation
models. To accomplish this, we assess many
prominent multilingual (e.g., mBART50 (Tang
et al., 2020) and M2M100 (Fan et al., 2020b))
and bilingual (e.g., MarianMT (Junczys-Dowmunt
et al., 2018)) translation models as described
below:

Multilingual Models. This category of models
used includes widely used machine translation
models trained on a large number of languages such
as mBART50 (Tang et al., 2020) which can perform
translation between any two languages from the list
of 50 languages and M2M100 (Fan et al., 2020b)
which has 100 training languages. Apart from these
models, we used Google Translate7 to compare
against our dataset translation quality.

Bilingual Models. Earlier studies have revealed
that bilingual models outperform multilingual
models in machine translation of high-resource
languages. Thus, for our experiments, we also
considered language-specific bilingual translation
models in MarianMT (Junczys-Dowmunt et al.,
2018) repository. Because the MarianMT models
were not available for a few languages (e.g., Korean
(ko)) of XINFOTABS, we could not conduct
experiments for some languages.
7 https://translate.google.co.in/

We also use an efficient data sampling technique
to determine the ideal translation model for each
language, as detailed in the next section. The
results for the translations are shown in Table 3.

4.1 Translation Model Selection
Translating the complete INFOTABS dataset to
find the optimal model is practically infeasible.
Thus, we select a representative subset of the
dataset that approximates the full dataset rather
well. Finally, we use optimal models to translate
the complete INFOTABS dataset. The method used
for making the subset is discussed in the Table
Subset Sampling Strategy and Hypothesis Subset
Sampling Strategy sections given below:-

Table Subset Sampling Strategy: In a table,
keys can serve as an excellent depiction of the
type of data included therein. For example, if
the key "children" is used, the associated value is
almost always a valid Noun Phrase or a collection
of them. Additionally, the type of keys for a given
category remains constant across tables, but the
values are always different.8 This fact is used to
sample a subset of diverse tables based on keys
and categories. Specifically, we sample tables for
each category based on the frequency of occurrence
of keys in the dataset to guarantee diversity. The
sum of the frequencies of all the keys in a table
is computed for each table. Finally, the top 10%
of tables with the largest frequency sum in each
category are chosen to be included in the subset. In
the end, we construct a subset with 11.14% tables
yet containing 90.2% of the all unique keys.

Hypothesis Subset Sampling Strategy: To get
a diverse subset of hypotheses, we employ
Top2Vec (Angelov, 2020) embedding for each
8 There are 2,163 unique keys in INFOTABS.
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hypothesis, then use k-means clustering (Jin
and Han, 2010) to choose 10% of each cluster.
Sampling from each cluster ensures we cover all
topics discussed in the hypothesis, resulting in a
subset of 2,569 hypothesis texts.

Model Selection Strategy: To choose the
translation model that will be used to generate the
language datasets, we first translate the premise
and hypothesis subsets for all languages using
each of the existing models, as described before.
Following translation, we compute the various
scores detailed in Section 4.2. Finally, the
model with the highest average of premise and
hypothesis translation Human Evaluation Score
for the specified language is chosen to translate the
complete INFOTABS datasets.

4.2 Translation Quality Verification
With the emergence of Transformer-based pre-
trained models, significant progress has been made
in automated quality assessment using semantic
similarity and human sense correlation (Cer et al.,
2017) for machine translation evaluation. To verify
our created dataset XINFOTABS, we use three
automated metrics in addition to human ratings.

Paraphrase Score (PS). PS indicates the amount
of information retained from the translated text.
To capture this, we estimate the cosine similarity
between the original INFOTABS text and the
back-translated English XINFOTABS text sentence
encodings. We utilize the all-mpnet-v2(Song et al.,
2020) model trained using SBERT (Reimers and
Gurevych, 2019) method for sentence encoding.

Multilingual Paraphrase Score (mPS).
Different from PS, mPS directly uses the
multilingual XINFOTABS text instead of the
English back-translated text to compare with
INFOTABS text. We produce sentence encodings
for multilingual semantic similarity using the
multilingual-mpnet-base-v2 model (Reimers and
Gurevych, 2020) trained using the SBERT method.

BERTScore (BS). BERTScore is an automatic
score that shows high human correlation and has
been a widely used quality estimation metric for
machine translation tasks (Zhang et al., 2019).

Human Evaluation Score (HES) We hired
five annotators to label sampled subsets of 500
examples per model and language. Human
verification is accomplished by supplying sentence

pairs and requesting that annotators classify them
as identical or dissimilar based on the meaning
expressed by the sentences. For more details, refer
to the Appendix §A.

Analysis. We arrive at an average language score
of 85 for tables and 91 for hypotheses for the
final selected models in all languages. The results
are summarised in Table 3. These results are
also utilized to determine the optimal models for
translating the entire dataset. MarianMT is used
to create the entire dataset in German, French, and
Spanish, mBART50 is used to create the Tables
dataset in Afrikaans, Korean, Hindi, and Arabic,
and M2M100 is used to create the entire dataset
in Russian and Chinese, as well as the hypothesis
dataset in Afrikaans, Korean, Hindi, and Arabic.

5 Experiment and Analysis

In this section, we study the task of Multilingual
Tabular NLI, utilizing our XINFOTABS dataset
as the benchmark for a variety of multilingual
models with multiple training-testing strategies.
By doing so, we aim to assess the capacity
and cross-lingual transferability of state-of-the-art
multilingual models. For the inference task, we
linearize the table using the “Table as Struct"-
TabFact described in INFOTABS.

Multilingual Models: We use pre-trained
multilingual models for all our inference label
prediction experiments. We use a multilingual
mBERT-base (cased) (Devlin et al., 2019) model
pre-trained on masked language modeling. This
model will be referred to as mBERTBASE. The
other model we evaluated is the XLM-RoBERTa
Large (XNLI) model (Conneau et al., 2020),
which is trained on masked language modeling and
then finetuned for the NLI task using the XNLI
dataset. This model is referred to as XLM-R Large
(XNLI). For details on hyperparameters, refer to
Appendix §B.

Tables 4, 6, and 7 show the performance of the
discussed multilingual models for α1, α2, and α3

test splits respectively. Tables 6 and 7 are shown
in Appendix §C, due to limited space. On all
three evaluation sets, regardless of task type, the
XLM-RoBERTaLarge model outperforms mBERT.
This might be because XLM-RoBERTa has more
parameters, and is better pre-trained and pre-tuned
for the NLI task using the XNLI dataset.

63



Model Metric de fr es af ru zh ko hi ar MdlAvg

MarianMT

PS 95 | 96 93 | 95 93 | 96 83 | 88 81 | 87 75 | 85 N.A. 56 | 55 60 | 79 80 | 85
mPS 92 | 95 87 | 96 90 | 96 83 | 84 78 | 84 79 | 83 N.A. 65 | 64 66 | 74 80 | 85
BS 93 | 94 91 | 94 92 | 94 84 | 89 81 | 87 73 | 85 N.A. 63 | 68 64 | 83 80 | 87

HES 95 | 87 92 | 86 92 | 94 70 | 56 84 | 54 75 | 59 N.A. 40 | 23 58 | 56 76 | 64
LnAvg 94 | 93 91 | 93 92 | 95 80 | 79 81 | 78 76 | 78 N.A. 56 | 53 62 | 73 79 | 80

mBART50

PS 94 | 96 93 | 95 86 | 87 88 | 92 89 | 87 81 | 87 83 | 82 85 | 82 70 | 77 85 | 87
mPS 92 | 96 90 | 96 72 | 92 85 | 91 81 | 88 79 | 84 86 | 83 79 | 81 80 | 80 83 | 88
BS 91 | 94 91 | 93 71 | 88 88 | 93 85 | 89 77 | 86 79 | 85 82 | 86 76 | 83 82 | 89

HES 93 | 84 91 | 81 82 | 80 89 | 69 87 | 69 76 | 61 76 | 54 79 | 70 71 | 53 83 | 69
LnAvg 93 | 93 91 | 91 78 | 87 88 | 86 86 | 83 78 | 80 81 | 76 81 | 80 74 | 73 83 | 83

M2M100

PS 89 | 96 92 | 94 88 | 95 91 | 94 89 | 90 83 | 82 83 | 92 83 | 88 72 | 77 86 | 90
mPS 88 | 96 88 | 96 88 | 96 84 | 92 83 | 88 80 | 86 84 | 90 81 | 87 78 | 92 84 | 91
BS 87 | 94 89 | 93 86 | 93 89 | 94 87 | 90 81 | 88 80 | 90 81 | 89 73 | 88 84 | 91

HES 88 | 85 86 | 86 84 | 86 86 | 83 87 | 74 79 | 72 70 | 82 75 | 73 60 | 51 79 | 77
LnAvg 88 | 93 89 | 92 87 | 93 88 | 91 87 | 86 81 | 82 79 | 89 80 | 84 71 | 77 83 | 87

GoogleTr

PS 91 | 94 94 | 93 92 | 93 96 | 95 79 | 86 80 | 83 87 | 89 90 | 85 60 | 81 85 | 89
mPS 89 | 94 88 | 94 88 | 94 82 | 87 82 | 86 80 | 86 83 | 87 77 | 80 71 | 81 82 | 88
BS 87 | 91 89 | 90 88 | 91 88 | 93 77 | 85 78 | 82 82 | 85 87 | 85 63 | 82 82 | 87

HES 91 | 79 93 | 81 89 | 83 96 | 81 84 | 66 79 | 56 79 | 70 92 | 74 65 | 70 85 | 73
LnAvg 90 | 90 91 | 90 89 | 90 91 | 89 81 | 81 79 | 77 83 | 83 87 | 81 65 | 79 84 | 84

Table 3: Table translation experiment results with Paraphrase Score (PS), Multilingual Paraphrase Score (mPS),
BERTScore (BS), Human Evaluation Score (HES), Language Average (LnAvg) and Model Average (MdlAvg). We
use the "X | Y" format, where X and Y represent the Table and hypothesis translation score respectively. Purple and
Orange signifies the language average score of the model selected for table and hypothesis translation respectively.

5.1 Using English Translated Test Sets

We aim to investigate the following question:
How would models trained on original English
INFOTABS perform on English translated
multilingual XINFOTABS?. We trained multi-
lingual models using the original English
INFOTABS training set, and used the English
translated XINFOTABS development set, and three
test sets during the evaluation. According to Table
4, German has the best language-wise performance
for α1. From Table 6, German, French, and
Afrikaans have the highest average scores for
α2. French and Russian have the best scores on
α3 as shown in Table 7. Arabic has the lowest
average of any language across all three test sets.
Here, the model trained on English INFOTABS is
being used for all the languages. Since the model
is the same for all languages, the variation in
performance only depends on English translation
across XINFOTABS languages. On α2 and α3

sets, this task on average performs competitively
against all other baseline tasks.

5.2 Language-Specific Model Training

In this subsection, we try to answer the question: Is
it beneficial to train a language-specific model on
XINFOTABS? In doing so, we finetune ten distinct
models, one for each language on XINFOTABS.
Comparing models on this task helps comprehend

the model’s intrinsic multilingual capabilities for
tabular reasoning. Among the language-specific
models, English has the best language average in
all three test sets, while Arabic has the lowest.

Additionally, there is a substantial variation
in the quality of translation and model
multilingualism competence. The high-resource
languages often perform better since the pre-
trained models have been trained on a larger
amount of data from these languages. Surprisingly,
§5.2 setting has lower average mBERT scores for
all three splits than §5.1 setting. The benefit of
training the model in English seems to surpass
any loss incurred during translating test sets
into English. However, this is not the case with
XLM-R(XNLI). The average scores increase
substantially for α1 split in §5.2 setting compared
to §5.1 setting, decrease slightly for α2, and remain
constant for α3. The α1 set improves due to its
similar split to the train set, whereas the α2 set
slightly worsens since it includes human-annotated
perturbed hypotheses with labels flipped. Lastly,
the α3 set comprises tables from zero-shot
domains i.e. unseen domain tables, so it remains
constant. Our exploration of models’ cross-lingual
transferability is provided in Appendix§ D.

5.3 Fine-tuning on Multiple Languages

Earlier findings indicate that fine-tuning
multilingual models for the same task across
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Train/Test Strategy Model en de fr es af ru zh ko hi ar Model. Avg.
English Translated Test mBERTBASE - 66 64 65 66 63 63 64 64 59 64

(§5.1) XLM-RLARGE (XNLI) - 73 73 72 72 72 71 69 70 62 70
Lang. Avg. - 70 69 69 69 67 67 67 67 61 68

Language Specific Training mBERTBASE 67 65 65 63 62 64 63 61 63 57 63
(§5.2) XLM-RLARGE (XNLI) 76 75 74 74 72 71 73 71 71 68 72

Lang. Avg. 72 70 69 68 67 67 68 66 67 63 68
Multiple Language Finetuning mBERTBASE - 64 66 64 64 64 65 63 62 62 64
Using Only English (§5.3A) XLM-RLARGE (XNLI) - 75 74 75 74 74 73 73 72 69 73

Lang. Avg. - 69 70 69 69 69 69 68 67 66 69
Multiple Language Finetuning mBERTBASE 65 64 64 64 64 63 64 62 62 59 63

Unified Model (§5.3B) XLM-RLARGE (XNLI) 76 75 74 75 73 74 74 73 72 70 74
Lang. Avg. 71 69 69 70 69 68 69 67 67 65 69

English Premise mBERTBASE - 63 63 64 62 61 61 59 61 60 61
Multilingual Hypothesis (§5.4) XLM-RLARGE (XNLI) - 73 73 73 72 72 73 72 71 68 72

Lang. Avg. - 68 68 68 67 67 67 66 66 64 67

Table 4: Accuracy for baseline tasks on the α1 set. Purple signifies the best task average accuracy, Orange
signifies the best language average accuracy, Cerulean signifies the best model accuracy. XLM-RLARGE represent
XLM-RoBERTaLARGE model.

languages improves performance in the target
language (Phang et al., 2020; Wang et al., 2019;
Pruksachatkun et al., 2020). Thus, do models
benefit from sequential fine-tuning over several
XINFOTABS languages? To answer it, we
investigate this strategy of pre-finetuning in two
ways, (a) by using English as the predominant
language for pre-finetuning, and (b) by utilizing all
XINFOTABS languages to train a unified model, .

A. Using English Language. We fine-tune our
models on the English INFOTABS and then on
XINFOTABS in each language individually. Thus,
we train nine models in total, one for each
multilingual language (except English). English
was chosen as the pre-finetuning language due to
its strong performance in the §5.2 paradigm and
prior research demonstrating English’s superior
cross-lingual transfer capacity (Phang et al.,
2020). Across all three splits, the average score
improves from the §5.2 setting, demonstrating that
pre-finetuning the English dataset benefits other
multilingual languages. The most significant gains
are shown in lower resource languages, notably
Arabic, which improved by 3% for α1, 2% for α2,
and 1% for α3 in comparison to the §5.2 approach.

B. Unified Model Approach. We explore
whether fine-tuning on other languages is
beneficial, where we fine-tune a single unified
model across all XINFOTABS languages’ training
sets and use it for making predictions on
XINFOTABS test sets. We observe that the
finetuning language order affects the final model
performance if done sequentially. We find that
training from a high to a low resource language

leads to the highest average accuracy improvement.
This is due to the catastrophic forgetting trait
(Goodfellow et al., 2015), which encourages
training on more straightforward examples first,
i.e., those with better performance. Hence, we
trained in the following language order: en→ fr
→ de→ es→ af→ ru→ zh→ hi→ ko→ ar.

We observe that the XLM RoBERTa Large
model performs the best across all baseline tasks
in the α1 set. On average, this performance
is comparable to English pre-finetuning. While
the accuracy of high resource languages remains
constant or marginally declines compared to the
§5.2 setting, there is a substantial improvement in
accuracy for low resource languages, particularly
Arabic, which increases by 2%. It performs
similarly to English pre-finetuning. To conclude,
more fine-tuning is not always beneficial for all
models, but it benefits larger models like the XLM-
R Large. Models improve performance for low-
resource languages compared to the §5.2 setting
(i.e., no pre-finetuning), but not nearly as much as
that of English-based pre-finetuning.

5.4 English Premise Multilingual Hypothesis

The premise of English’s multilingual hypothesis
is practical, as it is frequently observed in the
real world. The majority of the world’s facts and
information are written in English. For instance,
Wikipedia has more tables in English than in any
other language, and even if a page is available,
it is likely that it missing an infobox. However,
because people are innately bilingual, inquiries or
verification queries concerning these facts could
be in a language other than English. As a result,
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the task of developing cross-lingual tabular NLI is
critical in the real world.

To study this problem, we look at the following
question: How effective are models with premise
and hypothesis stated in distinct languages? To
answer this, we train the models using the original
INFOTABS premise tables in the English language
and multilingual hypotheses in XINFOTABS, i.e.,
nine languages. We note that XLM-R Large
(XNLI) has the highest accuracy for the α1 set.
On average, the high-resource languages German,
French, and Spanish perform favorably across
models, whereas Arabic underperforms. Both
models have shallow scores in German for the
α2 set, which defy earlier observations. This
might be because the adversarial modifications in
the α2 hypothesis might not be reflected in the
German translation. XLM-R Large has the highest
accuracy on this set, with French and Spanish
being the most accurate languages. The models
for the α3 validation set demonstrate that language
average accuracy is nearly proportional to the size
of translation resources. However, the scores are
marginally lower on average for the α2 set.

Surprisingly, models perform worse on average
than with §5.2 setting on the α1 and α2 sets while
performing similarly on the α3 set. Except for α2

on German, the average language accuracy changes
are directly proportional to the language resource,
implying that the constraint could be translation
quality; left for future study. Refer Appendix §E
for robustness and consistency analysis.

6 Discussion and Analysis

Extraction vs. Translation. One straightforward
idea for constructing the multilingual tabular NLI
dataset is to extract multilingual tables from
Wikipedia in the considered languages. However,
this strategy fails in practice for several reasons.
For starters, not all articles are multilingual. For
example, only 750 of the 2540 tables were from
articles available in Hindi. The existence of
the same title articles across several languages
does not indicate that the tables are identical.
Only 500 of the 750 tables with articles in Hindi
had infoboxes, and most of these tables were
considerably different from the English tables. The
tables had different numbers of keys and different
value information.

Human Verification vs. Human Translation.
We selected machine translation with human

verification over hiring expert translators for
several reasons: (a) Hiring bilingual, skilled
translators in multiple languages is expensive
and challenging, (b) Human verification is a
more straightforward classification task based
on semantic similarity; it is also less erroneous
compared to translation, (c) By selecting an
appropriate verification sample size, we may
further minimize the time and effort required for
human inspection, (d) A competent translation
system has no effect on the classification labels
used in inference. As a result, the loss of the
semantic connection between the table and the
hypothesis is not a significant issue (K et al.,
2021), and (e) Minor translation errors have no
effect on the downstream NLI task label as long as
the semantic meaning of the translation is retained
(Conneau et al., 2018; K et al., 2021; Cohn-Gordon
and Goodman, 2019; Carl, 2000).

Usage and Future Direction. The dataset
can be used to test benchmarks, multilingual
models, and methods for tabular NLI. In
addition to language invariance, robustness, and
multilingual fact verification, it may well be
utilized for reasoning tasks like multilingual
question answering (Demszky et al., 2018). The
baselines can also be beneficial to understand
models’ cross-lingual transferability.

Our current table structure does not generate
natural language sentences and hence does not
optimize the capabilities of a machine translation
model. The representation of tables can be
enhanced further by adding Better Paragraph
Representation (BPR) from Neeraja et al. (2021).
Additionally, NER handling may be enhanced by
inserting a predetermined template name into the
sentence post-translation, i.e. extracting a named
entity from the original sentence, replacing it with a
fixed template entity, and then replacing the named
entity with the template post-translation. Multiple
experiments, however, would be necessary to
identify suitable template entities for replacement,
and hence this is left as future work. Another
approach is the extraction of keys and values from
multilingual Wikipedia pages is also a challenging
task and left as future work. Finally, human
intervention can enhance the translation quality
by either direct human translation or fine-grained
post-translation verification and correction.
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7 Related Work

Tabular Reasoning. Recent studies investigate
various NLP tasks on semi-structured tabular data,
including tabular NLI and fact verification (Chen
et al., 2019; Gupta et al., 2020; Zhang and
Balog, 2019), tabular probing (Gupta et al., 2021),
various question answering and semantic parsing
tasks (Pasupat and Liang, 2015; Krishnamurthy
et al., 2017; Abbas et al., 2016; Sun et al., 2016;
Chen et al., 2020b; Lin et al., 2020; Zayats et al.,
2021; Oguz et al., 2020; Chen et al., 2021, inter
alia), and table-to-text generation (e.g., Parikh
et al., 2020; Nan et al., 2021; Yoran et al.,
2021; Chen et al., 2020a). Several strategies
for representing Wikipedia relational tables were
recently proposed, such as TAPAS (Herzig et al.,
2020), TaBERT (Yin et al., 2020), TabStruc (Zhang
et al., 2020), TABBIE (Iida et al., 2021), TabGCN
(Pramanick and Bhattacharya, 2021) and RCI
(Glass et al., 2021). Yu et al. (2018, 2021);
Eisenschlos et al. (2020) and Neeraja et al. (2021)
study pre-training for improving tabular inference.

Multilingual Datasets and Models. Given the
need for greater inclusivity towards linguistic
diversity in NLP applications, various multilingual
versions of datasets have been created for text
classification (Conneau et al., 2018; Yang et al.,
2019; Ponti et al., 2020), question answering
(Lewis et al., 2020; Clark et al., 2020; Artetxe
et al., 2020) and structure prediction (Rahimi
et al., 2019; Nivre et al., 2016). Following the
introduction of datasets, multilingual leaderboards
like XTREME leaderboard (Hu et al., 2020), the
XGLUE leaderboard (Liang et al., 2020) and the
XTREME-R leaderboard (Ruder et al., 2021) have
been created to test models’ cross-lingual transfer
and language understanding.

Multilingual models can be broadly classified
into two variants: (a) Natural Language
Understanding (NLU) models like mBERT (Devlin
et al., 2019), XLM (Conneau and Lample, 2019),
XLM-R (Conneau et al., 2020), XLM-E (Chi et al.,
2021), RemBERT (Chung et al., 2021), and (b)
Natural Language Generation (NLG) models like
mT5 (Xue et al., 2021), mBART (Liu et al., 2020),
M2M100 (Fan et al., 2021). NLU models have
been used in multilingual language understanding
tasks like sentiment analysis, semantic similarity
and natural language inference while NLG models
are used in generation tasks like question-

answering and machine translation.

Machine Translation. Modern machine
translation models involve having an encoder-
decoder generator model trained on either
bilingual (Tran et al., 2021) or a multilingual
parallel corpus with monolingual pre-training e.g.
mBART (Liu et al., 2020) and M2M100 (Fan et al.,
2021). These models have been shown to work
very well even for low-resource languages due
to cross-language transfer properties. Recently
auxiliary pertaining for machine translation
models have garnered attention, with a focus on
autonomous quality estimation metrics (Specia
et al., 2018; Fonseca et al., 2019; Specia et al.,
2020). As such, automatic scores like the
BERTScore (Zhang et al., 2019), Bleurt (Sellam
et al., 2020) and COMET Score (Rei et al., 2020)
have high human evaluation correlation, are
increasingly used to assess NLG tasks.

8 Conclusion

We built the first multilingual tabular NLI dataset,
namely XINFOTABS, by expanding the INFOTABS
dataset with ten different languages. This is
accomplished by our novel machine translation
approach for tables, which yields remarkable
results in practice. We thoroughly evaluated
our translation quality to demonstrate that the
dataset meets the acceptable standard. We
further examined the performance of multiple
multilingual models on three validation sets of
varying difficulty, with methods ranging from
the basic translation-based technique to more
complicated language-specific and intermediate
task finetuning. Our results demonstrate that,
despite the models’ success, this dataset remains
a difficult challenge for multilingual inference.
Lastly, we gave a thorough error analysis of
the models to comprehend their cross-linguistic
transferability, robustness to language change, and
coherence with reasoning.
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A Human Annotation Guidelines

Annotators Details. We employed five
undergraduate students proficient in English as
human evaluation annotators. They were presented
with an instruction set with sample examples and
annotations before the actual work. We paid the
equivalent of 10 cents for every labeled example.
The study’s authors reviewed random annotations
to confirm their quality.

Annotation Guidelines. We refer to the work
by (Koehn and Monz, 2006) while setting up our
annotation task and instruction guidelines. We
gathered 500 table-sentence pairs representing
original (en) and back-translated (en) texts per
model-language into several Google spreadsheets.
We had a total of 108 sheets (4 models, 9 languages,
3 Modes (table-keys, table-values, and hypothesis)
and hence 54000 annotation instances. Each
sheet was assigned to a single annotator, who was
required to adhere to the semantic similarity task
requirements, which are outlined below:
1. The Semantic Similarity task requires
the annotator to classify each sentence-pair as
conveying the same meaning (label 1) or conveying
different meaning (label 0) than each other.
2. In case their exists a difference of syntax
including spelling mistakes, punctuation error or
missing special characters, the annotators was
asked to ignore these as long as the sentence
meaning is understandable (label 1). In case proper
nouns were misspelled, the annotator must judge
the spellings as phonetically similar (label 1) or not
(otherwise label 0).
3. The annotators were asked to be lenient on the
grammar, allowing for active-passive changes and
tense change, if the sentences convey close to the
same meaning i.e. (label 1).
4. In case acronyms or abbreviations were present
in the sentences, the annotators were asked to mark
them as same (label 1) if the sentences had proper
expansion/contractions.
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Code Language Language Family Script Type # of Speakers
en English Germanic Latin 1.452 Billion
de German Germanic Latin 134.6 Million
fr French Romance Latin 274.1 Million
es Spanish Romance Latin 548.3 Million
af Afrikaans Germanic Latin 17.5 Million
ru Russian Balto-Slavik Cryllic 258.2 Million
zh Chinese Sinitic Hanzi 1.118 Billion
ko Korean Koreanic Hangul 81.7 Million
hi Hindi Indo-Aryan North-Indic 602.2 Million
ar Arabic Semitic Arabic 274.0 Million

Table 5: Details regarding languages provided in the XINFOTABS, from English to Arabic in order of open-source
translation resources, refer to OPUS

Train/Test Strategy Model en de fr es af ru zh ko hi ar Model. Avg
English Translated Test mBERTBASE - 54 53 52 54 52 52 53 52 50 53

(§5.1) XLM-RLARGE (XNLI) - 67 66 64 65 65 63 63 63 58 64
Lang. Avg. - 60 60 58 60 59 58 58 58 54 59

Language Specific Training mBERTBASE 54 54 52 53 50 52 52 51 50 48 52
(§5.2) XLM-RLARGE (XNLI) 68 66 64 66 63 64 64 64 62 57 64

Lang. Avg. 61 60 58 60 57 58 58 58 56 53 58
Multiple Language Finetuning mBERTBASE - 53 54 51 53 53 53 52 51 50 52
Using Only English (§5.3A) XLM-RLARGE (XNLI) - 66 67 66 66 65 65 65 64 61 65

Lang. Avg. - 59 60 58 59 59 59 59 58 55 59
Multiple Language Finetuning mBERTBASE 53 51 53 53 52 51 53 50 50 49 52

Unified Model (§5.3B) XLM-RLARGE (XNLI) 66 64 64 63 64 64 64 63 63 60 64
Lang. Avg. 60 58 59 58 58 58 58 56 57 54 58

English Premise mBERTBASE - 49 53 53 51 49 49 50 47 50 50
Multilingual Hypothesis (§5.4) XLM-RLARGE (XNLI) - 63 65 65 64 65 65 63 63 61 64

Lang. Avg. - 56 59 59 57 57 57 57 55 55 57

Table 6: Accuracy for baseline tasks on the α2 set. Purple signifies the best task average accuracy, Orange
signifies the best language average accuracy, Cerulean signifies the best model accuracy. XLM-RLARGE represent
XLM-RoBERTaLARGE model.

Train/Test Strategy Model en de fr es af ru zh ko hi ar Model. Avg.
English Translated Test mBERTBASE - 52 53 52 53 53 52 52 52 50 52

(§5.1) XLM-RLARGE (XNLI) - 65 65 64 63 64 62 62 61 57 63
Lang avg - 58 59 58 58 59 57 57 57 53 58

Language Specific Training mBERTBASE 52 50 52 53 50 50 51 48 49 49 50
(§5.2) XLM-RLARGE (XNLI) 67 65 62 64 62 62 63 60 62 57 62

Lang avg 60 58 57 58 56 56 57 54 56 53 56
Multiple Language Finetuning mBERTBASE - 52 50 52 52 51 51 49 49 48 50
Using Only English (§5.3A) XLM-RLARGE (XNLI) - 65 64 65 62 64 60 63 62 63 63

Lang avg - 59 57 58 57 57 56 56 56 54 57
Multiple Language Finetuning mBERTBASE 53 50 51 53 50 50 51 47 50 49 50

Unified Model (§5.3B) XLM-RLARGE (XNLI) 66 64 64 64 63 64 63 62 63 60 63
Lang avg 60 57 57 58 56 57 57 55 56 54 57

English Premise mBERTBASE - 51 50 51 50 50 47 45 48 48 49
Multilingual Hypothesis (§5.4) XLM-RLARGE (XNLI) - 63 63 64 62 62 62 60 61 60 62

Lang avg - 57 57 57 56 56 55 54 55 54 56

Table 7: Accuracy for baseline tasks on the α3 set. Purple signifies the best task average accuracy, Orange
signifies the best language average accuracy, Cerulean signifies the best model accuracy. XLM-RLARGE represent
XLM-RoBERTaLARGE model.
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Figure 2: Predictions of XLM-RoBERTa for English vs (a) French, (b) Afrikaans, (c) Hindi. The percentage on top in each
block represents the average across all three labels with each label percentage given below it in the order of ENTAILMENT,
NEUTRAL and CONTRADICTION. (cf. Appendix §E)
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Figure 3: Confusion Matrix: Gold Labels vs predictions of XLM-R for (a) French, (b) Afrikaans, (c) Hindi

Categories ENTAILMENT NEUTRAL CONTRADICTION

En Fr Af Hi Avg. En Fr Af Hi Avg. En Fr Af Hi Avg.
Person 79 71 75 73 74 82 81 78 81 81 59 67 54 56 59

Musician 88 77 78 76 80 87 87 91 82 87 70 69 60 69 67
Movie 70 63 57 63 63 85 93 85 87 88 81 76 78 65 75
Album 76 76 81 62 74 95 90 86 90 90 76 76 67 62 70

City 73 58 60 67 65 71 69 65 63 67 67 54 50 52 56
Country 74 61 65 63 66 74 70 76 76 74 74 72 76 69 73
Painting 83 79 75 67 76 83 96 92 83 89 71 71 71 71 71
Animal 79 75 79 79 78 75 58 83 67 71 71 75 67 58 68

Food&Drink 88 83 75 88 83 83 79 71 79 78 67 63 58 54 60
Organization 83 100 83 50 79 67 67 67 67 67 67 67 67 83 71

Other 75 73 67 73 72 73 84 84 75 79 76 68 71 62 69
Avg. 79 74 72 69 74 80 79 80 77 79 71 69 65 64 67

Table 8: Category wise accuracy scores of XLM-R (large) for four languages: namely English (En), French (Fr), Afrikaans (Af)
and Hindi (Hi). Orange denotes the least score in the column and Purple denotes the highest score in the column.

Reasoning type ENTAILMENT NEUTRAL CONTRADICTION

H.En En Fr Af Ko H.En En Fr Af Ko H.En En Fr Af Ko
Coref 8 6 6 6 4 22 19 19 20 19 13 10 9 7 8

Entity Type 6 5 5 5 5 8 6 6 6 6 6 6 6 4 5
KCS 31 21 19 17 22 21 20 17 19 18 24 18 17 17 20

Lexical Reasoning 5 4 4 4 3 3 2 2 2 1 4 1 1 1 1
Multirow 20 14 11 11 11 16 13 12 13 11 17 15 14 10 13

Named Entity 2 0 0 0 1 2 1 1 1 2 1 1 1 1 1
Negation 0 0 0 0 0 0 0 0 0 0 6 5 5 4 5

Numerical 11 10 7 8 8 3 3 2 3 2 7 5 6 4 4
Quantification 4 2 2 2 2 13 10 10 12 10 6 2 1 2 3
Simple Lookup 3 2 1 2 2 0 0 0 0 0 1 0 1 0 0
Subjective/OOT 6 3 4 4 3 41 37 35 36 37 6 3 4 2 3

Temporal 19 16 12 13 14 11 6 6 6 5 25 18 20 15 19

Table 9: Reasoning wise number of correct predictions of XLM-R (large) for four languages: namely English (En), French (Fr),
Afrikaans (Af) and Hindi (Hi) along with human scores for the english dataset74



5. In presence of numbers or dates, the annotators
were asked to be extremely strict and label even
slightly differing dates or numbers like (XXXI v.s.
30) as completely different (label 0).
6. In case of any further ambiguity, the judgement
was left to the annotators human far-sight as long
as the adhere to the task definition.

We estimated the accuracy of human verification
for every models and languages by averaging the
annotator labels.

B Multilingual Models Hyperparameters

The XLM-RLARGE (XNLI) model was taken from
HuggingFace9 models and finetuned using PyTorch
Framework10 on Google Colaboratory11 which
offer a single P100 GPU. We utilized accuracy as
our metric of choice, same as INFOTABS. We used
Adagrad (Li and Orabona, 2019) as our optimizer
with a learning rate of 1 ∗ 10−4. We ran our
finetuning script for ten epochs with a validation
interval of 1 epoch, and early stopping callback
enabled with the patience of 2. Given the large
model size, we had to use a batch size of 4.

The mBERTBASE (cased) model was trained on
TPUv2 8 cores using the PyTorch Lightning12

Framework. AdamW (Loshchilov and Hutter,
2017) was our choice of optimizer with learning
rate 5 ∗ 10−6. We ran our finetuning script for ten
epochs with a validation interval of 0.5 epochs, and
early stopping callback enabled with the patience
of 3. Given the model’s small size, we used a batch
size of 64 (8 per TPU core).

C Adversarial Sets (α2 and α3)
Performance

Tables 6 and 7 show the results for all baseline
tasks on the Adversarial Validation Sets α2 and α3.

D Evaluating Cross-Lingual Transfer

We are also interested in knowing whether training
in one language can help transfer knowledge
across other languages or not. We answer the
question: What are models of cross-lingual transfer
performance?. Since we have separate models
trained on languages from our dataset available, we
tested them on all other languages other than the
training language to study cross-lingual transfer.

The TrLangAvg scores (Training Language
Average) from 10 show how models trained on
9 huggingface.co 10 pytorch.org 11 Google Colaboratory
12 PyTorch Lightning

XINFOTABS for one language perform on other
languages for α1, α2 and α3 sets respectively.
XLM-R (XNLI) outperforms mBERT across
all tasks. English has the best cross-lingual
transferability on mBERT, whereas Spanish has the
best cross-lingual transferability on XLM-R(XNLI)
for the α1 set. On mBERT, German has the best
cross-lingual transferability for the α2 dataset. On
XLM-R (XNLI), German and Spanish have the best
cross-lingual transferability. On mBERT, English
has the best cross-lingual transferability for the
α3 dataset. On XLM-R (XNLI), English and
Spanish have the best cross-lingual transferability.
Furthermore, the EvLangAvg score (Evaluation
Language Average) score was comparable for all
languages except approximately 4% lower for
Arabic (’ar’) language with XLM-R(XNLI) model
on all three test sets.

Overall, we observe that finetuning models
on high resource languages improve their cross-
lingual transfer capacity considerably more than
finetuning models on low resource languages.
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Figure 4: Consistency graph for XLM-R (large)
predictions of English vs (a) French (b) Afrikaans
(c) Hindi in that order respectively.

E Robustness and Consistency

In this part, we examine the findings for several
languages and delve a little more into the key
disparities in performance across them. We
compare the results of the experiments for §5.2
setting for α1 set of best-performing language (en)
with three languages - (a) A high resource language
(fr), (b) A mid resource language (af) and c) A
low resource language (hi). We compute four
numbers for each of the languages (l) (where l
is (fr), (af), or (hi)) and (en) - the proportion of
instances when (a) both are right, (b) both are
erroneous (c) correct (en) but incorrect (l), and
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(d) correct (l) but incorrect (en). We compute this
number overall as well independently for each of
the inference labels, as shown in Figure 2.

We note that the majority of instances were
correctly categorized in both English and all three
other languages. This is followed by the number of
instances in which English and all other languages
categorised examples inaccurately. Additionally,
we notice a greater proportion of samples that
are correctly identified by English but wrongly
classified by all other languages, as opposed to
the contrary. Furthermore, the label NEUTRAL

has the highest proportion of correctly classified
examples across all languages, whereas the label
CONTRADICTION has the lowest.

In Figure 3, we notice that the CONTRADICTION

gets confused a lot with ENTAILMENT label across
all the languages. The difference between the
accuracy for the CONTRADICTION label of French
vs Afrikaans and Hindi can entirely be attributed to
this sort of confusion. Furthermore, ENTAILMENT

gets quite confused with CONTRADICTION.

In Figure 4, we see the greatest language
inconsistency with ENTAILMENT label going
towards CONTRADICTION across all the languages,
though this inconsistency is least in Afrikaans. The
inconsistency for CONTRADICTION label being
predicted as ENTAILMENT is increasing across
resource size of languages from French having
the least to Hindi having the highest. Otherwise,
the inconsistency across languages is rather low,
showing that the XLM-RLARGE model is quite
consistent across languages.

In Table 8, we can observe that our model
on average performs worst for all ENTAILMENT

belonging to Movie category, NEUTRAL and
CONTRADICTION belonging to City category.
In general, our model performs the worst for
all hypothesis belonging to the City category
possibly because of the involvement of larger table
sizes on average and highly numeric and specific
hypothesis statements as compared to the rest of
the categories. Our models perform extremely
well on all ENTAILMENT in FoodDrink category
because of their smaller table size on average and
hypothesis requiring no external knowledge to
confirm as compared to CONTRADICTION. For
ENTAILMENT our model performs remarkably
well on Organization category for French, getting
all the hypothesis labels correct. While for
NEUTRAL, it performs well for Paintings in French

language. Lastly, it performs marginally well
for CONTRADICTION on Hindi for Organization
as compared to the highest performing category
for CONTRADICTION in English i.e. the Movie
category. All language averages perform in the
order of their language resource which is expected
from Table 4.

Table 9 depicts a subset of the validation
set which has been labeled based on different
reasoning mechanisms that the model must employ
to categorize the hypothesis correctly. We found
the reasoning accuracy scores for 4 languages along
with human evaluation score for comparison. Upon
observation, we can see that regardless of language,
human scores are better than the model we utilize.
The variation in language is mostly minimal, but on
average our model performs best for English. We
notice that for some reasoning types, like Negation
and Simple Look-up, humans and the model get
no hypothesis right, showing the toughness of the
problem. For Numerical based reasoning as well as
Coref type reasoning, our model comes very close
to human score evaluation. However, overall we
are still far from human level performance at TNLI
and much scope remains to betterment of models
on this task.
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Test-Split Model TrLang en de fr es af ru zh ar ko hi TrLangAvg

α1

mBERTBASE

en 67 64 63 62 61 61 60 56 58 58 61
de 63 65 61 62 60 59 57 56 56 57 60
fr 64 62 65 62 61 59 59 55 53 57 60
es 62 62 63 63 61 60 60 57 57 58 60
af 62 61 61 60 62 59 57 55 55 55 59
ru 63 61 61 60 59 64 59 56 55 55 59
zh 55 56 58 56 59 57 63 55 57 58 57
ar 57 58 58 57 58 58 57 57 53 57 57
ko 58 59 58 57 57 56 58 55 61 57 58
hi 59 58 59 58 57 58 58 56 54 63 58

EvLangAvg 61 61 61 60 60 59 59 56 56 58 59

XLM-R (XNLI)

en 76 73 71 73 71 71 71 63 70 69 71
de 74 75 74 72 71 70 69 63 71 68 71
fr 73 74 74 72 72 70 71 64 70 70 71
es 74 73 74 74 72 71 72 65 71 69 72
af 72 72 71 71 72 70 70 63 70 68 70
ru 73 73 72 71 71 71 71 64 70 67 70
zh 72 72 70 71 70 69 73 64 70 69 70
ar 71 71 70 70 69 70 71 68 70 68 70
ko 72 71 72 71 70 69 71 64 71 69 70
hi 73 73 71 72 70 70 70 64 69 71 70

EvLangAvg 73 73 72 72 71 70 71 64 70 69 70

α2

mBERTBASE

en 54 53 53 53 51 52 50 49 50 47 51
de 54 54 53 53 52 52 50 49 50 48 52
fr 52 51 52 53 50 50 48 49 51 47 50
es 52 50 50 53 47 51 48 49 46 46 49
af 49 50 50 49 50 50 47 48 48 46 49
ru 51 50 51 51 51 52 49 49 49 49 50
zh 49 48 49 48 49 49 52 47 48 48 49
ar 49 48 49 48 47 48 47 48 47 47 48
ko 49 49 50 48 48 47 50 47 51 49 49
hi 48 47 47 48 48 49 48 46 48 50 48

EvLangAvg 51 50 50 50 49 50 49 48 49 48 50

XLM-R (XNLI)

en 68 65 64 64 64 63 62 58 63 59 63
de 67 66 66 65 64 63 62 57 64 61 64
fr 67 64 64 65 62 60 60 58 62 60 62
es 67 66 65 66 63 64 62 57 64 61 64
af 66 64 64 64 63 62 63 57 62 59 62
ru 66 64 64 63 62 64 62 57 61 60 62
zh 67 65 65 64 63 64 64 58 64 61 62
ar 64 61 62 61 60 60 60 57 60 58 60
ko 65 63 63 63 61 62 62 57 64 59 62
hi 67 64 65 65 63 64 62 58 60 62 63

EvLangAvg 66 64 64 64 63 63 62 57 62 60 63

α3

mBERTBASE

en 52 52 51 53 49 50 49 47 46 47 50
de 50 50 51 50 51 48 48 44 46 48 49
fr 52 52 52 53 50 50 49 46 44 47 50
es 50 50 51 53 48 48 46 46 46 46 50
af 50 50 50 51 50 49 47 47 45 48 49
ru 50 48 49 50 49 50 47 45 45 46 48
zh 49 49 50 50 49 50 51 46 48 49 49
ar 49 49 49 49 48 49 48 49 47 48 48
ko 47 46 47 47 44 45 45 43 48 48 46
hi 50 49 49 49 48 46 48 46 47 50 48

EvLangAvg 50 49 50 50 49 48 48 46 46 48 49

XLM-R (XNLI)

en 67 65 61 64 62 64 63 58 65 62 63
de 65 65 63 61 63 63 61 56 61 60 62
fr 66 64 62 63 62 61 61 56 60 62 62
es 66 65 63 64 63 63 62 59 61 62 63
af 65 64 61 62 62 60 61 56 60 59 61
ru 65 63 61 62 62 62 61 56 60 62 61
zh 65 64 62 63 62 62 63 57 62 60 62
ar 63 62 62 61 61 60 60 57 60 60 61
ko 64 62 61 62 60 63 61 56 60 62 61
hi 64 63 62 63 61 61 60 58 60 62 61

EvLangAvg 65 64 62 63 62 62 61 57 61 61 62

Table 10: Evaluation of cross lingual transfer abilities of models on α1, α2, and α3 evaluation set. TrLang refers to the language
the model has been finetuned on and EvLang refers to the language the model has been evaluated on. Purple, Orange and
Cerulean represent the highest score in the row, column and both together respectively.
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Abstract

Computational fact-checking aims at support-
ing the verification process of textual claims
by exploiting trustworthy sources. However,
there are large classes of complex claims that
cannot be automatically verified, for instance
those related to temporal reasoning. To this
aim, in this work, we focus on the verification
of economic claims against time series sources.
Starting from given textual claims in natural
language, we propose a neural machine trans-
lation approach to produce respective queries
expressed in a recently proposed temporal frag-
ment of the Datalog language. The adopted
deep neural approach shows promising prelimi-
nary results for the translation of 10 categories
of claims extracted from real use cases.

1 Introduction

False and misleading information spreading on me-
dia negatively impacts our society by affecting peo-
ple opinions and behaviours. To oppose such phe-
nomena, fact-checking is the process aiming at ver-
ifying the correctness of facts in a piece of text, i.e.,
claims (Nakov et al., 2021). To this end, claims
have to be debunked against trustworthy structured
and non-structured sources. In this work, we report
on our effort on statistical claims in collaboration
with a national central bank in Europe. Specifi-
cally, we focus on claims about economic events
and trends that should be checked against temporal
data sequences, namely time series, the standard
format for time-based data in this domain.

Fact-checking organizations debunk such claims
applying a typically manual process to extract
claims from text, retrieving pieces of evidence from
relevant sources, and finally, reaching a verdict us-
ing such evidence. Given the large amount of in-
formation produced and shared online, this process
cannot guarantee that an adequate number of eco-
nomic claims is debunked. To enable scalability,
statistical claims could be automatically verified

Figure 1: Examples of a claim verified with a SQL query
(left) and a complex claim tested with a Datalog rule
(right). In both cases, the result is not empty, thus the
claim is false based on the evidence in the time series.

to support checkers in their work. In order to be
interpretable to the human, not only should the au-
tomatic verification provide a label for the given
claim, but also a clear explanation of the adopted
reasoning process as well as the evidence used to
draw the conclusion.

Declarative languages offer a valid solution to
both challenges. Mature data modeling languages
balance computational complexity and expressive
power, addressing the scalability challenges. In-
terpretability is a major advantage of declarative
languages, with well-known semantics applied
to the ground data in a deductive, top-down ap-
proach (Hansen and Rieger, 2019).

Different solutions translate text formats to
executable high-level languages, e.g., SQL
queries, typically through neural architectures
(Katsogiannis-Meimarakis and Koutrika, 2021;
Saeed and Papotti, 2021). While these approaches
exhibit promising results, they do not effectively
translate claims including temporal aspects into an
executable form. This depends on their limited ca-
pability in capturing the temporal logic of claims.

Example. Consider a central bank that offers a
service to fact-check economic claims. Reference
information is available in the standard format of
time-series. The bank has data about economic
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measures, such as inflation, public debt, employ-
ment rate, interest rates, and about events such as
economic crises, and salary increments. The exam-
ple in Figure 1 shows the inflation and public debt
metrics with key-value tables.

While some claims can be easily written as SQL
queries for their verification, for most of them this
is very difficult, or unfeasible in some cases. Con-
sider the claims (i) “Inflation in the last 10 years
has been lower than 3%” and (ii) “Every time infla-
tion is above 2% for 10 years, public debt surpasses
3000B". A possible SQL query to verify claim (i)
through counter-example detection is reported in
the left-hand side of Figure 1. For Claim (ii), a
script should evaluate, for each year in the dataset,
the value of public debt and then check a condition
over inflation for the previous 10 years. Although
such expression can be written in SQL for one
given year, our claim requires checking the condi-
tion for every possible year, which turns out to be
unfeasible or extremely laborious and inefficient
in SQL. With DatalogMTL (Brandt et al., 2018), a
Datalog fragment that incorporates temporal opera-
tors, we can represent our expression as:

⊥:=−�[0,10] inflationGt(y), y = 0.02,

public_debt(x), x ≤ 3000B

The rule intercepts the cases in which Claim (ii)
is violated. In fact, it is triggered whenever the
body (right-hand side) is satisfied, meaning that
the inflation is found greater than 2% for the 10
preceding years but the public debt is below or
equal to 3000B. Specifically, the logical premise
of our claim (“Every time inflation is above 2%”)
is checked through the temporal operator −�ϱ, i.e.,
“always true in the interval ϱ = [t − 10y, t]”, so
that for the rule to be triggered at a point in time t,
the logical conclusion of our claim must be false,
i.e., public_debt(x), x ≤ 3000B. The evaluation
of the rule checks the claim and produces human-
understandable counter-examples (Figure 1).

In this paper, we propose a neural machine trans-
lation approach to fact-check numerical temporal
claims. In particular, our approach synthesizes tem-
poral data queries (rules) from input claims for the
verification of temporal claims. While there have
been efforts to use neural architectures for generat-
ing SQL scripts (Yin et al., 2021), to the best of our
knowledge, there is no support to translate textual
claims into Datalog rules (Brandt et al., 2018).

The main contributions of our approach are:

(i) the adoption of DatalogMTL to encode as rules
a large class of temporal economic claims thus cap-
turing their temporal logic, (ii) the rule synthesis
according to our proposed fine-tuned neural T5
model (Raffel et al., 2020).

Our model is generated based on a dataset of
manually crafted claim-query pairs inspired by eco-
nomic newspapers and the Federal Reserve dataset
(Fred, 2022). Finally, a validation phase attests the
ability of our model to automatically synthesize
newly generated claims unseen during fine-tuning.

2 Language and Templates

In this section we present the DatalogMTL formal-
ism, the reference data model, and a categorization
of claim-query pairs based on their semantics.

Temporal Datalog. We adopt Datalog Metric Tem-
poral Logic (DatalogMTL), a temporal logic-based
language that has recently received great attention
from the AI and database communities (Walega
et al., 2019, 2020, 2021). DatalogMTL extends
Datalog with metric temporal logic operators over
the rational timeline. We consider DatalogMTL
rules of the form ⊥ := A1, . . . , Ak, for k ≥ 0,
where all Ai are literals that follow the grammar
A ::= ⊤ | ⊥ | P (τ ) | −�ϱA | ♢−ϱA, with ϱ being a
non-negative interval, and P an atom (on a predi-
cate having either functional or infix notation) over
a tuple of terms (i.e., variables and constants) τ .
The conjunction of A is the rule body and commas
denote the logical and (∧).

Given a database D, the semantics of a Data-
logMTL rule is defined through interpretations. An
interpretation M specifies for each time point t,
whether a ground atom P (a) from D is true at t,
in which case we write M, t |= P (a)@t. The @
symbol denotes the time reference for an atom.

An interpretation that satisfies all atoms of the
body triggers the rule. The box minus −�ϱ opera-
tor checks if a ground atom is continuously true in
the interval ϱ, that is, M, t |= −�ϱA iff M, s |=
A for all s, with t − s ∈ ϱ. The diamond mi-
nus ♢−ϱ operator checks if a ground atom is true
at least once in the interval ϱ, that is, M, t |=
♢−ϱA iff M, s |= A for some s, with t− s ∈ ϱ.

Data Model. We rely on existing data sources
containing time series, each representing an eco-
nomic metric and following the key-value format,
where key represents a time instant and value the
corresponding measure. Time series with multiple
attributes can also be treated after a pre-processing
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phase which restructures them into multiple ta-
bles having replicated key values. Instances of our
data model straightforwardly derive from widely
adopted on-line economic libraries such as the Fed-
eral Reserve Economic Data (FRED) and the data-
source exposed by the central bank in our project.

Query templates. We distinguish temporal claims
according to their semantics and organize them
into templates, providing for each of them the cor-
responding DatalogMTL rule. Our rules can be
efficiently executed on a DatalogMTL engine (Bel-
lomarini et al., 2021; Benedikt et al., 2017).

In Table 1, we collect 10 different templates
along with a claim/rule example in our scenario. It
is not our intention to produce an exhaustive list
of all the admissible templates, instead we aim at
showing the feasibility of generating the correct
rules for claims falling into any of the given in-
put set of templates. Among others, the rule for
Template 2 is triggered if the inflation during 2011
surpassed 2%. Our claims do not specify the coun-
try, as we refer to one single national central bank.

3 Translating Claims to DatalogMTL

In the context of Neural Machine Translation
(Sutskever et al., 2014; Bahdanau et al., 2015)
pre-trained Language Models (PLMs) neural net-
works based on Transformers excel at handling Nat-
ural Language (NL) sequences in understanding
and generation tasks (Vaswani et al., 2017; Devlin
et al., 2019). These models are typically pre-trained
on large text corpora in an unsupervised manner,
for example by predicting the missing tokens in
each sentence. Many Natural Language Processing
(NLP) tasks can benefit from the NL understanding
and generation capabilities of PLMs by means of
fine-tuning with task-specific data through transfer
learning. Fine-tuning is performed in a supervised
manner, by providing the labelled input.

Our approach fine-tunes the T5 model to use its
text-to-text capabilities for our text-to-rule transla-
tion task. To this end, we generate and augment a
fine-tuning set of textual input (claims) and output
(rules) labels to specialize the T5 model.

Starting from a template-based categorization
of the rules (Table 1), we transform each pair
(⟨claim NL, rule DL⟩) into a full-text specification:
NL is prefixed by “datalog translation:”, which
identifies the downstream translation task; for DL
we safely remove the symbol ⊥ appearing in all
queries (thus non necessary to predict) and replace

math symbols with text snippets.
We exploit the set of templates and the time se-

ries to augment the fine-tuning dataset. For each
claim, we create a set of variants having the same
semantics but different syntax. We replace the ac-
tual values of economic metrics, events, numeric
values, temporal and comparison text snippets with
specific placeholders. We show the process for
claims belonging to templates 3 (1,2) e 2 (3,4):
1: In <instant> <metric> reached the
<max-min> since the last <epoch>.
2: During the last <epoch> <metric> is
<higher-lower> than in <instant>.
3: <metric> during <instant> was
<higher-lower> than <value>.
4: The value of <metric> was
<higher-lower> than <value> in <instant>.

We replace their rules with placeholders:
1-2: Time op. star[<epoch>] <metric>(y),
<metric>(x)@[<instant>],x <comparator> y
3-4: <metric>(x)@[<instant>],x
<comparator> <value>

We then replace the placeholders with the actual
input values from our data sources:
1: In 2020 inflation reached the maximum
since the last six years.
2: During the last six years inflation
is lower than in 2020.
3: Inflation during 2011 was higher
than 0.02.
4: The value of inflation was higher
than 0.02 in 2011.

We apply the same process to the rules:
1-2: Time op. star[six years] inflation
(y), inflation(x)@[2020],x less than y
3-4: inflation(x)@[2011],x less than
equal to 0.02

4 Training and Validation Results

We describe: (i) how we obtained the fine-tuned
T5 model and (ii) how we used it to automatically
translate textual claims into rules. Our results are
based on the exact string matches accuracy of pre-
dicted DatalogMTL rules against the ground truth.
Traditional BLEU and ROUGE metrics are not
used here since they may lead to good accuracy
also for minimal variations of the predicted rules re-
sulting to drastically different execution outcomes.

Model fine-tuning. Following our translation ap-
proach we generated 60K ⟨NL,DL⟩ pairs uniformly
distributed among the 10 templates after under-
sampling the most populated classes. After split-
ting the dataset into training and test sets and setting
the architecture parameters, we fine-tune a T5-base
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# Template Claim / Rule Example
1 Metric at two time instants In 2020 the inflation was higher than in year 2021

⊥:= inflation(x)@[2020], inflation(y)@[2021], x ≤ y
2 Metric value at single instant Inflation during 2011 was higher than 0.02

⊥:= inflation(x)@[2011], x ≤ 0.02
3 Metric at single instant w.r.t. In 2020 inflation reached the maximum since the last six years

previous epoch value ⊥:= ♢−[0,6]inflation(y), inflation(x)@[2020], x < y
4 Metric at a given epoch During the last ten years the inflation has always been higher than 0.02

⊥:= ♢−[0,10]inflation(x), x ≤ 0.02, true@[today]
5 Metric at given epoch implies After ten years of inflation above 2%, public debt surpassed 3000

metric at single instant ⊥:= public debt(x), x ≤ 3000,−�[0,10]inflationGt(y), y = 0.02
6 Event at a single instant An economic crisis occurred in 2008

⊥:= economic crisis(x)@[2008], x = False
7 Event at a given epoch A salary increment has been observed during the last 3 years

⊥ := −�[0,3]salary increment(x), x = False, true@[today]
8 Metric at given epoch implies If inflation for the last ten years was higher than 0.02, we have a salary increment

required event ⊥:= salary increment(x), x = False, −�[0,10]inflationGt(z), z = 0.02
9 Event at given epoch implies Till to 5 years after a stock market crash, inflation remained below 0.02

metric at a single instant ⊥:= inflation(x), x ≥ 0.02, ♢−[0,5]stock market crash(z), z = True
10 Event at epoch and metric at In the 3 years after a salary increment, if inflation is lower than 0.02, there is a salary increment

instant imply required event ⊥:= salary increment(y), y = False,♢−[0,3]salary increment(z), z = True, inflation(x), x < 0.02

Table 1: Query templates with the respective claim and temporal Datalog example.

model (Google, 2022) to generate our prediction
model. This process has been carried out in 3 hours
on a NC12s_v2 machine with 12 CPUs, 224GB
RAM and a P100 Nvidia GPU.

Model prediction. We apply our fine-tuned model
on newly generated input claims in any of our 10
templates. For each claim, we generate a set of vari-
ants sharing the same semantics but with different
syntax by using 3 paraphrasing tools from the NL-
Augmenter Python framework (Goyal and Durrett,
2020; Dopierre et al., 2021; Kumar et al., 2019).
We generate 30 variants per claim after replacing
placeholder variables with a set of reference values.
We then place back placeholders and eliminate du-
plicated and erroneous claims, i.e., those that have
a different set of placeholders w.r.t. the starting
claim. Finally, placeholders are replaced with ac-
tual values before randomly selecting 5000 claims
balanced across template categories. Given such
newly generated test set (average Jaccard distance
from the training set was 0.317), we predict the
DatalogMTL rules with our model. The model cor-
rectly predicts (in less than one hour) 4495 over
5000 claims resulting in a 0.90 average accuracy.

Table 2 provides accuracy results about tem-
plates, each characterized by 4 features: num-
ber of rule placeholders, epoch vs instant-based
placeholders, number of comparison operators, and
claim type, i.e., a simple statement or a more com-
plex conditional phrase. Results show decreasing
prediction performance with claims of higher com-
plexity, corresponding to rules with mixed time
placeholders and comparison operators on metrics.

Template # Plcs Time # Ops Type Accuracy
1 5 I+I 1 S 0.794
2 4 I 1 S 0.934
3 5 I+E 1 S 0.636
4 4 E 1 S 0.970
5 7 E 2 C 0.802
6 2 I 0 S 0.986
7 2 E 0 S 0.978
8 5 E 1 C 0.974
9 5 E 1 C 0.984

10 6 E 1 C 0.932

Table 2: Prediction accuracy for claims grouped by
template. # Plcs denotes the # of rule placeholders,
Time reports instant (I) and epoch (E) placeholders, #
Ops is the # of comparison operators on metrics, Type
denotes conditional (C) and simple (S) phrases.

5 Conclusion

This work shows that numerical temporal claims
can be computationally verified exploiting time se-
ries. While preliminary results are promising, one
major challenge is the lack of training data for the
rule generation module. Templates are an effective
solution, but the coverage of the system depends
on the number of deployed templates. We are also
working on how to create data explanations for true
claims, as now we only show counter-examples.
One road is to identify examples by perturbing the
Datalog rule, as studied for SQL queries (Wu et al.,
2017). We are looking at how to improve the valida-
tion step by comparing the effects of the generated
rules, instead of their syntactical equivalence and
by testing a real-world benchmark of claims.
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