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Abstract

Computational fact-checking aims at support-
ing the verification process of textual claims
by exploiting trustworthy sources. However,
there are large classes of complex claims that
cannot be automatically verified, for instance
those related to temporal reasoning. To this
aim, in this work, we focus on the verification
of economic claims against time series sources.
Starting from given textual claims in natural
language, we propose a neural machine trans-
lation approach to produce respective queries
expressed in a recently proposed temporal frag-
ment of the Datalog language. The adopted
deep neural approach shows promising prelimi-
nary results for the translation of 10 categories
of claims extracted from real use cases.

1 Introduction

False and misleading information spreading on me-
dia negatively impacts our society by affecting peo-
ple opinions and behaviours. To oppose such phe-
nomena, fact-checking is the process aiming at ver-
ifying the correctness of facts in a piece of text, i.e.,
claims (Nakov et al., 2021). To this end, claims
have to be debunked against trustworthy structured
and non-structured sources. In this work, we report
on our effort on statistical claims in collaboration
with a national central bank in Europe. Specifi-
cally, we focus on claims about economic events
and trends that should be checked against temporal
data sequences, namely time series, the standard
format for time-based data in this domain.
Fact-checking organizations debunk such claims
applying a typically manual process to extract
claims from text, retrieving pieces of evidence from
relevant sources, and finally, reaching a verdict us-
ing such evidence. Given the large amount of in-
formation produced and shared online, this process
cannot guarantee that an adequate number of eco-
nomic claims is debunked. To enable scalability,
statistical claims could be automatically verified
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Figure 1: Examples of a claim verified with a SQL query
(left) and a complex claim tested with a Datalog rule
(right). In both cases, the result is not empty, thus the
claim is false based on the evidence in the time series.

to support checkers in their work. In order to be
interpretable to the human, not only should the au-
tomatic verification provide a label for the given
claim, but also a clear explanation of the adopted
reasoning process as well as the evidence used to
draw the conclusion.

Declarative languages offer a valid solution to
both challenges. Mature data modeling languages
balance computational complexity and expressive
power, addressing the scalability challenges. In-
terpretability is a major advantage of declarative
languages, with well-known semantics applied
to the ground data in a deductive, top-down ap-
proach (Hansen and Rieger, 2019).

Different solutions translate text formats to
executable high-level languages, e.g., SQL
queries, typically through neural architectures
(Katsogiannis-Meimarakis and Koutrika, 2021;
Saeed and Papotti, 2021). While these approaches
exhibit promising results, they do not effectively
translate claims including temporal aspects into an
executable form. This depends on their limited ca-
pability in capturing the temporal logic of claims.

Example. Consider a central bank that offers a
service to fact-check economic claims. Reference
information is available in the standard format of
time-series. The bank has data about economic
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measures, such as inflation, public debt, employ-
ment rate, interest rates, and about events such as
economic crises, and salary increments. The exam-
ple in Figure 1 shows the inflation and public debt
metrics with key-value tables.

While some claims can be easily written as SQL
queries for their verification, for most of them this
is very difficult, or unfeasible in some cases. Con-
sider the claims (i) “Inflation in the last 10 years
has been lower than 3% and (ii) “Every time infla-
tion is above 2% for 10 years, public debt surpasses
3000B". A possible SQL query to verify claim (i)
through counter-example detection is reported in
the left-hand side of Figure 1. For Claim (ii), a
script should evaluate, for each year in the dataset,
the value of public debt and then check a condition
over inflation for the previous 10 years. Although
such expression can be written in SQL for one
given year, our claim requires checking the condi-
tion for every possible year, which turns out to be
unfeasible or extremely laborious and inefficient
in SQL. With DatalogMTL (Brandt et al., 2018), a
Datalog fragment that incorporates temporal opera-
tors, we can represent our expression as:

L= By,10) inflationGt(y),y = 0.02,
public_debt(z), z < 30008

The rule intercepts the cases in which Claim (if)
is violated. In fact, it is triggered whenever the
body (right-hand side) is satisfied, meaning that
the inflation is found greater than 2% for the 10
preceding years but the public debt is below or
equal to 3000B. Specifically, the logical premise
of our claim (“Every time inflation is above 2%”)
is checked through the temporal operator By, i.e.,
“always true in the interval p = [t — 10y,t]”, so
that for the rule to be triggered at a point in time ¢,
the logical conclusion of our claim must be false,
i.e., public_debt(x),x < 3000B. The evaluation
of the rule checks the claim and produces human-
understandable counter-examples (Figure 1).

In this paper, we propose a neural machine trans-
lation approach to fact-check numerical temporal
claims. In particular, our approach synthesizes tem-
poral data queries (rules) from input claims for the
verification of temporal claims. While there have
been efforts to use neural architectures for generat-
ing SQL scripts (Yin et al., 2021), to the best of our
knowledge, there is no support to translate textual
claims into Datalog rules (Brandt et al., 2018).

The main contributions of our approach are:
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(i) the adoption of DatalogMTL to encode as rules
a large class of temporal economic claims thus cap-
turing their temporal logic, (ii) the rule synthesis
according to our proposed fine-tuned neural T5
model (Raffel et al., 2020).

Our model is generated based on a dataset of
manually crafted claim-query pairs inspired by eco-
nomic newspapers and the Federal Reserve dataset
(Fred, 2022). Finally, a validation phase attests the
ability of our model to automatically synthesize
newly generated claims unseen during fine-tuning.

2 Language and Templates

In this section we present the DatalogMTL formal-
ism, the reference data model, and a categorization
of claim-query pairs based on their semantics.

Temporal Datalog. We adopt Datalog Metric Tem-
poral Logic (DatalogMTL), a temporal logic-based
language that has recently received great attention
from the Al and database communities (Walega
et al., 2019, 2020, 2021). DatalogMTL extends
Datalog with metric temporal logic operators over
the rational timeline. We consider DatalogMTL
rules of the form | := Aq,..., A, fork > 0,
where all A; are literals that follow the grammar
Az=T|L|P(1)| BeA| ©,A, with p being a
non-negative interval, and P an atom (on a predi-
cate having either functional or infix notation) over
a tuple of terms (i.e., variables and constants) 7.
The conjunction of A is the rule body and commas
denote the logical and (A).

Given a database D, the semantics of a Data-
logMTL rule is defined through interpretations. An
interpretation 90U specifies for each time point ¢,
whether a ground atom P(a) from D is true at ¢,
in which case we write 9, ¢ |= P(a)@t. The @
symbol denotes the time reference for an atom.

An interpretation that satisfies all atoms of the
body triggers the rule. The box minus B, opera-
tor checks if a ground atom is continuously true in
the interval o, that is, M, ¢ = ByAf M, s =
Aforall s, witht — s € p. The diamond mi-
nus &, operator checks if a ground atom is true
at least once in the interval p, that is, I, ¢ |=
O AIff M, s = A for some s, witht — s € .

Data Model. We rely on existing data sources
containing time series, each representing an eco-
nomic metric and following the key-value format,
where key represents a time instant and value the
corresponding measure. Time series with multiple
attributes can also be treated after a pre-processing



phase which restructures them into multiple ta-
bles having replicated key values. Instances of our
data model straightforwardly derive from widely
adopted on-line economic libraries such as the Fed-
eral Reserve Economic Data (FRED) and the data-
source exposed by the central bank in our project.

Query templates. We distinguish temporal claims
according to their semantics and organize them
into templates, providing for each of them the cor-
responding DatalogMTL rule. Our rules can be
efficiently executed on a DatalogMTL engine (Bel-
lomarini et al., 2021; Benedikt et al., 2017).

In Table 1, we collect 10 different templates
along with a claim/rule example in our scenario. It
is not our intention to produce an exhaustive list
of all the admissible templates, instead we aim at
showing the feasibility of generating the correct
rules for claims falling into any of the given in-
put set of templates. Among others, the rule for
Template 2 is triggered if the inflation during 2011
surpassed 2%. Our claims do not specify the coun-
try, as we refer to one single national central bank.

3 Translating Claims to DatalogMTL

In the context of Neural Machine Translation
(Sutskever et al., 2014; Bahdanau et al., 2015)
pre-trained Language Models (PLMs) neural net-
works based on Transformers excel at handling Nat-
ural Language (NL) sequences in understanding
and generation tasks (Vaswani et al., 2017; Devlin
etal., 2019). These models are typically pre-trained
on large text corpora in an unsupervised manner,
for example by predicting the missing tokens in
each sentence. Many Natural Language Processing
(NLP) tasks can benefit from the NL understanding
and generation capabilities of PLMs by means of
fine-tuning with task-specific data through transfer
learning. Fine-tuning is performed in a supervised
manner, by providing the labelled input.

Our approach fine-tunes the T5 model to use its
text-to-text capabilities for our text-to-rule transla-
tion task. To this end, we generate and augment a
fine-tuning set of textual input (claims) and output
(rules) labels to specialize the T5 model.

Starting from a template-based categorization
of the rules (Table 1), we transform each pair
({claim NL, rule DL)) into a full-text specification:
NL is prefixed by “datalog translation:”, which
identifies the downstream translation task; for DL
we safely remove the symbol L appearing in all
queries (thus non necessary to predict) and replace
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math symbols with text snippets.

We exploit the set of templates and the time se-
ries to augment the fine-tuning dataset. For each
claim, we create a set of variants having the same
semantics but different syntax. We replace the ac-
tual values of economic metrics, events, numeric
values, temporal and comparison text snippets with
specific placeholders. We show the process for
claims belonging to templates 3 (1,2) e 2 (3,4):

1: In <instant> <metric> reached the
<max-min> since the last <epoch>.

2: During the last <epoch> <metric> is
<higher-lower> than in <instant>.

3: <metric> during <instant> was
<higher-lower> than <value>.

4: The value of <metric> was
<higher-lower> than <value> in <instant>.

We replace their rules with placeholders:

1-2: Time op. star[<epoch>] <metric>(y),
<metric>(x)@[<instant>],x <comparator> y
3-4: <metric>(x)@[<instant>],x
<comparator> <value>

We then replace the placeholders with the actual
input values from our data sources:

1: In 2020 inflation reached the maximum
since the last six years.

2: During the last six years inflation
is lower than in 2020.

3: Inflation during 2011 was higher

than 0.02.

4: The value of inflation was higher
than 0.02 in 2011.

We apply the same process to the rules:

1-2: Time op. star[six years] inflation
(y), inflation(x)@[2020],x less than y
3-4: inflation(x)@[2011],x less than

equal to 0.02

4 Training and Validation Results

We describe: (i) how we obtained the fine-tuned
TS model and (ii) how we used it to automatically
translate textual claims into rules. Our results are
based on the exact string matches accuracy of pre-
dicted DatalogMTL rules against the ground truth.
Traditional BLEU and ROUGE metrics are not
used here since they may lead to good accuracy
also for minimal variations of the predicted rules re-
sulting to drastically different execution outcomes.

Model fine-tuning. Following our translation ap-
proach we generated 60K (NL, DL) pairs uniformly
distributed among the 10 templates after under-
sampling the most populated classes. After split-
ting the dataset into training and test sets and setting
the architecture parameters, we fine-tune a T5-base



Template Claim / Rule Example

p—

Metric at two time instants

In 2020 the inflation was higher than in year 2021

L:= inflation(x)@[2020], inflation(y)@[2021],x < y

Metric value at single instant

Inflation during 2011 was higher than 0.02

L:= inflation(x)Q[2011],z < 0.02

Metric at single instant w.r.t.
previous epoch value

In 2020 inflation reached the maximum since the last six years
L:= O0,6inflation(y), inflation(x)Q@[2020), z < y

4 Metric at a given epoch During the last ten years the inflation has always been higher than 0.02
L:= §o,10)inflation(x), x < 0.02, true@|[today)
5 Metric at given epoch implies  After ten years of inflation above 2%, public debt surpassed 3000
metric at single instant L:= public debt(x), x < 3000, Bjo,1q)inflationGt(y),y = 0.02
6 Event at a single instant An economic crisis occurred in 2008
L:= economic crisis(x)Q[2008],x = False
7 Event at a given epoch A salary increment has been observed during the last 3 years
L = Bjo,3)8alary increment(x), x = False, true @[today]
8 Metric at given epoch implies  If inflation for the last ten years was higher than 0.02, we have a salary increment
required event L:= salary increment(x), x = False, B|o,10)inflationGt(z), z = 0.02
9 Event at given epoch implies  Till to 5 years after a stock market crash, inflation remained below 0.02
metric at a single instant L:= inflation(x), x > 0.02, &0,515tock market crash(z), z = True
10 Event at epoch and metric at  In the 3 years after a salary increment, if inflation is lower than 0.02, there is a salary increment

instant imply required event

L :=salary increment(y), y = False,é[oyg] salary increment(2), z = True, inflation(x), r < 0.02

Table 1: Query templates with the respective claim and temporal Datalog example.

model (Google, 2022) to generate our prediction
model. This process has been carried out in 3 hours
on a NC12s_v2 machine with 12 CPUs, 224GB
RAM and a P100 Nvidia GPU.

Model prediction. We apply our fine-tuned model
on newly generated input claims in any of our 10
templates. For each claim, we generate a set of vari-
ants sharing the same semantics but with different
syntax by using 3 paraphrasing tools from the NL-
Augmenter Python framework (Goyal and Durrett,
2020; Dopierre et al., 2021; Kumar et al., 2019).
We generate 30 variants per claim after replacing
placeholder variables with a set of reference values.
We then place back placeholders and eliminate du-
plicated and erroneous claims, i.e., those that have
a different set of placeholders w.r.t. the starting
claim. Finally, placeholders are replaced with ac-
tual values before randomly selecting 5000 claims
balanced across template categories. Given such
newly generated test set (average Jaccard distance
from the training set was 0.317), we predict the
DatalogMTL rules with our model. The model cor-
rectly predicts (in less than one hour) 4495 over
5000 claims resulting in a 0.90 average accuracy.
Table 2 provides accuracy results about tem-
plates, each characterized by 4 features: num-
ber of rule placeholders, epoch vs instant-based
placeholders, number of comparison operators, and
claim type, i.e., a simple statement or a more com-
plex conditional phrase. Results show decreasing
prediction performance with claims of higher com-
plexity, corresponding to rules with mixed time
placeholders and comparison operators on metrics.
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Template #Plecs Time #Ops Type Accuracy
1 5 I+1 1 S 0.794
2 4 I 1 S 0.934
3 5 I+E 1 S 0.636
4 4 E 1 S 0.970
5 7 E 2 C 0.802
6 2 I 0 S 0.986
7 2 E 0 S 0.978
8 5 E 1 C 0.974
9 5 E 1 C 0.984
10 6 E 1 C 0.932

Table 2: Prediction accuracy for claims grouped by
template. # Plcs denotes the # of rule placeholders,
Time reports instant (/) and epoch (E) placeholders, #
Ops is the # of comparison operators on metrics, Type
denotes conditional (C) and simple (S) phrases.

5 Conclusion

This work shows that numerical temporal claims
can be computationally verified exploiting time se-
ries. While preliminary results are promising, one
major challenge is the lack of training data for the
rule generation module. Templates are an effective
solution, but the coverage of the system depends
on the number of deployed templates. We are also
working on how to create data explanations for true
claims, as now we only show counter-examples.
One road is to identify examples by perturbing the
Datalog rule, as studied for SQL queries (Wu et al.,
2017). We are looking at how to improve the valida-
tion step by comparing the effects of the generated
rules, instead of their syntactical equivalence and
by testing a real-world benchmark of claims.
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